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Abstract 11 

The performance of population mean estimators can be improved by transformation 12 

techniques using subset of the population data. An improved family of estimators for 13 

population mean has been proposed under double sampling using a transformed 14 

auxiliary variable. The biases and mean square errors of the proposed family of 15 

estimators up to the first order of approximation have been investigated. The simulation 16 

studies and an application to fine particulate matter in Chiang Rai, Thailand are used to 17 

study the efficiency of the proposed estimators. The results from an application to air 18 

pollution in Chiang Rai show that the proposed estimators gave smaller biases, at least 19 

half of the existing ones, and gave at least four times less mean square errors  than the 20 

existing ones.  21 
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1. Introduction  25 

It is important to study how to improve the efficiency of the estimators using 26 

sample survey data in order to develop precise estimators to estimate population 27 

parameters. There are many techniques to use for this purpose including the 28 

transformation techniques. For example, Srivenkataramana (1980) suggested to 29 

transform an auxiliary variable X  to increase the performance of the population mean 30 

estimator under simple random sampling without replacement (SRSWOR) (see e.g.,  31 

Tailor  and  Sharma (2009), Onyeka et al. (2013) )  Later,  Adewara et al. (2012) 32 

proposed to transform both the auxiliary variable and the study variable Y  in the same 33 

purpose in increasing the efficiency of the population mean estimator.   34 

      Moreover, many parameters of the auxiliary variable are usually unavailable.   35 

Thongsak and Lawson (2021) suggested the general forms for ratio estimators using the 36 

transformation method to gain more efficiency for population mean estimator under 37 

SRSWOR. Later Thongsak and Lawson (2022a) developed new estimators based on 38 

Thongsak and Lawson (2021) when the population mean of the auxiliary variable is not 39 

known under double sampling.  Double sampling is a sampling method to use under two 40 

stages in order to gain information on the unknown population mean of the auxiliary 41 

variable which is usually unknown in practice from the first phase of sampling 42 

suggested by Neyman (1938).  The Thongsak and Lawson (2022a) estimators are  43 
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, xand x are the sample means of the 46 

auxiliary variable based on the first phase sample of size n  and second phase sample of 47 

size n , y  is the sample mean of the study variable and b is a sample regression 48 

coefficient. ,  ,  ,  A D G H  are constants or some known parameters such as the coefficient 49 

of variation and the correlation coefficient.  50 

The biases and mean square errors (MSEs) of 
R

ˆ
Y and 

Reg

ˆ
Y are respectively 51 
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correlation coefficient between X  and Y , ,x yC C are the coefficients of variation of 57 

X and Y , respectively.  58 
 59 

Members of R1

ˆ
Y  and 

Reg1

ˆ
Y  with some auxiliary parameters are in Table 1. 60 
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Recently, Thongsak and Lawson (2022b) recommended the class of ratio estimators 67 

using the benefit of the known parameters of the auxiliary variable and the benefit of 68 

transformed auxiliary variable under SRSWOR which developed from the non-69 

transformed estimators proposed by Jaroengeratikun and Lawson (2018). The results 70 

found from the study of Thongsak and Lawson (2022b) showed that using the 71 

transformation technique can be gained in increasing the efficiency of the estimators 72 

over non-transformed estimators (see e.g., Thongsak and Lawson, 2022c). 73 

      In this study, an improved family of estimators for population mean has been 74 

proposed using a transformed auxiliary variable to improve the efficiency of the 75 

estimators under double sampling.  The Taylor series approximation is considered to 76 

investigate the biases and mean square errors of the proposed estimators. The simulation 77 

studies and an empirical study on the fine particulate matter 2.5 data in Chiang Rai, 78 

Thailand are applied to examine the performance of the proposed estimators. 79 

 80 

2. Materials and Methods 81 

 Motivated by Thongsak and Lawson (2022a), we suggested to improve the 82 

population mean estimator by combining the estimators 
R

ˆ
Y  in equation (1) and  Reg

ˆ
Y  in 83 

equation (2) with a constant   that minimizes the mean square error of the proposed 84 

estimator. A combined family of estimators is suggested based on double sampling 85 

when the auxiliary variable is not available. The proposed estimator is 86 
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where   is a constant that minimizes MSE of the proposed estimator, 88 
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 xand x are the sample means of the auxiliary variable 89 

based on the first phase sample of size n  and second phase sample of size n , y  is the 90 

sample mean of the study variable and b is a sample regression coefficient and 91 

