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Abstract 7 

From the last few decades the study of the graph theory based on algebraic structures have been 8 

taken into account. Many researchers have studied the graphs via groups, rings, near-rings and 9 

seminearrings and vice versa. In our study, first we introduce different type of 𝑣-primary ideals 10 

(𝑣 = 0,1,2,3, 𝑐) which are the generalization of 𝑣-prime ideals (𝑣 = 0,1,2,3, 𝑐) in near-rings. 11 

Then, we  provide  some important characterizations of these newly initiated ideals. In addition, 12 

we explore some relationships among these ideals.  Throughout,  we furnish our results by 13 

providing suitable examples. Finally, as an application, we provide characterizations of different 14 

graphs associated with these 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) in near-rings. 15 

Keywords: near-rings, prime ideal, almost prime ideal, primary ideal, graph. 16 

1. Introduction  17 

A (right) near-ring is an algebraic structure 𝑁 with operation “ ” and “ ” where 𝑁 is a 18 

group under “ ”, semigroup under “ ” and 𝑁 satisfies (right) distributive law i.e., for any 𝑎, 𝑏, 𝑐 19 

 𝑁; (𝑎  𝑏) ⋅ 𝑐  (𝑎 ⋅ 𝑐)  (𝑏 ⋅ 𝑐). Similarly, one can define a left near-ring by introducing 20 
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the left distributive law. We refer (Pilz, 2011) for the fundamental concepts and notions of near-21 

rings. In this note, we deal with (right) near-ring. A subset 𝐼 of a near-ring 𝑁 is said to be a right 22 

ideal of 𝑁 if: (𝑖) (𝐼, +)  (𝑁, +), (𝑖𝑖) For every 𝐼𝑁 ⊆ 𝐼. Similarly, 𝐼 is said to be left ideal if (𝑖) 23 

(𝐼, +)  (𝑁, +), (𝑖𝑖) 𝑎1(𝑎2 + 𝑖) − 𝑎1𝑎2 ∈ 𝐼, for all 𝑎1,  𝑎2 ∈ 𝑁 and 𝑖 ∈ 𝐼. If 𝐼 is a left as well as 24 

right ideal of a near-ring, then 𝐼 is called simply an ideal of near-ring. An ideal 𝐼 is said to be 25 

prime ideal of 𝑁 if 𝐼1𝐼2 ⊆ 𝐼  𝐼1 ⊆ 𝐼 or 𝐼2 ⊆ 𝐼 where 𝐼1 and 𝐼2 are all ideals of 𝑁. Various types 26 

of prime ideals in literature have been discussed in ((Birkenmeier, Heatherly & Lee 1993), 27 

(Fröhlich, 1958), (Holcombe, 1970) & (Ramakotaiah & Rao, 1979)). Almost prime ideal has 28 

been endorsed by B. Elavarasan (Elavarasan, 2011) in near-rings. 𝐼 is called an almost prime 29 

ideal if for 𝐼1𝐼2 ⊆ 𝐼 and 𝐼1𝐼2 ⊈ 𝐼2  𝐼1 ⊆ 𝐼 or 𝐼2 ⊆ 𝐼 where 𝐼1 and 𝐼2 are ideals of 𝑁. Further 30 

author recognized some relationships involving almost prime and prime ideals as well in 31 

(Elavarasan, 2011). Recently, almost prime ideal have been introduced in gamma near-ring by 32 

(Khan, Muhammad, Taouti & Maki, 2018). Notions of -(1-2)-prime ideals have been defined 33 

in ((Birkenmeier, Heatherly & Lee 1993), (Holcombe, 1970) & (Ramakotaiah & Rao, 1979)). 34 

