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Abstract 9 

The quantification of anomalies in radio signal transmission has been a serious 10 

challenge using data from radiosondes to determine meteorological parameters in Ede, 11 

Nigeria.  The point refractivity gradient and geoclimatic factor were analysed in this 12 

paper. Air temperature, relative humidity, and pressure for five years (2017 – 2021) are 13 

the meteorological parameters used. These parameters were collected from the ERA5 14 

(European Centre for Medium-Range Weather Forecasts, 2017) radiosonde data 15 

archives. The results revealed the monthly and seasonal fluctuations in the point 16 

refractivity gradient and geoclimatic component within the study period. From the 17 

results, Geoclimatic Factor (K) and the yearly average Point Refractivity Gradient (dN1) 18 

for Ede are 3.37E-05 and -143.712 N-units/Km respectively. In July, the highest dN1 19 

value of -48.332 N-units/Km was recorded, while the lowest value of -225.534 N-20 

units/Km was recorded in November. In addition, the wet season has a higher point 21 

refractivity gradient than the dry season, although the wet season has a lower 22 

geoclimatic factor. The values obtained in this study are to be considered and adopted 23 

for better microwave link Quality of service (QoS) and availability in this region.  24 

 25 
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1. Introduction  29 

The complexity of the troposphere is increased by atmospheric meteorological 30 

characteristics, such as water vapor density, temperature, relative humidity, and 31 

pressure, which have a substantial impact on microwave transmission. They interact in a 32 

variety of ways in the tropics to influence the propagation of radio waves, as well as the 33 

radio refractivity gradient (Zheng & Han-Xian, 2013; Zubair, Haider, Khan, & Nasir, 34 

2011). Behaviour of radio signals in the atmosphere is determined by establishing the 35 

variations of the refractivity gradient The vertical profiles of moisture, pressure, and air 36 

temperature in the atmosphere are responsible for this fluctuation (Emmanuel, Ojo, & 37 

Adedayo, 2020). When it comes to the transmission of radio waves during clear air on 38 

terrestrial line-of-sight lines, different behaviour of these atmospheric characteristics 39 

results in signal losses on the transmission link (Mason, 2010; Shambayati, 2008). The 40 

effects of super–refraction and ducting phenomena on radar observations and the 41 

refractivity gradient in a 1 km region above ground are significant for estimating super–42 

refraction and ducting phenomena. The field strength at very high frequency (VHF) 43 

sites beyond the horizon also, cannot be underestimated (Bean & Dutton, 1968; Dairo & 44 

Kolawole, 2017; Karagianni, Mitropoulos, Latif, Kavousanos-Kavousanakis, Koukos, 45 

& Fafalios, 2014).  46 

The subject of radio refractivity has received more attention, especially in the 47 

temperate region regarding this subject matter. Among such studies are the works of; 48 

Abdulhadi, & Kifah, 2010; Řezáčová, Ondřej, & Lucas, 2003; Valma, Tamosiunaite, 49 



Tamosiunas, Tamosiuniene, & Zilinskas, 2011 to mention but a few. The attention is 50 

much needed in the tropics such as Ede in Nigeria due to the nature of its intense 51 

climatological environment.  52 

In Nigeria, the likes of (Ojo, Ajewole, Adediji, & Ojo, 2015; Adediji & 53 

Ajewole, 2008; Adeyemi & Emmanuel, 2011; Asiyo & Thomas, 2013; Ele & Nkang, 54 

2014; Kolawole, 1983; Falodun & Ajewole, 2006; Ononiwu & Constance, 2015) had 55 

earlier worked on refractivity gradients and point refractivity gradients. However, one 56 

of the elements employed in determining multipath fade depth on communication links 57 

at any location of interest is the geoclimatic component. The utilization of 58 

meteorological characteristics collected in the lower and upper atmosphere is used to 59 

determine geoclimatic factors primarily. 60 

Multipath fading arises when a signal encounters an obstruction that causes it to 61 

take multiple pathways before reaching its destination. As a result of this issue, signal 62 

propagation in the troposphere is hampered. Multipath fading can also be caused by the 63 