,  ,  ,  A D G H  are constants or some known parameters such as the coefficient of variation 92 

( xC ) and the correlation coefficient (  ).   93 

To obtain the biases and MSEs of the proposed estimators, the following notations are 94 

defined:  0 /y Y Y    then  01y Y  ,  0 /y Y Y   then  01y Y  , 95 
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Rewriting equation (7) in terms of
0 1 2,  ,   we have: 100 
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The biases and MSEs of 
ˆ
NY  up to the first degree of approximation are acquired 102 
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where the difference  E b   was omitted (Cochran, 1977).  105 

2.1 Optimum Choice of Scalar    106 

In order to find the minimum value of MSE of the proposed family of estimators 
ˆ
NY in 107 

equation (7), we find the optimum value of by taking a partial derivative of the MSE 108 

in equation (10) with respect to and equating it to zero.  109 

Optimum value of for 
ˆ
NY  is 110 
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Substituting equation (11) into equation (7), the optimum 
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NY  is 112 

  opt opt opt

N N R N Reg

ˆ ˆ ˆ
1 .Y Y Y        (12) 113 

Substituting equation (11) into equation (10), the optimum MSE of estimator opt

N

ˆ
Y is 114 

     opt 2 2 * 2 2

min N

ˆ
.y yMSE Y Y C C         (13) 115 

Some proposed estimators are displayed in Table 2. 116 

 117 

2.2 Efficiency Comparisons 118 

The proposed estimators are compared with the usual ratio estimator ( Neyman

ˆ
Y ) and 119 

Thongsak and Lawson’s (2022a) estimators (
R

ˆ
Y  and Reg

ˆ
Y ) under the double sampling 120 

scheme, the MSEs are used as a criterion.  121 

1) opt

N
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Y , R
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Y  and Reg

ˆ
Y  if 122 
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For  2 ,K      opt
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ˆ
Y  is more efficient than Reg

ˆ
Y . 126 

From equation (14) we can see that the proposed estimators always perform better than 127 

all existing estimators because the condition is always true. 128 

3. Results and Discussion 129 

3.1 Simulation Results 130 

The paired variables  ,X Y  from the bivariate normal distribution are generated with 131 

the following parameters: 1,500,  55,  45,  0.6,  1.5,  0.3,  0.5,  0.8y xN Y X C C       .  132 

In the first phase of sampling, the samples of sizes 150,  300,  and 600 n   units are 133 

selected from N  population units under SRSWOR scheme then in the second phase of 134 

sampling, the sample of sizes 45, 90,  and 180n   units are selected under the SRSWOR 135 

scheme from 150,  300,  and 600n  , respectively. The simulation is repeated 10,000 times 136 

by the R program (R Core Team (2021)).  The biases and MSEs of the proposed and 137 

existing estimators are calculated by 138 
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The biases and MSEs of the proposed and existing estimators are represented in Tables 141 

3-5 and the mean square errors of all estimators are represented in Figure 1. 142 

The results from tables 3-5 are similar. We can see that all proposed estimators using 143 

combined estimators gave both smaller biases and MSEs at all levels of sample sizes 144 



and correlation coefficients between the auxiliary and study variables. The ore higher 145 

 , the higher efficiencies of the new combined estimators.  146 

 147 

From figure 1, the results found that the mean square errors of the proposed are smaller 148 

than all other existing estimators at different levels of  . A larger   gave smaller mean 149 

square errors compared to a smaller   at all sample sizes. 150 

 151 

3.2 Application to Air Pollution in Chiang Rai, Thailand 152 

The air pollution is one of the most important issues in Thailand nowadays especially in 153 

the north of Thailand therefore, we consider the air pollution data in Chiang Rai in the 154 

application.  The  fine particulate matter 2.5, PM2.5  levels ( 3μg/m ) and nitrogen oxide, 155 