Subsequently, (Ramakotaiah & Rao, 1979) introduced the notions of -prime, -prime and -35 

prime ideals of a near-rings. Following (Birkenmeier, Heatherly & Lee, 1993), 𝐼 is said to be a 36 

type-zero or simply a prime ideal of 𝑁 if 𝐼1𝐼2 ⊆ 𝐼  𝐼1 ⊆ 𝐼 or 𝐼2 ⊆ 𝐼. Further, 𝐼 is called -37 

prime ideal of 𝑁 if 𝑎𝑁𝑏 ⊆ 𝐼 then 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 (Groenewald, 1991). Likewise, 𝐼 is called -38 

prime ideal if for two subgroup 𝐾1, 𝐾2 of (𝑁, +) such that 𝐾1𝐾2 ⊆ 𝐼  𝐾1 ⊆ 𝐼 or 𝐾2 ⊆ 𝐼. It is 39 

well-known that -prime implies -prime implies -prime implies -prime, however the 40 

converse doesn’t exist in any of the implication. Recently, 𝑃-ideals and their 𝑃-properties in 41 

near-rings have been introduced in (Atagun, KamacI, Tastekin & Sezgin, 2019). On the other 42 

hand, few concepts of near-rings have been shifted towards seminearrings in (Koppula, 43 

Kedukodi & Kuncham, 2020). A. Ali  introduced commutativity of a 3-prime near-ring on 44 

Jordan ideals in (Ali, 2020). G. Wendt discussed the primeness and primitivity of near-rings in 45 



(Wendt, 2021). Further, T. Gaketem introduced some application of ideals of nLA-rings in 46 

(Gaketem, 2022). Recently, completely 2-absorbing ideals of N-groups have been discussed in 47 

(Sahoo, Shetty, Groenewald, Harikrishnan & Kuncham, 2021). 48 

Graph theory is an important subject which converts algebraic structures in to the 49 

graphs for batter understanding. We refer ((Godsil & Royle, 2001), (Bondy & Murty, 1976)) for 50 

basic concepts of graph theory. In (Beck, 1988) author introduced the graph of commutative 51 

ring by considering the elements of ring as vertices of graph and there exist an edge between 52 

vertices 𝑥, 𝑦 if 𝑥. 𝑦 = 0. Further, (Anderson & Livingston, 1999) associate graph to 53 

commutative ring by using the concepts of zero divisors graph. In (Lipkovski, 2012) author 54 

associates the digraph with commutative ring and also discussed some of the properties related 55 

to degree and loop of digraph. In (Hausken & Skinner, 2013) author introduced digraph of 56 

commutative rings and also discussed some properties of digraph of commutative ring which 57 

gives the information about ring. Moreover, (Bhavanari, Kunham & Kedukodi, 2010) define the 58 

graph of an ideal of near-ring and also introduce the terminologies strong vertex cut and ideal 59 

symmetric graph. Prohelika Das (Das, 2016) define the diameter, girth and coloring of the 60 

strong zero-divisor graph of near-rings. Recently, graph of prime intersection of ideals in ring 61 

have been introduced in (Rajkhowa & Saikia, 2020). 62 

In this study, we define the notions of 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) which are the 63 

generalizations of 𝑣-prime ideals (𝑣 = 0,1,2,3, 𝑐) in near-rings. Further, we investigate that -64 

prime ideal is always -primary but converse is not true. We also establish the relations among 65 

different 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) as well as with 𝑣-prime ideals and verify these 66 

relations by suitable examples. Furthermore, several characterizations are obtained and 67 

supported by suitable examples. Finally, we define the graphs of 𝑣-primary ideals (𝑣 =68 

0,1,2,3, 𝑐) in near-ring and verify these definitions of 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) by using 69 

the concepts of subgraphs. 70 



2. Primary ideals in near-rings 71 

In this section, we introduce and discuss different types of 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) of 72 

near-rings. We also investigate some relationships among them.  73 

Definition 2.1 A proper ideal 𝑃 of near-ring N is called -primary if for all 𝐼1, 𝐼2 are 74 

ideals of 𝑁 so that 𝐼1𝐼2 ⊆ 𝑃  𝐼1 ⊆ 𝑃 or 𝐼2
𝑛 ⊆ 𝑃 for some 𝑛 ∈ ℤ+.  75 

Example 2.2  Let 𝑁 = {0, 1, 2, 3, 4, 5, 6, 7} be a right near-ring with two operations 76 

defined in the tables set .  77 

Here, {0}, {0, 1}, {0, 2}, {0, 1, 2, 3} and 𝑁 are all ideals of 𝑁. If we choose, 𝑃 = {0,78 

