1	Original Article					
2	Chemical Composition and Fatty Acid Profiles of Ball Sea Cucumber					
3	(Phyllophorella kohkutiensis)					
4	Sarunya Yimyong ^{1*} , Janjarus Watanachote ¹ Maliwan Kutako ² , Yutthaya Yuyen ³ ,					
5	Wannapa Kasiroek ¹ , and Nisa Siranonthana ¹					
6	¹ Institute of Marine Sciences, Burapha University, Chonburi, 20131, Thailand					
7	² Faculty of Marine Technology, Burapha University, Chanthaburi, 22170, Thailand					
8	³ Faculty of Science and Technology, Suan Dusit University, Bangkok, 10300, Thailand					
9	*Corresponding author, Email: nisas@buu.ac.th					
10	Abstract					
11	Ball sea cucumber (Phyllophorella kohkutiensis) is an edible consumed					
12	domestically and exported to foreign countries. The chemical composition (moisture,					
13	protein, ash, carbohydrate, lipid) and fatty acid (FA) profiles of the fresh and dried					
14	samples with and without tube feet (TF) were investigated. The fresh samples had high					
15	moisture content (86.22 to 87.96%), while dried samples showed the highest total protein					
16	(70.21 to 78.75%). All samples contained low total lipids (0.01 to 0.10%). The dried					
17	samples with TF were found the highest total saturated FA with 63.75% total fatty acid					
18	(TFA), while fresh samples without TF had the highest total monounsaturated FA with					
19	23.80% TFA, and total polyunsaturated FA with 21.93% TFA, including Arachidonic					
20	acid (ARA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA). The					
21	essential minerals, calcium (Ca) and zinc (Zn) were 73.38 and 0.047 mg/100 g,					
22	respectively. The ball sea cucumber P. kohkutiensis provides good nutritional quality for					
23	human consumption.					

Keywords: ball sea cucumber, proximate compositions, fatty acid profiles, calcium and
 zinc

26 **1. Introduction**

Ball sea cucumbers (Phyllophorella kohkutiensis Heding and Panning, 1954) are 27 marine invertebrates with spherical bodies belonging to the phylum Echinodermata, 28 family Phyllophoridae which live on muddy and sandy grounds. They are native species 29 and geologically peculiar to Thailand that can be found along the coasts of the Gulf of 30 31 Thailand, and the Andaman Sea (Panithanarak, 2022). In three coastal provinces of 32 Thailand including Surat Thani, Satun, and Trat, ball sea cucumbers are used as food, especially in Koh Sarai Sub-district, Satun province where a population density is 0.07 33 persons per square meter (Kasiroek, 2022). Basically, echinoderms have a water vascular 34 system, usually with tube feet, which helps them with breathing, feeding, and movement 35 in their habitat. The body walls of sea cucumbers are the major edible portion of them 36 consist of 40-60% protein (dry weight basis) which are covered with black tube feet ball 37 as found in *P. kohkutiensis*, the edible sea cucumbers can be eaten in fresh or dried form 38 39 as well as with- or without tube feet (Wang, Tian, Chang, Xue, & Li, 2020). Besides, various sea cucumber species including the genus *Holothuria*, *Actinopyga*, *Bohadschia*, 40 and Stichopus, have been consumed in Asian countries and can be exported in dried, fresh 41 or frozen form in major consuming countries such as China, Hong Kong, Japan, South 42 Korea, and Singapore (Bechtel, Oliveira, Demir, & Smiley, 2013; Aydin, Sevgili, Tufan, 43 Emre, & Köse, 2011; Choo, 2008). Previous studies have been published on the 44 45 nutritional quality of some sea cucumber species indicating they contain high protein contents, low lipid contents and are rich in essential minerals, especially calcium, and 46 zinc (Liu et al., 2019; Barzkar, Fariman, & Taheri, 2017; Bordbar, Anwar, & Saari, 2011), 47

48	and natural products such as collagen, fatty acids, steroids, and polysaccharides. In
49	addition, sea cucumbers are considered a source of fatty acids, especially N-6 and N-3
50	highly unsaturated fatty acids (HUFAs) such as ARA (Arachidonic acid; C20:4n6), EPA
51	(Eicosapentaenoic acid; C20:5n3) and DHA (Docosahexaenoic acid; C22:6n3) which
52	play an important role in inflammatory response control through eicosanoid production
53	(Yu et al., 2016; Oliver, McGillicuddy, Phillips, Toomey, & Roche, 2010; Lee et al.,
54	2009). Sea cucumbers can be marine animal resources with great economic value;
55	however, the chemical composition related to their nutritional value and fatty acid profiles
56	are still limited. Therefore, the objectives of this study were to investigate the proximate
57	composition, Ca and Zinc content of ball sea cucumber P. kohkutiensis, and fatty acid
58	profiles in the fresh and dried samples including with and without tube feet to obtain
59	information about the nutritional quality of it for human consumption and application in
60	value added of local products development.
61	2. Materials and Methods
62	Sample collection and preparation
63	Ball sea cucumber sampling
64	The samples of ball sea cucumber (Phyllophorella kohkutiensis Heding &
65	Panning, 1954) were collected from three stations at Koh Sarai, Satun province by
66	dragging at a depth of 5-15 meters. The samples were soaked in seawater and internal
67	organs were removed. Then, they were kept on ice for 24 hours and taken to the Institute