2NO  levels ( 2mg/m ) on a time-scale of one per month (monthly average) from the 156 

Copernicus Atmosphere Monitoring Service (CAMS), The European Centre for 157 

Medium-Range Weather Forecasts (ECMWF) in 2003-2020 [25] are used in the study. 158 

The data belongs to a population of size 216 units. The concentration of 
2NO  is 159 

considered as the study variable Y  and the concentration of PM2.5  is considered as the 160 

auxiliary variable X . The population parameters are  161 

216,  2.214,  50.570,  0.410,  1.531,  0.921.y xN Y X C C       162 

In the first phase of sampling, a sample of size 75n   is selected from the population 163 

size 216N   using the SRSWOR scheme.  In the second phase of sampling a sample of 164 

size 20n   is selected from 75n    using the SRSWOR scheme. The biases and MSEs 165 

of the proposed estimators and existing estimators are presented in Table 6.  166 

 167 



Table 6 showed the results for an application to fine particulate matter in Chiang Rai 168 

also supported the results found in the simulation studies. The proposed combined 169 

estimators performed the best as you can see the biases and mean square errors of the 170 

proposed estimators were smaller than all existing estimators. The biases were at least 171 

half, and gave at least four times less mean square errors  than the existing ones which 172 

can be considered high improvement.   The proposed estimators work well in this 173 

application with a high correlation between 
2NO  and the concentration of PM2.5  174 

( 0.921 ) in Chiang Rai, Thailand and again, it supports what we found in the 175 

simulation studies.  176 

 177 

4. Conclusions 178 

A family of ratio estimators for population mean have been proposed in the case that the 179 

population mean of an auxiliary variable is unknown. Double sampling scheme is 180 

considered under this situation to estimate the unknown population mean of the 181 

auxiliary variable. The biases and mean square errors of the improved estimators are 182 

displayed. The simulation results and an application to fine particulate matter data in 183 

Chiang Rai, Thailand supports the finding that the improved estimators gave the lowest 184 

biases and mean square errors for all levels of sample sizes and all levels of correlation 185 

coefficients between the auxiliary variable and study variable.  The proposed estimators 186 

always perform the best and they can be useful for estimating the population mean or 187 

population total of the variable of interest when the researchers have no information on 188 

the auxiliary variable and therefore can be applied in the real world problems which 189 

leads to more powerful estimation.  190 

 191 
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Estimator A or G D or H 

*

R1

ˆ
b

dx
Y y

x

 
  

 

  
*

*

Reg1

ˆ
b

d
d x

Y y b x x
x

 
        

 1 0 

*

R2

ˆ
b

d

x

x

x C
Y y

x C

 
     

  
*

*

Reg2

ˆ
b

d
d x

x

x C
Y y b x x

x C

           
 1 xC  

*

R3

ˆ
b

dx
Y y

x





 
  

  

  
*

*

Reg3

ˆ
b

d
d x

Y y b x x
x





          

 1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table



Table 2 Some proposed estimators. 

Estimator 

 opt opt opt

N1 N1 R1 N1 Reg1

ˆ ˆ ˆ
1Y Y Y     

 opt opt opt

N2 N2 R2 N2 Reg2

ˆ ˆ ˆ
1Y Y Y     

 opt opt opt

N3 N3 R3 N3 Reg3

ˆ ˆ ˆ
1Y Y Y     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 Biases and MSEs of the proposed estimators and existing estimators  

when 0.3  . 