2} then for all 𝐼1, 𝐼2 of 𝑁 such that 𝐼1𝐼2 ⊆ 𝑃 must implies 𝐼1 ⊆ 𝑃 or 𝐼2
𝑛 ⊆ 𝑃. For clarification 79 

we can take 𝐼1 = {0, 1, 2, 3} and 𝐼2 = {0, 1} are ideals of 𝑁 such that 𝐼1𝐼2 = {0} ⊆ 𝑃 implies 80 

𝐼2
2 ⊆ 𝑃. This implies that 𝑃 is -primary ideal of 𝑁. Similarly, one can justify for the remaining 81 

ideals.   82 

Proposition 2.3 Let 𝐼 be an ideal of a zero-symmetric near-ring 𝑁. Then, 𝐼 is a -83 

primary ideal if and only if every zero-divisor in 𝑁/𝐼 is nilpotent.  84 

Proof. Let 𝐼 be a -primary ideal and consider 𝑁/𝐼 is a non-trivial. Let 𝑛 + 𝐼 ∈ 𝑁/𝐼 be 85 

a zero-divisor and 𝑛1 ∈ 𝑁/𝐼. Let 𝑛1𝑛 +𝐼 = (𝑛1 + 𝐼)(𝑛 + 𝐼) = 0 + 𝐼 ⇒ 𝑛1𝑛 ∈ 𝐼, 𝑛1 ∉ 𝐼 ⇒86 

𝑛𝑘 ∈ 𝐼 for some 𝑘 ∈ ℤ+. Hence (𝑛 + 𝐼)𝑘 = 𝑛𝑘 + 𝐼 = 0 + 𝐼  𝑛 +𝐼 is nilpotent. Conversely, let 87 

𝑁/𝐼 be a non-trivial and every nonzero zero-divisor in 𝑁/𝐼 is nilpotent. Since 𝐼 ≠ 𝑁, let 𝑛1, 88 

𝑛2 ∈ 𝑁 such that 𝑛1 ⋅ 𝑛2 ∈ 𝐼, then each 𝑛1 ∈ 𝐼 or 𝑛1 ∉ 𝐼, suppose 𝑛1 ∉ 𝐼 then consider (𝑛2 +89 

𝐼)(𝑛1 + 𝐼) = 𝑛2 ⋅ 𝑛1 + 𝐼 = 0 + 𝐼 ⇒ 𝑛2 ⋅ 𝑛1 = 0, so 𝑛2 + 𝐼 is a zero-divisor and there exist 𝑘 >90 

0 such that 𝑛2
𝑘 + 𝐼 = (𝑛2 + 𝐼)𝑘 = 𝐼  𝑛2

𝑘 ∈ 𝐼, hence 𝐼 is a -primary ideal.  91 



Example 2.4 Suppose 𝑁 = {0, 1, 2, 3} be a zero-symmetric near-ring under the addition 92 

and multiplication defined in the tables set .  93 

 Clearly, 𝑃 = {0, 1} is -primary ideal and the quotient 𝑁/𝑃 = {0 + 𝑃, 2 + 𝑃} along 94 

with operations given in tables set .   95 

 Here the zero divisors of 𝑁/𝑃 are 0 + 𝑃 and 2 + 𝑃, which are nilpotents.  96 

 Intersection of any two -primary ideals of a near-ring is a -primary ideal, we provide 97 

an example for this fact below. 98 

Example 2.5 Suppose 𝑁 = {0, 1, 2, 3} be a commutative near-ring with " + " and " ⋅ " 99 

defined in the tables set 2 in Example 2.4. Let us consider -primary ideals are 𝑃1 = {0, 1} and 100 

𝑃2 = {0, 2} of a near-ring 𝑁. And 𝑃1 ∩ 𝑃2 = {0} is also a -primary ideal of 𝑁.  101 