- 68 of Marine Science's Laboratory.
- 69 Sample preparation

70 In the laboratory, morphometric measurements were examined and classified by

71 comparing with the references according to the sea cucumber identification guides of

72	Heding & Panning (1954) (Clark & Rowe, 1971; Putchakarn, 1998). After that, ball sea
73	cucumber samples were divided into four types of them including fresh and dried samples
74	with and without tube feet. The tube feet which are the outer black of their body wall
75	were carefully scraped off, then cleaned under running water. The whole-body walls with
76	and without tube feet were cut into small pieces. For the dry process, samples were
77	allowed to dry by sun exposure and air at the environment temperature for 10 hours. Four
78	types of sample preparation were used for proximate compositions and fatty acid analysis,
79	while the fresh sample without tube feet was estimated calcium and zinc content by the
80	central laboratory.
81	Proximate composition, essential minerals, and fatty acids analysis
82	Proximate composition analysis
83	Total protein was analyzed by the Kjeldahl method in which the content of the
84	crude protein was estimated as the content of the nitrogen (N)×6.25. Total lipid content
85	was analyzed by Gravimetric Method (AOAC, 2000) using the Soxhlet extraction
86	technique. Additionally, moisture (AOAC, 2000) and ash (Muffle furnace; AOAC, 2000)
87	were also analyzed. The nitrogen-free extract was calculated by following the formula as
88	NFE = 100 - moisture - ash - protein - lipid
89	Calcium and Zinc contents analysis
90	The estimation of macro (Ca) and micro (Zn) contents were analyzed using the
91	inductively coupled plasma (ICP) technique with the following AOAC (2019) 984.27 and
92	AOAC (2019) 999.10 method by the central laboratory.
93	Lipid extraction and fatty acids analysis

94 Total lipids were extracted from 0.5 g of a dry sample and 10 g of a wet sample
95 according to Bligh & Dyer (1959). All samples were dissolved in chloroform (containing

BHT 0.1 ppm) : methanol (containing BHT 0.1 ppm) in a ratio of 2:1, pooled the solvent,
and dried under nitrogen gas. Fatty acids methyl esters were prepared by acid-catalyzed
transmethylation of total lipids (10 ml of 1% sulphuric acid in methanol and placed in an
oven at 50°C for 16 hours. Added 5 ml of 5% sodium chloride, 5 ml of hexane, and 40 ml
of 2% potassium bicarbonate and then filtered through anhydrous sodium sulfate and
dried under nitrogen gas (Christie, 2003).

102 Separation and identification of fatty acids were carried out and analyzed in 103 Agilent Technologies GC7820A equipped with a FAME WAX, USA fused silica capillary column (30 m x 0.25 mm i.d., 0.25 µm film thickness), using helium as carrier 104 105 gas at 1.1 ml/min. Samples were injected with 1 µl at the following conditions. The 106 column temperature was 120°C during 0.5 min, the thermal gradient to 170°C at a rate of 5°C min⁻¹, maintained for 10 min, 170 to 190°C at a rate of 3°C min⁻¹, maintained for 15 107 min, 190 to 210°C at a rate of 2°C min⁻¹ and maintained for 15 min. Injector and flame 108 109 ionization detector temperatures were 240°C and 260°C, respectively. Fatty acids methyl esters were identified by comparison with known standard mixtures (Supelco 37-110 111 Component FAME Mix, Supelco, USA) and quantified by area percent of total fatty acid.

112 Data analysis

The experimental data were calculated and represented as the mean and standard deviation. Then, variance and comparisons of fatty acid content between the groups were analyzed with One way ANOVA with Duncan's test by using R (Team, 2020). The significance level of p < 0.05 was used.