Estimator 
n'=150, n=45 n'=300, n=90 n'=600, n=180 

Bias MSE Bias MSE Bias MSE 

Neyman

ˆ
Y  9.026 178.910 5.936 60.147 4.122 27.583 

R1

ˆ
Y  3.770 22.372 2.619 10.801 1.786 4.972 

R2

ˆ
Y  3.772 22.400 2.621 10.817 1.787 4.979 

R3

ˆ
Y  3.770 22.379 2.620 10.805 1.786 4.974 

Reg1

ˆ
Y  3.858 23.400 2.685 11.333 1.831 5.216 

Reg2

ˆ
Y  3.863 23.457 2.688 11.362 1.833 5.230 

Reg3

ˆ
Y  3.859 23.413 2.686 11.339 1.831 5.219 

opt

N1

ˆ
Y  3.749 22.149 2.591 10.597 1.770 4.889 

opt

N2

ˆ
Y  3.750 22.159 2.591 10.598 1.770 4.889 

opt

N3

ˆ
Y  3.749 22.151 2.591 10.597 1.770 4.889 

 

 

 

 

 

 

 

 

 



Table 4 Biases and MSEs of the proposed estimators and existing estimators  

when 0.5  . 

Estimator 
n'=150, n=45 n'=300, n=90 n'=600, n=180 

Bias MSE Bias MSE Bias MSE 

Neyman

ˆ
Y  8.242 146.555 5.421 49.903 3.758 22.878 

R1

ˆ
Y  3.605 20.417 2.501 9.824 1.695 4.482 

R2

ˆ
Y  3.612 20.489 2.506 9.864 1.698 4.500 

R3

ˆ
Y  3.608 20.442 2.503 9.837 1.696 4.488 

Reg1

ˆ
Y  3.841 23.138 2.669 11.210 1.817 5.155 

Reg2

ˆ
Y  3.853 23.285 2.678 11.284 1.824 5.191 

Reg3

ˆ
Y  3.845 23.189 2.672 11.235 1.819 5.168 

opt

N1

ˆ
Y  3.529 19.649 2.430 9.290 1.645 4.235 

opt

N2

ˆ
Y  3.530 19.665 2.430 9.291 1.645 4.235 

opt

N3

ˆ
Y  3.530 19.656 2.430 9.291 1.645 4.235 

 

 

 

 

 

 

 

 

 



Table 5 Biases and MSEs of the proposed estimators and existing estimators  

when 0.8  . 

Estimator 
n'=150, n=45 n'=300, n=90 n'=600, n=180 

Bias MSE Bias MSE Bias MSE 

Neyman

ˆ
Y  6.979 104.213 4.580 35.463 3.159 16.126 

R1

ˆ
Y  3.157 15.604 2.163 7.370 1.448 3.281 

R2

ˆ
Y  3.174 15.782 2.176 7.465 1.458 3.328 

R3

ˆ
Y  3.166 15.698 2.170 7.420 1.454 3.306 

Reg1

ˆ
Y  3.771 22.408 2.609 10.764 1.780 4.982 

Reg2

ˆ
Y  3.801 22.767 2.631 10.945 1.796 5.073 

Reg3

ˆ
Y  3.787 22.596 2.620 10.859 1.788 5.030 

opt

N1

ˆ
Y  2.892 13.301 1.967 6.054 1.294 2.633 

opt

N2

ˆ
Y  2.892 13.315 1.967 6.052 1.294 2.633 

opt

N3

ˆ
Y  2.893 13.312 1.967 6.054 1.294 2.633 

 

 

 

 

 

 

 

 

 



Table 6 Biases and MSEs of the proposed estimators and existing estimators in an 

application of pollution data in Chiang Rai. 

Estimator Bias MSE 

Neyman

ˆ
Y  0.3108 0.0966 

R1

ˆ
Y  0.2920 0.0852 

R2

ˆ
Y  0.2921 0.0853 

R3

ˆ
Y  0.2920 0.0853 

Reg1

ˆ
Y  0.3582 0.1283 

Reg2

ˆ
Y  0.3584 0.1284 

Reg3

ˆ
Y  0.3583 0.1284 

opt

N1

ˆ
Y  0.1417 0.0201 

opt

N2

ˆ
Y  0.1417 0.0201 

opt

N3

ˆ
Y  0.1417 0.0201 

 



Figure 1 The mean square errors of the proposed and existing estimators at different levels 

of  . 

 

Figure



Response to Reviewer#1 

1. Some abbreviations are used without their definition, e.g., MSE, PRE. 

Answer: The definitions of MSE and PRE have been added. 