Proposition 2.6 Each -prime is a -primary ideal of 𝑁.  102 

Proof. Let 𝑃 be a -prime ideal of a near-ring 𝑁. Then, 𝑎𝑏 ∈ 𝑃 implies 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃, 103 

for all 𝑎, 𝑏 ∈ 𝑁 while considering 𝑛 = 1, the result follows.  104 

Remark 2.7 Each maximal ideal of 𝑁 is -prime and hence a -primary ideal. It 105 

implies that a maximal ideal is a -primary.  106 

Definition 2.8 A proper ideal 𝐼 of a near-ring 𝑁 is said to be a semi-primary ideal, if for 107 

ideal 𝐽 of 𝑁, 𝐽2 ⊆ 𝐼  𝐽 ⊆ 𝐼.  108 

It is well known that the intersection of prime ideals in near-ring is also a semi-prime 109 

ideal. We also know that the intersection of minimal prime ideals of 𝑁 is a semi-prime ideal of 110 

𝑁 such that the ideal 𝐼 can be written as the intersection of all prime ideals containing 𝐼. 111 



However, the intersection of two primary ideals need not be a semi-primary ideal for instance 112 

see in Example 2.5 i.e., 𝐼 = {0} is the intersection of -primary ideals {0, 1} and {0, 2}, but 𝐼 is 113 

not a semi-primary ideal i.e., 𝑃2
2 ⊆ {0} = 𝐼, but 𝑃2 ⊈ 𝐼. 114 

Remark 2.9 Every -primary ideal is not a semi-primary ideal.  115 

 To verify above remarks we refer Example 2.5, in which {0, 2} is -primary ideal but 116 

not a semi-primary ideal. 117 

Definition 2.10 A proper ideal 𝑃 of 𝑁 is called -primary ideal, if for all 𝐼1, 𝐼2 are right 118 

ideals of N, such that 𝐼1𝐼2 ⊆ 𝑃 ⇒ 𝐼1 ⊆ 𝑃 or 𝐼2
𝑛 ⊆ 𝑃 for some 𝑛 ∈ ℤ+.  119 

Example 2.11  Consider 𝑁 = {0, 1, 2, 3, 4, 5, 6, 7} be a right near-ring with addition 120 

and multiplication defined in the tables set 4.  121 

 Here {0}, {0, 2, 4, 6}, {0, 2} and 𝑁 are right ideals of 𝑁. Suppose 𝑃 = {0, 4}, then for 122 

all right ideals 𝐼1, 𝐼2 of 𝑁, such that 𝐼1𝐼2 ⊆ 𝑃 must implies 𝐼1 ⊆ 𝑃 or 𝐼2
𝑛 ⊆ 𝑃 for some 𝑛 ∈ ℤ+. 123 

To verify this let us consider 𝐼1 = {0, 2, 4, 6} and 𝐼2 = {0, 2} are non-travail right ideals of 𝑁, 124 

such that 𝐼1𝐼2 = {0, 4} ⊆ 𝑃 implies 𝐼1 ⊈ 𝑃 but 𝐼2
2 = {0} ⊆ 𝑃. As a result, 𝑃 is -primary ideal 125 

of 𝑁. 126 

Definition 2.12 A proper ideal 𝑃 of 𝑁 is called -primary ideal if for all N-subgroups 𝐼1 127 

and 𝐼2, such that 𝐼1𝐼2 ⊆ 𝑃  𝐼1 ⊆ 𝑃 or 𝐼2
𝑛 ⊆ 𝑃 for some 𝑛 ∈ ℤ+.  128 

Proposition 2.13 Let 𝑁 be a near-ring. Then the given statements are equivalent. 129 

(i) 𝑃 is a -primary ideal of 𝑁. 130 

(ii) If 𝐴 be an 𝑁-subgroup and 𝐵 is an ideal of 𝑁, then 𝐴𝐵 ⊆ 𝑃 implies 𝐴 ⊆ 𝑃 or 𝐵𝑘 ⊆131 

𝑃 where 𝑘 ∈ ℤ+.  132 



Proof. (𝑖) ⇒ (𝑖𝑖) If 𝑃 is -primary ideal and 𝐵 is an 𝑁-subgroup then (𝑖𝑖) is 133 

straightaway. 134 

(𝑖𝑖) ⇒ (𝑖) Let 𝐴 and 𝐵 are two 𝑁-subgroups of 𝑁 such that 𝐴𝐵 ⊆ 𝑃. Let 𝐴 is not a 135 

subset of 𝑃 and assume that 𝐵𝑘 ⊆ (𝑃: 𝐴) = {𝑛 ∈ 𝑁: 𝐴𝑛 ⊆ 𝑃} = 𝑆. Since, 𝑆 is an ideal of 𝑁, so 136 