- 117 **3. Results and Discussion**
- 118 **Proximate composition in the ball sea cucumber**

119	Proximate compositions (moisture, protein, ash, carbohydrate, lipid) of the fresh
120	and dried samples with and without tube feet are shown in Table 1. The fresh samples
121	contained the highest moisture content (86.22 to 87.96%), whereas dried samples had the
122	highest percentage of total protein (70.21 to 78.75%). The moisture content of fresh
123	samples ranged between 86.22% and 87.96%, while dried samples ranged between 5.81%
124	and 6.50%, respectively. For the fresh samples with and without tube feet, the percent
125	levels of protein, ash, carbohydrate, and lipid were in the range of 8.55 - 11.16, 1.47 -
126	2.62, 0.84 - 1.14, and 0.01 - 0.04, respectively. Fresh samples of ball sea cucumber P.
127	kohkutiensis had high moisture contents which were similar to reported data found in
128	various fresh sea cucumber species ranging from 67.92% to 92.42%, and proximate
129	compositional data of <i>P. kohkutiensis</i> was close to contents of moisture (85.24%), protein
130	(7.88%), ash (5.13%), and lipid (0.09%) in Holothuria mammata (Ardiansyah, Bayu,
131	Wulandari, & Putra, 2022). The high values of moisture found in ball sea cucumbers were
132	due to marine animals comprising high water content (Sales et al., 2021). The protein
133	content in fresh samples without tube feet (11.16%) was higher than in fresh samples with
134	tube feet (8.55%). Fresh samples of ball sea cucumber <i>P. kohkutiensis</i> had percentages of
135	total protein, which were higher than those reported in Apostichopus japonicus (3.40%),
136	Holothuria arenicola (4.40%), and Stichopus horrens (3.47%) but were lower than the
137	protein content observed in <i>H. parva</i> (17.61%), <i>Bohadschia marmorate</i> (43.23%), and <i>S</i> .
138	chloronotus (57.93%) (Ardiansyah, Bayu, Wulandari, & Putra, 2022; Barzkar, Fariman,
139	& Taheri, 2017; Omran, 2013). The dried samples with and without tube feet had high
140	contents of protein (70.21 to 78.75%), ash (14.29 to 23.62%), carbohydrate (0.26 to
141	0.37%), and very low content of lipids (0.08 to 0.10%). Dried samples of ball sea
142	cucumber P. kohkutiensis contained high protein contents which were higher than those

- 143 previous reports in various dried sea cucumber species ranging from 36.99% to 63.30%
- 144 (Ardiansyah, Bayu, Wulandari, & Putra, 2022; Wen, Hu, & Fan, 2010). Mostly, sea
- 145 cucumbers have a high nutritional quality which is valuable because of their high protein
- 146 content and low amount of lipids; however, their proximate compositions are varied
- 147 depending on species, seasonal variations, environmental factors, feeding behavior, and
- 148 geographic location (Ardiansyah, Bayu, Wulandari, & Putra, 2022).
- 149 Ca and Zn contents in the ball sea cucumber
- 150 The macro (Ca) and micro (Zn) contents in the fresh sample without tube feet
- 151 were 73.38 and 0.047 mg/100 g, respectively. Both values of essential elements were
- 152 close to prior reporting in *H. Arenicola* which contained 83.25 mg/100 g calcium and 0.04
- 153 mg/100 g zinc (Barzkar, Fariman, & Taheri, 2017). However, the calcium content in *H*.
- 154 *sanctori* (656.73 mg/100 g) had higher than the sample in this study. Calcium is one of
- the macro minerals that have crucial for the growth and maintenance of bones, teeth, and
- 156 muscles. Zinc is one of the most important trace elements involved in immune system
- 157 activity and metabolism function (Göçer, Olgunoglu, & Olgunoglu, 2018).
- 158 Fatty acid profiles in the ball sea cucumber
- 159 The profile of fatty acids in four types of ball sea cucumber samples was
- 160 significantly different (P<0.05) which is shown in Table 2. The result showed the highest
- 161 amount of fatty acids in ball sea cucumber *P. kohkutiensis* was lauric acid (C12:0),
- 162 palmitic acid (C16:0), steric acid (C18:0), oleic acid (C18:1n9), eicosenoic acid
- 163 (C20:1n9), and arachidonic acid (C20:4n6), representing the saturated fatty acid (SFAs)
- 164 was in the range of 24.64 63.75% TFA, the monounsaturated fatty acids (MUFAs) was
- 165 in the range of 16.76 23.80% TFA, and the polyunsaturated fatty acids (PUFAs) was in
- the range of 8.11 21.93% TFA, respectively. Previous studies have reported the most