differing refractive index of the atmospheric horizontal layers in particular. This is in 64 

agreement with Serdege and Ivanovs (2007), who affirmed that due to seasonal 65 

variations in refractive index, radio wave systems may become unavailable and that the 66 

structure of the radio refractive index, n, in the lower atmosphere is a significant factor 67 

in communication connection estimation. 68 

 In addition, the notion of geoclimatic factor assessment is still important to 69 

communication engineers, because it stands as the most essential criterion in 70 

determining fade depth. The geoclimatic factor is used to calculate the likelihood of a 71 

worst-case month outage (Bettouche, Basile, & Kouki, 2014; Göktas, 2015; Ugwu, 72 

2015). The point refractivity gradient (dN1), which is determined by several 73 



meteorological variables like temperature, pressure, and atmospheric vapour pressure, is 74 

used to calculate geoclimatic factors. The data is necessary for making adequate plans 75 

and designs for communication radio links for satellite networks, radar, and other 76 

applications. 77 

The climate in Ede, Nigeria is hot and humid most of the year and is likely to 78 

experience anomalous propagation due to its special climate. In this regard, few studies 79 

are available for this region. 80 

This study aims at estimating the seasonal variations in the geoclimatic factor values 81 

and point refractivity gradient in Ede, Nigeria. 82 

 83 

 84 

2. Materials and Methods 85 

Ede (Geo. 7.299o N, 5.147o E) in Nigeria's Osun state was chosen as the research 86 

area. The meteorological data used in this study was gathered over a five-year period 87 

(January 2017 to December 2021) from the archives of European Centre for Medium-88 

Range Weather Forecasts, 2017 (ECMWF) Fifth generation atmospheric re-analysis 89 

(ERA-5) which provides hourly meteorological data (relative humidity, pressure, and 90 

temperature) required for characterisation of propagation conditions. ERA-5 uses 91 

complex modeling and data assimilation technologies to turn massive volumes of 92 

historical data into global estimations. It gives an hourly worldwide value of 93 

atmospheric parameters with 137 vertical levels from the surface to 0.01 hPa and a 94 

horizontal resolution of 31 km (Hersbach, 2016). Variations of wind regimes and near-95 

surface air temperature are presented by ERA5. The ERA5 data being in NetCDF 96 



format is downloaded and processed using the ferret and python packages (Tetzner, 97 

Thomas & Allen, 2019). 98 

In Ede, the wet season usually ranges between the later end of March to 99 

September end, and the dry season most times pick up from October till February. 100 

Values of temperature, relative humidity, and pressure were gathered for five years from 101 

the daily log of Era5. These data were used to calculate the point refractivity gradients.  102 

The refractive index, n, can be represented by the term ‘radio refractivity, N’ as defined 103 

by the International Telecommunication Union (ITU-R) (2012). 104 

      (1) 105 

      (2) 106 

In terms of measurable meteorological parameters, the refractivity N, can be expressed 107 

as : 108 

   (3) 109 

where p denotes atmospheric pressure in hPa, T denotes absolute temperature in degrees 110 

Celsius (K), and e denotes water vapour pressure in hPa. 111 

The dry and wet compositions of refractivity in the lower atmosphere (troposphere) are 112 

distinguished. The dry term makes up a larger portion of the total refractivity in the 113 

atmosphere, accounting for roughly 70% of the total value. The dry term varies with the 114 

distribution of gas molecules in the atmosphere and is proportional to their density. 115 

Surface data of pressure, P (hpa), and temperature, T (Kelvin) can be used to estimate 116 

the dry term of refractivity, which is reasonably stable, with an accuracy of about 20%. 117 

           (4) 118 



The wet term, on the other hand, is responsible for the majority of the change in 119 

refractivity in the atmosphere. Due to the polar structure of water molecules, the term 120 

"wet" is used. 121 

        (5) 122 

e, the water vapour pressure, is calculated by 123 

       (6) 124 

H (%) denotes relative humidity, and t (oC) denotes air temperature.  125 

The refractivity gradient in the atmosphere which is a function of height is expressed as 126 