if 𝑟 ∈ 𝑆 and 𝑛, 𝑛1 ∈ 𝑁, then for all 𝑎 ∈ 𝐴, 𝑎(−𝑛 + 𝑟 + 𝑛) = −𝑎𝑛 + 𝑎𝑟 + 𝑎𝑛 ∈ 𝑃, as 𝑃 is an 137 

ideal. Thus, 𝑎[(𝑛 + 𝑟) 𝑛1 − 𝑛𝑛1] = (𝑎𝑛 + 𝑎𝑟)𝑛1 −𝑎𝑛𝑛1 ∈ 𝑃 which implies 𝐴𝑛𝑟 ⊆ 𝐴𝑟 ⊆ 𝑃. 138 

Hence 𝐴𝑆 ⊆ 𝑃 but we have assumed that 𝐴 ⊈ 𝑃 implies 𝑆 ⊆ 𝑃 so 𝐵𝑘  𝑆 ⊆ 𝑃.  139 

Proposition 2.14 Let 𝑃 be a -primary ideal and 𝐴1,.  .  .  , 𝐴𝑘 are 𝑁-subgroups. Then 140 

𝐴1𝐴2  .  .  . 𝐴𝑘 ⊆ 𝑃 implies 𝐴𝑖
𝑛 ⊆ 𝑃 for some 𝑖 ∈ {1,     𝑘} and 𝑛 ∈ ℤ+.  141 

Proof. Let 𝐴1𝐴2  .  .  . 𝐴𝑘 ⊆ 𝑃 and 𝐴1 ⊈ 𝑃 such that (𝐴2, .  .  ., 𝐴𝑘)𝑛 ⊆ (𝑃: 𝐴1). Thus 142 

𝐴1 ⋅ (𝑃: 𝐴1) ⊆ 𝑃 implies (𝑃: 𝐴1) ⊆ 𝑃 given that 𝑃 is -primary ideal. By using Proposition 2.13 143 

(𝑖𝑖), we get (𝐴2, .  .  ., 𝐴𝑘)𝑛 ⊆ 𝑃. Similarly, we can repeat procedure for 𝐴2 ⊈ 𝑃 and eventually 144 

𝐴𝑖
𝑛 ⊆ 𝑃 for some 𝑖 ∈ {1, .  .  . , 𝑘  where 𝑖 ≠ 2.      145 

Definition 2.15 An ideal 𝑃 of 𝑁 is called -primary ideal if for all 𝑥, 𝑦 ∈ 𝑁, 𝑥𝑁𝑦 ⊆ 𝑃 146 

implies 𝑥 ∈ 𝑃 or 𝑦𝑛 ∈ 𝑃 for some 𝑛 ∈ ℤ+.        147 

Example 2.16  Let 𝑁 = {0, 1, 2, 3, 4, 5, 6, 7} be a (right) near-ring under the addition 148 

and multiplication defined in tables set 5.  149 

 Here, 𝑃 = {0, 6} is a -primary ideal of 𝑁. One can check for all 𝑥, 𝑦 ∈ 𝑁, 𝑥𝑁𝑦 ⊆ 𝑃 150 

must implies 𝑥 ∈ 𝑃 or 𝑦𝑛 ∈ 𝑃 for some 𝑛 ∈ ℤ+.  151 

Definition 2.17 A proper ideal 𝑃 of 𝑁 is called (completely) 𝑐-primary ideal if for all 𝑥, 152 

𝑦 ∈ 𝑁, 𝑥𝑦 ∈ 𝑃  𝑥 ∈ 𝑃 or 𝑦𝑛 ∈ 𝑃 for some 𝑛 ∈ ℤ+.  153 



Example 2.18 Suppose 𝑁 = {0, 1, 2, 3, 4, 5}, where “ ” and “ ” are defined in the 154 

tables set 6.   155 

 Clearly, right ideal 𝑃 = {0, 2, 4} satisfies the conditions of 𝑐-primary ideal of 𝑁 as 1 ⋅156 