167	dominant component in SFAs, MUFAs, and PUFAs are palmitic acid, eicosenoic acid,
168	and arachidonic acid, respectively (Ardiansyah, Bayu, Wulandari, & Putra, 2022).
169	Moreover, the sample without tube feet provided the essential fatty acids, whereas the
170	sample with tube feet delivered the saturated fatty acids, especially lauric acid which can
171	be used for acne treatment as a natural antibiotic against Propionibacterium acnes
172	(Nakatsuji et al., 2009). The finding is due to tube feet being composed of lipid
173	membranes with a high content of saturated fatty acids. The highest total SFAs was
174	markedly found in dried samples with tube feet (63.75% TFA), while fresh samples
175	without tube feet showed the highest total MUFAs (23.80% TFA) and total PUFAs
176	(21.93% TFA). For PUFAs, arachidonic acid (ARA, C20:4n6), eicosapentaenoic acid
177	(EPA, C20:5n3), and docosahexaenoic acid (DHA, C22:6n3) were found in four types of
178	ball sea cucumber samples. In addition, ARA content presented as the main fatty acid of
179	PUFAs in all samples, had higher than EPA content which was similar to prior studies
180	reported in H. poli and H. mammata (Aydin, Sevgili, Tufan, Emre, & Köse, 2011),
181	Thelenota anax and Bohadschia marmorata (Nishanthan, Kumara, Croos, Prasada, &
182	Dissanayake, 2018). The omega-6 PUFA, ARA or its precursor linoleic acid (LA) plays
183	a structural and functional role in cell membranes involving the nervous system, skeletal
184	muscle, and immune system. (Tallima, & Ridi, 2018). EPA and DHA belong to the
185	omega-3 PUFA which play a key role in the prevention and treatment of coronary artery
186	disease, diabetes, hypertension, arthritis, and other inflammatory and autoimmune
187	disorders (Rogero et al., 2020). The balanced omega-6/omega-3 ratio is a critical factor
188	for health throughout the life cycle and the proper ratio for omega-6/omega-3 is 3:1 to 4:1
189	could prevent the pathogenesis of many diseases (Simopoulos, 2016). These ratios were
190	found in the dry ball sea cucumber with tube feet (5.50:1.88). A target of omega-6/omega-

191 3 is 1:1 to 2:1 and is considered adequate which appears to be consistent with studies on 192 the evolutionary aspects of diet, neurodevelopment, and genetics. The ratio of 2:1 of 193 omega-6/omega-3 appeared in the fresh ball sea cucumber without tube feet (14.33:6.72), 194 the dry ball sea cucumber without tube feet (10.07:4.65), and the fresh ball sea cucumber with tube feet (10.77:5.09). In addition, excessive amounts of omega-6 PUFA and a very 195 196 high omega-6 to omega-3 ratio, can be promoted as pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, 197 198 and interfere with normal brain development (Simopoulos, 2008).

199 **4.** Conclusions

The nutritional composition study of edible ball sea cucumber (*P. kohkutiensis*) by quantitative analysis found high protein and low lipid content, especially fresh ball sea cucumber without tube feet found high levels of omega-3 fatty acids, EPA and DHA, and essential minerals including calcium and zinc which be suitable for human consumption in term of functional food. However, the dried ball sea cucumber with tube feet provided

205 high content of lauric acid used as a natural antibiotic in the cosmetics industry.

206 Acknowledgments

This study is a part of the research project "Studying biological activities and development of value-added products from Sea cucumber: Distribution of income to the community of Sarai island UNESCO Satun Geopark area case study" funded by the National Science and Technology Development Agency (NSTDA), project code P-19-51267. The author wishes to thank Dr.Sumaitt Putchakarn for the species identification of a ball sea cucumber, and also thank three anonymous reviewers and the editor for their helpful comments.

214 **References**

215	Ardiansyah, A., Bayu, A., Wulandari, D. A., & Putra, M. Y. (2022). Fatty acid from sea
216	cucumber: Mini review. AIP Conference Proceedings 2563(1), 050021, 1-8.
217	doi:10.1063/5.0103471
218	Association of Official Analytical Chemists. (2000). Official methods of analysis (17th
219	ed). Washington, DC: Author.
220	Association of Official Analytical Chemists. (2019). Official methods of analysis (21st
221	ed). Washington, DC: Author.
222	Aydin, M., Sevgili, H., Tufan, B., Emre, Y., & Köse, S. (2011). Proximate composition
223	and fatty acid profile of three different fresh and dried commercial sea
224	cucumbers from Turkey. International Journal of Food Science and Technology,
225	46, 500-508. doi:10.1111/j.1365-2621.2010.02512.x
226	Barzkar, N., Fariman, G. A., & Taheri, A. (2017). Proximate composition and mineral
227	contents in the body wall of two species of sea cucumber from Oman Sea.
228	Environmental Science and Pollution Research, 24, 18907-18911.
229	doi:10.1007/s11356-017-9379-5
230	Bechtel, P. J., Oliveira, A. C. M., Demir, N., & Smiley, S. (2013). Chemical
231	composition of the giant red sea cucumber, Parastichopus californicus,
232	commercially harvested in Alaska. Food Science & Nutrition, 1(1), 63-73.
233	doi:10.1002/fsn3.12
234	Bordbar, S., Anwar, F., & Saari, N. (2011). High-value components and bioactives from
235	sea cucumbers for functional foods-a review. Marine Drugs, 9(10), 1761-1805.
236	doi:10.3390/md9101761