 

2. It is not clear about constants A,D, G,H, what are they? 

Answer: ,  ,  ,  A D G H  are constants or some known parameters such as the coefficient of variation 

 ( xC ) and the correlation coefficient (  ) and they have been added in the text. 

 

3. In simulation study, it would be expect to see the results based on ρ =0.5, 0.6, 0.7, 0.8, 0.9, 0.95. 

Answer: As you can see similar results for  = 0.3, 0.5 and 0.8 for small, medium and high levels of 

correlation between the auxilary and study variables that is why it is not necessary to display many 

levels. However, as you requtested I run the simulation for 0.95   as below, you can  see that they are 

similar to the results for  = 0.3, 0.5 and 0.8  and a higher  gave better results for the proposed 

estimators than the existing ones. 

 

Biases and MSEs of the proposed estimators and existing estimators when 0.95  . 

Estimator 
n'=150, n=45 n'=300, n=90 n'=600, n=180 

Bias MSE Bias MSE Bias MSE 

Neyman

ˆ
Y  6.307 85.735 4.130 28.740 2.827 12.896 

R1

ˆ
Y  2.805 12.328 1.897 5.681 1.254 2.467 

R2

ˆ
Y  2.832 12.577 1.919 5.812 1.270 2.533 

R3

ˆ
Y  2.822 12.483 1.911 5.762 1.264 2.508 

Reg1

ˆ
Y  3.702 21.843 2.559 10.379 1.753 4.846 

Reg2

ˆ
Y  3.744 22.342 2.590 10.631 1.776 4.973 

Reg3

ˆ
Y  3.728 22.149 2.578 10.535 1.767 4.926 

opt

N1

ˆ
Y  2.356 8.912 1.570 3.859 0.994 1.551 

opt

N2

ˆ
Y  2.354 8.921 1.569 3.855 0.994 1.550 

opt

N3

ˆ
Y  2.355 8.923 1.570 3.858 0.994 1.550 

 

4. In Table 4, some imprecise results are presented, what is your explanation. 

Answer: As reviewer#2 requested to show the bias and MSE instead of the PRE, now you can see 

clearer results for Table 4. 

 

5. Mathematically, the following equation may be fixed. 

 
 

 
 2 opt

N

1 2

,  say .
y x

x

C K C

K C

  
 

  

 
 

 
   (11) 

Answer:  It is correct. 

 

 

 

 

 

 

Response to reviewers comments



6. Some applications must be added. 

Answer:   The proposed estimators are applied to the fine particulate matter 2.5 data in Chiang Rai, 

Thailand to see their performance. It is  an  example of an application just to support the results 

found theoretically and in the simulation studies. I think this should be enough just to back up 

what we found in both theory and simulation studies. Hope it is ok. 

 

7. Since the proposed estimator is extended from Thongsak and Lawson (2021) [1], the comparison 

may be nonsense. 

Answer:  The proposed estimators are the combined estimators based on Thongsak and Lawson’s 

(2022a) estimators (
R

ˆ
Y  and Reg

ˆ
Y ) which are single estimators, that is why we compared the combined 

estimators with the single estimators in both theory, simulation studies and an application to real data 

to see how the proposed combined estimators perform better than the single ones.  

 

8. Please check the reference item. Proceeding must be Proceedings, Date and venue of the 

conference must be include. 

Answer:  It is corrected as below. 

Thongsak, N. & Lawson, N. (2021). Classes of dual to modified ratio estimators for estimating 

population mean in simple random sampling. In Proceedings of the 2021 Research, Invention 

and Innovation Congress, Bangkok, Thailand, 1-2 September 2021. Retrieved from 

https://doi.org/10.1109/RI2C51727.2021.9559798 

 

9. Based on the application (only one), the following paragraph may be revised. 

Some specified value of population parameters should be mentioned. 

Answer: The population parameters are already stated in this section, section 3.2. However, I have 

rewritten the sentences by adding  0.921 in the text and explanation of the results  in term of biases 

and MSEs as below. 