3 = 0 ∈ 𝑃 implies 32 = 0 ∈ 𝑃 and 5 ⋅ 3 = 0 ⇒ 32 = 0 ∈ 𝑃.  157 

 Refer to Example 2.11, it is easy to verify that 𝑃 = {0, 4} is a -primary ideal. Thus, 158 

every -primary ideal is a -primary ideal. From Example 2.11, we have observed that an ideal 159 

𝑃 = {0, 4} is -primary ideal but it is not -prime ideal. Similarly, from Example 2.16, we can 160 

see that 𝑃 = {0, 6} is -primary ideal but it is not -prime ideal as 3𝑁7 = {0} ⊆ 𝑃 but  or  161 

doesn’t belong to 𝑃. Similarly, in Example 2.18, 𝑃 = {0, 2, 4} is a 𝑐-primary ideal which is not 162 

a 𝑐-prime ideal. However, it is easy to verify that an ideal 𝑃 is simultaneously 𝑐-primary, -163 

primary, -primary, -primary and -primary ideal. Hence, we concluded that: 164 

𝑐 − primary ⇒ 3 − primary ⇒ 2 − primary ⇒ 1 − primary ⇒ 0 − primary. 165 

 Refer to Example 2.11, {0, 4} is the 𝑣-primary ideal (𝑣 = 0,1,2,3, 𝑐) which is the justification 166 

of above implications. But the converse doesn’t hold true in the above implication. Because, in 167 

Example 2.2, {0} is -primary ideal but not -primary ideal. Similarly, {0} is not -primary 168 

ideal i.e, 3𝑁4 = {0} ⊆ {0} but 3, 4 ∉ {0} or 3𝑛, 4𝑛 ∉ {0} for some 𝑛 ∈ 𝑍+. Further, One can 169 

check that {0} is not a 𝑐-primary ideal. In Example 2.11, {0} is a -primary ideal but not -170 

primary. Simalarly, {0} is not a -primary ideal i.e, 3𝑁7 = {0} ⊆ {0} but 3, 7 ∉ {0} or 3𝑛,171 

7𝑛 ∉ {0}. 172 

After discussing different types of primary ideals in a near-ring now we introduce 𝑣-173 

primary near-rings (𝑣 = 0,1,2,3, 𝑐). 174 



Definition 2.19 A near-ring 𝑁 is said to be a 𝑣-primary near-ring (𝑣 = 0,1,2,3, 𝑐) if an 175 

ideal {0} is 𝑣-primary ideal of 𝑁.  176 

We can state that 𝑁 is a -primary near-ring, if for all ideals 𝐴 and 𝐵 of 𝑁, such that 177 

𝐴𝐵 ⊆ {0} implies 𝐴 ⊆ {0} or 𝐵𝑛 ⊆ {0}. In a similar manner, one can define remaining 𝑣-178 

primary near-rings (𝑣 = 1,2,3, 𝑐). 179 

Example 2.20 In Example 2.2, {0} is a -primary ideal of near-ring 𝑁. Consequently, 𝑁 180 

is a -primary near-ring.  181 

Proposition 2.21 Each -prime near-ring is a -primary near-ring.  182 

Example 2.22 Every integral near-rings are prime near-rings and hence primary (0-183 

primary  near-rings.  184 

Following (Pilz, 2011), if 𝐼 is an ideal of 𝑁, then prime radical of 𝑁 is the intersection 185 

of all prime ideals containing 𝐼 and is denoted by ℘(𝐼) i.e., ℘(𝐼) = ∩
𝑃⊇𝐼

𝑃, where 𝑃 is prime. 186 

Hence, if 𝑛 ∈ ℘(𝐼) ⇒ ∃ 𝑘 ∈ ℕ: 𝑛𝑘 ∈ 𝐼. In other words, 𝐼 is a semiprime ideal of 𝑁 iff ℘(𝐼) = 𝐼. 187 

Likewise rings, we will see that if 𝐼 is the 𝑣-primary ideal (𝑣 = 0,1,2,3, 𝑐) of a near-ring, then 188 

its prime radical is the corresponding 𝑣-prime ideal. 189 

Example 2.23 Refer to Example 2.2, 𝑃 = {0, 2} is -primary ideal and √{0,2} = {0, 1, 190 