237	Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and				
238	purification. The Canadian Journal of Biochemistry and Physiology, 37(8), 911-				
239	7. doi: 10.1139/o59-099.				
240	Choo, P.S. (2008). Population status, fisheries and trade of sea cucumbers in Asia. In				
241	V. Toral-Granda, A. Lovatelli and M. Vasconcellos (Eds), Sea cucumbers: A				
242	global review of fisheries and trade (pp. 81-118). Rome: FAO.				
243	Christie, W. W. (2003). Lipid analysis: isolation, separation, identification, and				
244	structural analysis of lipids. Bridgwater, England: Oily press.				
245	Clark, A. M., & Rowe, F. W. E. (1971). Monograph of shallow-water Indo-West Pacific				
246	echinoderms: i-vii, 1-238, pls 1-31. London, England: Trustees of the British				
247	Museum (Natural History).				
248	Göçer, M., Olgunoglu, İ. A., & Olgunoglu, M. P. (2018). A study on fatty acid profile				
249	and some major mineral contents of sea cucumber (Holothuria (platyperona)				
250	sanctori) from Mediterranean sea (Turkey). Food Science and Quality				
251	Management, 72, 1-5.				
252	Kasiroek, W. (2022). Genetic characteristics, fundamental biology and ecology of ball				
253	sea cucumber (Phyllophorella kohkutiensis) in Thai waters. Research report				
254	presented to the National Science and Technology Development Agency. 142 p.				
255	Lee, S. A., Kim, H. J., Chang, K. C., Baek, J. C., Park, J. K. & Shin, J. K. (2009). DHA				
256	and EPA down-regulate COX-2 expression through suppression of NF-kappa B				
257	activity in LPS-treated human umbilical vein endothelial cells. The Korean				
258	Journal of Physiology and Pharmacology, 13(4), 301-307. doi:				
259	10.4196/kjpp.2009.13.4.301				

260	Liu, X., Wang, Z., Zhang, J., Song, L., Li, D., Wu, Z., Zhu, B., Nakamura, Y., Shahidi,
261	F., Yu, C., & Zhou, D. (2019). Isolation and identification of zinc-chelating
262	peptides from sea cucumber (Stichopus japonicus) protein hydrolysate. Journal
263	of the Science of Food and Agriculture, 99, 6400-6407. doi:10.1002/jsfa.9919
264	Nakatsuji, T., Kao, M. C., Fang, J. U., Zouboulis, C. C., Zhang, L., Gallo, R. L., &
265	Huang, C. M. (2009). Antimicrobial property of lauric acid against
266	Propionibacterium acnes: Its therapeutic potential for inflammatory acne
267	vulgaris. Journal of Investigative Dermatology, 129(10), 2480-2488.
268	doi:10.1038/jid.2009.93
269	Nishanthan, G., Kumara, P. A. D. A., Croos, M. D. S. T., Prasada, D. V. P., &
270	Dissanayake, D. C. T. (2018). Effects of processing on proximate and fatty acid
271	compositions of six commercial sea cucumber species of Sri Lanka. Journal of
272	Food Science and Technology, 55(5), 1933-1941. doi:10.1007/s13197-018-
273	3111-4
274	Oliver, E., McGillicuddy, F., Phillips, C., Toomey, S. & Roche, H. M. (2010). The role
275	of inflammation and macrophage accumulation in the development of obesity-
276	induced type 2 diabetes mellitus and the possible therapeutic effects of long-
277	chain n-3 PUFA. The Proceedings of the Nutrition Society, 69(2), 232-243.
278	doi:10.1017/S0029665110000042.
279	Omran, N. (2013). Nutritional value of some Egyptian sea cucumbers. African Journal
280	of Biotechnology, 12(35), 5466-5472. doi:10.5897/AJB2013.13020
281	Panithanarak, T. (2022). Genetic diversity and population differentiation of ball sea
282	cucumber Phyllophorella kohkutiensis in Thai waters derived from COI and 16S
283	rDNA. Journal of Fisheries and Environment, 46(1), 66-79.