(ITU, 2003): 127 

               (7) 128 

where N1 and N2 are the refractivity at heights h1 and h2 respectively. 129 

 are the lower and upper atmospheric refractive indexes, respectively. 130 

(Chaudhary & colleagues, 1986).  131 

The point refractivity dN1 (N – units/Km) according to ITU-R P.530-15 (09/2013) is the 132 

point refractivity gradient in the lowest 65 m of the atmosphere not exceeded for 1% of 133 

an average year. The dN1 value is obtained using (7), where N1 is calculated considering 134 

the h1 value nearest to 65 m height, so that 60 m < h1 < 70 m  135 

Inverse Distance Weighting (IDW) is a method of spatial interpolation that is employed 136 

in data analysis when a collection of missing points or no observations are available. 137 

        (8) 138 

i represented the value approximated with respect to the observed points, , n 139 

represents the total number of points that were sampled. Z, represents the known value 140 

at the sampled point, and  are the weighting parameters. 141 



         (9) 142 

di denotes the distance between xo and xi, n is as mentioned earlier, and p is the power 143 

factor. 144 

The Geoclimatic factor K was calculated using ITU-R. P.530-14, 2012 145 

        (10) 146 

 147 

 148 

3. Results and Discussion 149 

The data in this study encompassed the two climatic seasons that occur in Ede 150 

each year, the wet season and the dry season. Every year, the dry season is from 151 

October to February, and the rainy season extends from March to September. 152 

The Ede climate is tropical in nature; it is a zone where warm, wet air from the 153 

Atlantic meets hot, dry, and often dusty air from the Sahara, known as the ‘harmattan.' 154 

Equation (6) was used to convert relative humidity to water vapour pressure, e (hpa), 155 

while Equation (3) was used to calculate the refractivity using the data. 156 

Figure 1 shows the yearly point refractivity gradient variations. The results show 157 

that the year 2017 has the highest point refractivity gradient while the year 2020 158 

recorded the lowest point refractivity. The average point refractivity gradient for the 159 

five (5) years is estimated to be -158.39. This is attributed to the climatic changes 160 

during that period. Ede experienced very low precipitation in the year 2020. 161 

Table 1 and Figure 2 show the results obtained from the computed values of the 162 

point refractivity gradient for the average monthly records. From March to August, high 163 

levels of point refractivity were recorded, owing to the presence of high humidity 164 



beginning in the month of March, as a result, there is a lot of water vapour pressure in 165 

the atmosphere, and could be attributable to the convective and occasionally 166 

thunderstorm forms of rain that were seen during this time. Due to heavy rainfall in the 167 

months preceding the event, the atmosphere experiences a lifting of the boundary layer, 168 

with significant amounts of water vapour present in the atmosphere (Adeyemi, 2004). 169 

The values of point refractivity were also seen to be low during the dry season. Figure 2 170 

depicts the usual monthly change of point refractivity at the start of the dry season in 171 

October, revealing an erratic oscillation. The measured point refractivity gradient values 172 

are projected to diminish by December as the harmattan haze begins to take impact and 173 

becomes intense. These findings are in agreement with the works of (Abdulhadi, & 174 

Kifah, 2010; Bettouche et al., 2014; Ilesanmi & Moses, 2021; Odedina & Afullo, 2007; 175 

Ojo, Ajewole, Adediji, & Ojo, 2015; Valma et al, 2011.  176 

The point refractivity gradients’ values at Ede vary greatly; the highest value of -177 

48.33 N-units/Km was recorded in July, while the lowest value of -320.144 N-units/Km 178 

was recorded in November. The results also agree to an extent with the global ITU map 179 

which theoretically gives the threshold of dN1 in these coordinates to be -273.2 N/km. 180 

However, the variations in the values call for attention for the optimum performance of 181 

digital terrestrial point to point links in Ede. 182 

In Table 1, it is seen that the Geoclimatic Factor (K) and annual average Point 183 

Refractivity Gradient (dN1) are 3.37E-05 and -143.712 N-units/Km respectively. Table 184 