2, 3} is a -prime ideal of 𝑁.  191 

It is easy to verify that if an ideal 𝐼 is a 𝑣-primary, then its prime radical is a 𝑣-prime 192 

which we have already seen in Example 2.23. But the converse doesn’t hold true i.e., if the 193 

prime radical of an ideal 𝐼 is 𝑣-prime then it is not necessary that 𝐼 is a 𝑣-primary ideal. 194 



Proposition 2.24 Let 𝐼 be the both primary and semi-prime ideal of 𝑁. Then 𝐼 is a 195 

prime ideal.  196 

It is well known that an ideal 𝐼 is a 𝑐-prime ideal (or completely prime), if 𝑎, 𝑏 ∈ 𝑁, 197 

𝑎𝑏 ∈ 𝐼 implies 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼. 198 

Definition 2.25 Let 𝑄 be a 𝑐-primary (completely primary) ideal of 𝑁 such that √𝑄 =199 

𝑃, where 𝑃 is a 𝑐-prime ideal of N. Then we call 𝑄 a 𝑐𝑃-primary ideal.  200 

Definition 2.26 Let 𝑄 be a 𝑐𝑃-primary ideal of 𝑁. Then, for 𝑛 ∈ 𝑁 − 𝑄, so that 201 

(𝑄: 𝑛) = {𝑎 ∈ 𝑁: 𝑎𝑛 ∈ 𝑄}.  202 

Proposition 2.27 Let 𝑄 be a 𝑐𝑃-primary ideal of 𝑁 and let 𝑛 ∈ 𝑁. Then below relations 203 

hold: 204 

(i) If 𝑛 ∈ 𝑄, then (𝑄: 𝑛) = 𝑁; 205 

(ii) If 𝑛 ∉ 𝑄, then (𝑄: 𝑛) is 𝑐𝑃-primary ideal and √(𝑄: 𝑛) = 𝑃; 206 

(iii) If 𝑛 ∉ 𝑃, then (𝑄: 𝑛) = 𝑄.  207 

Remark 2.28 Let 𝑄 be a 𝑐𝑃-primary ideal of 𝑁 such that √(𝑄: 𝑛) is 𝑐-prime and 208 

√𝑄𝑖 = 𝑃𝑖, then it must be contained in the set √(𝑄: 𝑛) where 𝑛 ∈ 𝑁.  209 

We illustrate Proposition 2.27 and Remark 2.28 in the below example. 210 

Example 2.29  Refer to Example 2.2, we have 𝑄 = {0, 2} is 𝑐-primary ideal. Then, 211 

only the possible 𝑐-prime ideal of 𝑁 containing 𝑄 is the ideal 𝑃  {0, 1, 2, 3} and hence, it is a 212 

prime radical of 𝑄. Which implies 𝑄 is a 𝑐𝑃-primary. On the other hand, let 3 ∈ 𝑁 and consider 213 

(𝑄: 3) = {𝑛 ∈ 𝑁: 3𝑛 ∈ 𝑄} = {0, 1, 2, 3}, which is clearly a 𝑐-prime ideal. Hence (𝑄: 3) is an 214 



associated 𝑐-prime ideal of a 𝑐-primary ideal 𝑄. Thus, every associated 𝑐-prime ideal must be 215 

contained in √(𝑄: 𝑥).  216 

heorytowards graph t  (𝒗 = 𝟎, 𝟏, 𝟐, 𝟑, 𝒄)primary ideals -𝒗of  sApplication .3 217 

In this section, we provide applications of 𝑣-primary ideals (𝒗 = 𝟎, 𝟏, 𝟐, 𝟑, 𝒄) towards graph 218 

theory. In this regard, we provide characterizations of different graphs through 𝑣-primary ideals 219 

(𝒗 = 𝟎, 𝟏, 𝟐, 𝟑, 𝒄) of near-rings.  220 

Definition 3.1 Let 𝑃 be the 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) of near-ring 𝑁. Then, the 221 

graph of 𝑣-primary ideal is denoted by 𝐺𝑣−𝑃(𝑁) consists of all the members of 𝑁 as vertices 222 

and 𝑥, 𝑦 ∈ 𝑁 are connected by directional edge from 𝑥 to 𝑦 (resp., 𝑦 to 𝑥), if 𝑥𝑦 ∈ 𝑃 (resp., 223 