284	Putchakarn, S. (1998). Diversity study on echinoderms from the eastern coast of
285	Thailand. Research report presented to the National Research Council of
286	Thailand. 109 p.
287	Rogero, M. M., Leão, M. C., Santana, T. M., Pimentel, M. V. M. B., Carlini, G. C. G.,
288	Silveira, T. F. F., Gonçalves, R. C., & Castro, I. A. (2020). Potential benefits and
289	risks of omega-3 fatty acids supplementation to patients with COVID-19. Free
290	Radical Biology and Medicine, 156, 190-199.
291	doi:10.1016/j.freeradbiomed.2020.07.005
292	Sales, S., Lourenço, H. H., Pessoa, M. F., Pombo, A., Félix, P. M., & Bandarra, N. M.
293	(2021). Chemical composition and omega 3 human health benefits of two sea
294	cucumber species of North Atlantic. Journal of Aquatic Food Product
295	Technology, 30(5), 1-19. doi:10.1080/10498850.2021.1909683
296	Simopoulos, A. P. (2016). Evolutionary thinking in medicine from research to policy
297	and practice. In A. Alvergne, C. Jenkinson and C. Faurie (Eds.), evolutionary
298	aspects of the dietary omega-6/omega-3 fatty acid ratio in medical implications
299	(pp. 119-134). Switzerland: Springer.
300	Simopoulos, A. P. (2008). The omega-6/omega-3 fatty acid ratio, genetic variation,
301	and cardiovascular disease. The Asia Pacific Journal of Clinical Nutrition, 17
302	(S1): 131-134.
303	Tallima, H., & Ridi, R. E. (2018). Arachidonic acid: Physiological roles and potential
304	health benefits - A review. Journal of Advanced Research, 11, 33-41.
305	doi:10.1016/j.jare.2017.11.004

306	Team, R. C. (2020). R: A language and environment for statistical computing. R
307	Foundation for Statistical Computing, Vienna, Austria. Copenhagen: European
308	Environment Agency. Retrieved from http://www.R-project.org/
309	Wang, Y., Tian, M., Chang, Y., Xue, C., & Li, Z. (2020). Investigation of structural
310	proteins in sea cucumber (Apostichopus japonicus) body wall. Scientific
311	Reports, 10, 18744. doi:10.1038/s41598-020-75580-x
312	Wen, J., Hu, C., & Fan, S. (2010). Chemical composition and nutritional quality of sea
313	cucumbers. Journal of the Science of Food and Agriculture, 90(14), 2469-2474.
314	doi:10.1002/jsfa.4108
315	Yu, H., Gao, Q., Dong, S., Zhou, J., Ye, Z., & Lan, Y. (2016). Effects of dietary n-3
316	highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles,
317	antioxidant capacity and immunity of sea cucumber Apostichopus japonicus
318	(Selenka). Fish & Shellfish Immunology, 54, 211-219.
319	doi:0.1016/j.fsi.2016.04.013

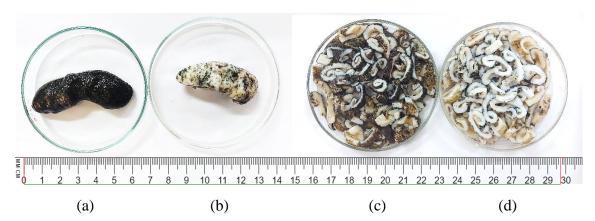


Figure 1 the fresh sample including with (a) and without (b) tube feet; small pieces of fresh sample including with (c) and without (d) tube feet of ball sea cucumber *Phyllophorella kohkutiensis*

Proximate	Sample types			
Content	Dried		Fresh	
(%)	with tube feet	without tube feet	with tube feet	without tube feet
Moisture	5.81 ± 0.56	6.50 ± 0.06	87.96 ± 0.55	86.22 ± 0.33
Ash	23.62 ± 1.08	14.29 ± 0.38	2.62 ± 0.29	1.47 ± 0.10
Lipid	0.10 ± 0.01	0.08 ± 0.00	0.04 ± 0.01	0.01 ± 0.00
Protein	70.21 ± 1.39	78.75 ± 0.50	8.55 ± 0.40	11.16 ± 0.41
Carbohydrate	0.26 ± 0.07	0.37 ± 0.17	0.84 ± 0.16	1.14 ± 0.02

Table 1 Proximate composition (%w/w ± standard deviation) of ball sea cucumber *Phyllophorella kohkutiensis*

Note: Carbohydrate (nitrogen-free extract, NFE) = 100 - moisture - ash - protein - lipid

Table 2 The profile of fatty acids in the four types of ball sea cucumber samples