2, and as reflected in Figure 3 and Figure 4, demonstrated seasonal fluctuations in the 185 

duo.   -116.17 (N-units / Km) was recorded for the average point refractivity during the 186 

wet season while -182.271 (N-units / Km) was estimated for the average dN1 during the 187 



dry season. Obviously, the point refractivity gradient (dN1) was higher in the wet season 188 

compared to the dry season.         189 

The estimated values of the average Geoclimatic factor (K) were shown in Table 190 

3, and in Figure 4, for the wet season, 3.1617E-05 was estimated while 3.68E-05 was 191 

estimated for the dry season. As a result, the Geoclimatic factor in the dry season was 192 

higher compared to the wet season. In the dry season, the monthly range between March 193 

and September (rainy months), has lower values, whereas the dry season, which runs 194 

from October to November, has higher values. The results are in agreement with the 195 

works of Odedina & Afullo, 2007; Ilesanmi & Moses, 2021. 196 

 197 

4. Conclusions 198 

Meteorological parameters, such as humidity, temperature, and air pressure, over 199 

Ede, Nigeria, are used to determine the geoclimatic factor and the point refractivity 200 

gradient in other to know the behaviour of radio waves in the area. This will give the 201 

opportunity to make appropriate decisions regarding the type of device, transmitter gain, 202 

public guide, and mitigation strategies to be employed in ensuring a smooth 203 

transmission of the radio waves in Ede. Monthly and seasonal fluctuations in the 204 

geoclimatic factor and point refractivity gradient were observed. The wet season has a 205 

higher point refractivity gradient than the dry season, but with a lower geoclimatic 206 

factor. 207 

 208 
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Figure 1: Yearly average of point refractivity gradient 

 

Figure 2: Monthly distribution of Point Refractivity Gradient (dN1) 
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Figure 3:  Monthly distribution of Geoclimatic Factor (K) 

 

 
Figure 4: Point refractivity gradient for both dry and rainy months over Ede. 
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Figure 5: Dry and Rainy season monthly variation of Geoclimatic factor (K) over Ede 

 



Table 1: Geoclimatic Factor (K) and Point Refractivity Gradient (dN1) for Ede on a monthly basis. 

MONTHS GEOCLIMATIC 

FACTOR (K) 

POINT REFRACTIVITY 

GRADIENT 

 (dN1 (N-units/Km)) 

January 3.02E-05 -55.201 

February 3.910E-05 -83.471 

March 3.74E-05 -198.625 

April 4.02E-05 -220-.713 

May 3.54E-05 -77.254 

June 2.02E-05 -56.311 

July 3.07E-05 -48.332 

August 3.14E-05 -80.142 

September 2.60E-05 -131.631 

October 3.71E-05 -180.510 

November 4.00E-05 -225.542 

December 3.74E-05 -320.144 

Annual 

Average 

3.37E-05 -143.712 
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Table 2: Monthly distribution of Point Refractivity Gradient (dN) for the dry and rainy seasons In 

Ede 

Months of 

dry season 

Point refractivity 

gradient of each 

month in the dry 

season  

Months of rainy 

season 

Point refractivity gradient of 

each month in the rainy 

season 

Jan  -55.201   March   -198.625 

Feb  -83.471   April   -220.713 

Oct  -180.51   May   -77.254 

Nov  -225.411   June   -56.311 

Dec  -200.54   July   -48.332 

    Aug   -80.142 

Average 

point 

refractivity 

 -182.271   Sept   -131.631 

  Average point 

refractivity 

  -116.17 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3: Monthly distribution of Geoclimatic factor (K) for the dry and rainy Season In Ede. 

Months of dry season Geoclimatic factor of 

each months in the 

dry season  

Months of rainy season Geoclimatic factor 

of each month in the 

rainy season 

Jan 3.02E-05 March 3.74E-05 

Feb 3.910E-05 April 4.02E-05 

Oct 3.71E-05 May 3.54E-05 

Nov 4.00E-05 June 2.02E-05 

Dec 3.74E-05 July 3.07E-05 

  Aug 3.14E-05 

Average K for dry 

season 

3.68E-05 Sept 2.60E-05 

  Average K for rainy 

season 

3.16E-05 

 

 

 

 