 

“Table 6 showed the results from an application to fine particulate matter in Chiang Rai also 

supported the results found in the simulation studies. The proposed combined estimators 

performed the best as you can see the biases and mean square errors of the proposed estimators 

were smaller than all existing estimators. The biases were at least half, and gave at least four 

times less mean square errors than the existing ones which can be considered high 

improvement.   The proposed estimators work well in this application with a high correlation 

between 
2NO  and the concentration of PM2.5  ( 0.921 ) in Chiang Rai, Thailand and again, it 

supports what we found in the simulation studies.”  

Thanks a lot for your valuable comments. 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/RI2C51727.2021.9559798


Response to Reviewer#2 

1.  The proposed estimator, equation (7), is the weighted means of 2 estimators of Thongsak and 

Lawson (2022). Equation (1) – (2), except there is superscript d in equation (2) but not in equation (7). 

To be reasonable to do so (i.e., weighting 2 estimators), one estimator should trend to be under-

estimated and over-estimated for the other. Or there should be at least a reason for smoothing these 

values of estimators. Verify it. 

Answer: Superscript “d” has been added to equations (1) and (7).   

 

The proposed estimator is the combined estimator from the single estimators proposed by  Thongsak 

and Lawson (2022).  A constant   is used as a weight to find  the minimum value for the proposed 

combined estimators which of course we expect a better performance from the combined estimator 

using the optimum value of   that is why we implemented the proposed estimators.  I have already 

stated this in  section 2 Materials and Methods on line 3. 

 

2. Typo: Line 46, there should be “respectively” after “are”. 

 Line 79, there are 2 “in”s before “Chiang Rai”. 

 Line 112, change “equation (10)” to “equation (7)”. 

Answer:  They have been corrected. 

 

3. In this paper, the correlation   between X and Y is known. I think it is not quite realistic. 

Answer: Some parameters are known or available which could come from census or past data.  

 

4. Notation for the proposed estimators should be opt

Nij

ˆ
Y as is defined in equation (12) rather than 

Nij

ˆ
Y  

(without superscript) where i and j are 1, 2, 3. 

Answer:  Corrected. 

5. For more precise, “ ” should be defined as 
n

n n
 

 
and “K” is not yet defined. 

Answer: “ ”  has been defined, but “K” has already been defined after equation (6). 

 

6. The situation when the proposed estimator performs better is mentioned in Equation (14). Hence, 

simulation should be done for both situations where equation (14) is true and not true in order to 

support the findings. 

Answer: From equation (14) we can see that the condition is always true and therefore the proposed 

estimators always perform the best  compared to all existing estimators. I have added this at the end of 

section 2.2.  

 

7. In table 3 – 5, what is the “existing estimator” to what proposed estimator compare? 

Answer:  The existing estimators are the Neyman(1938) and the Thongsak and Lawson (2022a) 

estimators which we have already stated in section 2.2  Efficiency Comparisons. 

 

8. Figure 1, What is estimator 1 – 16? 

Answer:  The estimators have been added to Figure 1. 

 

My opinion: I do not agree with 

(1) Proposed all 9 estimators from 3x3 combinations of 3 
R

ˆ
Y ’s and 3 Reg

ˆ
Y ’s, too many and 

unreasonable. 



Suggestion: Determine carefully and reasonably and choose some interesting ones. Or choose at most 

3 proposed estimators with the same values of A/G and D/H, namely opt

N11

ˆ
Y , opt

N22

ˆ
Y , opt

N33

ˆ
Y . 

  

(2) Determine only PRE/MSE. Suggestion: Biased is also important. 

 (3) Compare to Neyman

ˆ
Y . Neyman had proposed ratio estimator since 1938. Many researchers 

including Thongsak and Lawson (2022a), as referred in this paper and was the recent study, 

developed class of ratio estimators accordingly from Neyman’s idea. So, the recent ones performed 

much better with no doubt. 

Suggestion: Compare opt

Nij

ˆ
Y to 

R

ˆ
Y and 

Reg

ˆ
Y , both for biased and PRE/MSE. 

 

Answer:  I agree with you and have corrected the results following all your  suggestions above. Thanks 

a lot for your valuable comments. 

 