	Sample types			
Fatty acids	Dried		Fresh	
	with tube feet	without tube feet	with tube feet	without tube feet
C6:0	nd	0.23 ± 0.02^{b}	0.76±0.01 ^a	nd
C8:0	nd	nd	nd	nd
C10:0	0.33±0.00 ^b	nd	1.13±0.01 ^a	0.45±0.31 ^b
C11:0	nd	nd	nd	nd
C12:0	22.42 ± 0.22^{a}	1.15 ± 0.12^{d}	7.27 ± 0.08^{b}	2.13±0.21 ^c
C13:0	nd	nd	nd	nd
C14:0	15.50±0.16 ^a	3.60±0.13°	5.85 ± 0.06^{b}	2.94 ± 0.30^{d}
C15:0	0.44±0.01 ^a	0.86 ± 0.08^{b}	1.59±0.02 ^c	0.89 ± 0.10^{b}
C16:0	12.52±0.10 ^a	9.22 ± 0.64^{b}	7.33±0.04 ^c	5.43 ± 0.55^{d}
C17:0	2.17±0.04 ^b	6.70±0.61 ^a	$0.51 \pm 0.10^{\circ}$	0.50±0.10 ^c
C18:0	7.21±0.08 ^b	8.08 ± 0.55^{a}	5.86±0.03 ^c	5.74±0.54°
C20:0	1.17±0.02 ^c	2.56±0.21 ^a	1.99±0.01 ^b	2.33±0.21 ^a
C21:0	0.64 ± 0.01^{d}	1.44±0.11 ^b	1.21±0.01 ^c	1.65±0.14 ^a
C22:0	$0.90 \pm 0.09^{\circ}$	1.95±0.14 ^a	1.51 ± 0.03^{b}	1.64 ± 0.17^{b}
C23:0	0.28±0.00 ^c	0.68 ± 0.10^{a}	0.46 ± 0.00^{b}	0.55 ± 0.05^{b}
C24:0	0.18±0.01 ^c	$0.34{\pm}0.02^{ab}$	$0.22 \pm 0.01 b^{c}$	0.40±0.14 ^a
Total SFAs	63.75±0.68 ^a	36.60 ± 2.56^{b}	35.70 ± 0.16^{b}	$24.64 \pm 2.36^{\circ}$
C14:1	nd	nd	0.15 ± 0.00^{b}	0.17 ± 0.00^{a}
C15:1	nd	nd	0.16 ± 0.10^{a}	0.46 ± 0.48^{a}
C16:1n7	1.73±0.01°	3.25±0.27 ^a	3.34 ± 0.09^{a}	2.58 ± 0.25^{b}
C17:1	0.28 ± 0.02^{c}	0.69 ± 0.02^{b}	0.69 ± 0.21^{b}	1.09 ± 0.19^{a}
C18:1n9 (c+t)	7.98±0.03 ^a	3.65±0.31 ^b	3.76 ± 0.02^{b}	3.48 ± 0.32^{b}
C20:1n9	4.32±0.14 ^c	8.76 ± 0.70^{b}	7.95±0.13 ^b	10.24±1.01 ^a
C22:1n9	nd	nd	nd	nd
C24:1n9	2.29±0.06 ^c	4.46±0.23 ^b	4.14 ± 0.05^{b}	5.77±0.98 ^a
Total MUFAs	16.76±0.30 ^c	20.47 ± 1.12^{b}	20.19±0.55 ^b	23.80±0.08 ^a
C18:2n6 t	1.04 ± 0.01^{b}	0.75 ± 0.04^{d}	0.89±0.03 ^c	1.19±0.13 ^a
C18:2n6 c	0.31±0.03 ^b	0.56±0.03 ^a	0.20±0.01 ^c	0.31 ± 0.04^{b}
C18:3n6	0.33±0.01 ^b	0.74 ± 0.06^{a}	0.31 ± 0.32^{b}	0.81 ± 0.07^{a}

C18:3n3	0.15 ± 0.01^{b}	$0.44{\pm}0.04^{a}$	nd	nd
C20:2	0.57 ± 0.21^{a}	1.36 ± 1.14^{a}	0.51 ± 0.03^{a}	$0.59{\pm}0.07^{a}$
C20:3n6	nd	nd	nd	nd
C20:4n6 (ARA)	$3.83 {\pm} 0.03^{d}$	7.93±0.48°	9.23 ± 0.01^{b}	$11.70{\pm}1.08^{a}$
C20:3n3	nd	0.63 ± 0.24^{a}	0.16 ± 0.00^{b}	0.20 ± 0.04^{b}
C20:5n3 (EPA)	1.49 ± 0.11^{d}	$3.07 \pm 0.15^{\circ}$	$4.34{\pm}0.00^{b}$	$5.60{\pm}0.47^{a}$
C22:2	0.15 ± 0.00^{b}	nd	0.07 ± 0.10^{ab}	0.28 ± 0.03^{a}
C22:6n3 (DHA)	$0.24{\pm}0.03^{b}$	0.49 ± 0.03^{b}	0.58 ± 0.01^{ab}	$0.92{\pm}0.36^{a}$
Total PUFAs	8.11±0.26 ^c	16.26±0.41 ^b	16.43 ± 0.38^{b}	21.93±1.63 ^a
Σn3	1.88	4.65	5.09	6.72
Σn6	5.50	10.07	10.77	14.33
$\Sigma n3/\Sigma n6$	0.34	0.46	0.47	0.47
$\Sigma n6/\Sigma n3$	2.92	2.17	2.12	2.13

Note: Data are the mean values of three replicates \pm standard deviation. Means within the same row without a common lowercase letter differ significantly (p<0.05) nd= not detected, SFAs = saturated fatty acids, MUFAs= monounsaturated fatty acids, PUFAs= polyunsaturated fatty acids.

The Answer Sheet

Submission ID: SJST-2022-00052 Title: Chemical Composition and Fatty Acid Profiles of Ball Sea Cucumber (*Phyllophorella kohkutiensis*)

Comments / Questions Modifications Abstract What is TFA in Line 20? It is a % total fatty acid (TFA). I wrote in a full name for the first time, then used an abbreviation after that. Please see lines 17-18. I revised the contents of the abstract with It would be better to inform the finding of this study according to the key words of the title. Since chemical the flow of keywords in the title as well. Please see lines 11-23. composition is started first, this should mention how much water content? and the rest, total solid, is divided into which component. Then, what the matter with lipid in ball cucumber and finally wrap up with lipid profile in your samples. Line: 15-17, It is a bit confusing with the different essential fatty acids, assessed by four different methods. What are those methods and how different? Please check the unit of minerals Ca and Zn in Line 24 I checked and used the unit of minerals Ca "mg/kg wet wt." and Zn with "mg/ 100 g". Please see line 21. Introduction I revised the objectives and results of this Line 61: If this research is applicable, more consumption of this animal resource would be study, then provided suitable utilization that increased. How come this work will provide has a possibility related to this research data. sustainable utilization? Please clarify? Please see lines 27-60, with the highlight of new contents and references. It is not sound to the readers that only chemical composition and fatty acid provide strong scientific evidence to utilize this material as medical health food utilizations? **Materials and Methods** Drying method was not scientifically performed. Why I decided to use sun drying in process does it have to be sun drying? Please provide the because local people always let the ball sea iustification. cucumber drying in this way before exporting to foreign countries. They are the dried samples that we need to know about the nutritional values for human consumption and application in value added of local products development. I agreed with you, then rewrote it The sample preparation methods are not clear. step-by-step for clarification. Please see lines 70-80. Line: 72-75: Which parts of cucumber are used for I revised the sample preparation and already performing the chemical composition? Whole, without rewrote, please see lines 72-76. black skin?

Please see lines 70-72.

The modification list is shown below:

Line 80-85: What is the main methodology for this

section?

Results and Discussion				
Please discuss proximate analysis and mineral content	Yes, I did it. Please see lines 118-157.			
separately				
Please inform the reader that there are many varieties	Yes, I revised the results in this study with			
or species of ball cucumber. Then, the results from this	comparing previous studies that reported in			
study can be compared to the previous one	the chemical composition, fatty acid profiles,			
	and mineral content of various sea cucumber			
	species.			
Is it trustable to claim that sea cucumbers are useful	I revised and provided suitable utilization that			
for medicine and high nutrition? As the current MS,	has a possibility related to this research data.			
this bioresource is just normal biomaterial containing a	Please see lines 22-23; 59-60; 200-205.			
potential for being food products				
There must be several mineral content in this	In fact, several elements and essential			
biomaterial. Why only Ca and Zn focused? How about	minerals that are interested in studying and			
others?	can be found in marine animals. I decided to			
	study calcium content in ball sea cucumber			
	because it has calcite (CaCO ₃) which is a			
	component of ossicle embedding in its body wall, so Ca content is very high.			
	Besides, I chose zinc as representing of			
	minor or trace mineral with expectation in			
	potential benefit of property about			
	anti-inflammation, reduction in oxidative			
	stress and maintaining a healthy immune			
	system related to the epidermic of Severe			
	Acute Respiratory Syndrome			
	coronavirus 2 (SARS-CoV-2)			
	(Dhawan, Emran, & Choudhary, 2022;			
	Prasad, Malysa, Bepler, Fribley, & Bao,			
	2022; Li, Kong, Chen, Liu, & Zhang, 2018).			
Conclusions				
Based on the results, there is no information indicating	Please see lines 200-205 and 170-171.			
the potential of using this material for medical				
application				
Table It is better to separate the proximate analysis data out Yes, I did it.				
of mineral contents	1 co, 1 uiu it.			
Table 2, The head of the table should be modified.	Yes. I changed the new head of Table 2, and			
Here is an example	Table 1 too.			
Figure				
Figure 1: There are 3 sub figures here. What are they?	Yes. I put new pictures and description of			
It must be divided into sub figures A, B and indicated	samples in Figure 1 as follow.			
what are they? Why do you have to put this one in this				
figure (Kasiroek, 2022)? It should be figures taken by				
this experiment				