𝑦𝑥 ∈ 𝑃). Similarly, if for any 𝑥, 𝑦 ∈ 𝑁 such that 𝑥𝑦 = 𝑦𝑥 ∈ 𝑃, then there exists an undirected 224 

edge between 𝑥 and 𝑦.  225 

Example 3.2 Refer to Example 2.2, in which 𝑃 = {0,2} is -primary ideal of a near-226 

ring 𝑁. Then graph associated with -primary ideal is denoted by 𝐺0−𝑃(𝑁) and is shown in Fig. 227 

1. 228 

According to the definition of -primary ideal 𝐺𝐼1𝐼2
(𝑁) ⊑ 𝐺0−𝑃(𝑁) implies 𝐺𝐼2

2(𝑁) ⊑229 

𝐺0−𝑃(𝑁) but 𝐺𝐼1
(𝑁) is not a subgraph of 𝐺0−𝑃(𝑁). This shows the definition of -primary ideal 230 

by their graphs which can be check easily.  231 

Example 3.3 In Example 2.11, 𝑃 = {0, 4} is the -primary ideal of 𝑁. The graph of -232 

primary ideal is denoted by 𝐺1−𝑃(𝑁) and is shown in Fig. 2. 233 

In Example 2.11, the graph 𝐺𝐼1𝐼2
(𝑁) ⊑ 𝐺1−𝑃(𝑁) implies that 𝐺𝐼2

2(𝑁) ⊑ 𝐺1−𝑃(𝑁) and 234 

hence satisfies the definition of -primary ideal.  235 



Example 3.4 In Example 2.16, 𝑃 = {0, 6} is a -primary ideal. Then the graph 236 

𝐺3−𝑃(𝑁) is presented in Fig. 3. 237 

The graph of 𝐺3−𝑃(𝑁) is different from the graph of -prime ideal because every prime 238 

ideal is primary but converse does not hold in general.  239 

Example 3.5 In Example 2.18, 𝑃 = {0, 2, 4} is 𝑐-primary ideal. The graph of 𝐺𝑐−𝑃(𝑁) 240 

is shown in figure 4. 241 

Theorem 3.6  Let 𝑃 be an ideal of near-ring. If 𝑃 be -primary ideal, then 𝑃 is a strong 242 

vertex cut of 𝐺3−𝑃(𝑁). If P be -semiprimary ideal and 𝑃 is strong vertex cut of 𝐺3−𝑃(𝑁), then 243 

𝑃 is -primary.  244 

Proof. Let 𝑃 be a -primary ideal of 𝑁. If 𝑃 = 𝑁, then the prove is straightforward. Let 245 

us suppose that 𝑃 is not equal to 𝑁 and 𝑎, 𝑏 ∈ 𝑁 − 𝑃 i.e., 𝑎 ≠ 𝑏. Let us suppose that there exists 246 

an edge between 𝑎 and 𝑏 of 𝐺3−𝑃(𝑁)  𝑎𝑁𝑏 ⊆ 𝑃 or 𝑏𝑁𝑎 ⊆ 𝑃. Since 𝑃 is -primary ideal of 𝑁 247 

implies 𝑎 ∈ 𝑃 or 𝑏𝑛 ∈ 𝑃 which contradicts to our assumption that 𝑎, 𝑏 ∈ 𝑁 − 𝑃. So, as a result 248 

𝐺3−𝑃(𝑁) has a strong vertex cut 𝑃. On the contrary, assume that 𝑃 is -semiprimary ideal and a 249 

strong vertex cut of 𝐺3−𝑃(𝑁). Then, we have to prove that 𝑃 is -primary ideal of 𝑁. For this, 250 

let 𝑎, 𝑏 ∈ 𝑁 such that 𝑎𝑁𝑏 ⊆ 𝑃. As we know that 𝑃 is -semiprimary ideal so 𝑎 = 𝑏  𝑎 ∈ 𝑃. 251 

Let 𝑎 ≠ 𝑏 choose 𝑎, 𝑏 ∈ 𝑁 − 𝑃 for possible condition. As we know that 𝑃 is strong vertex cut 252 

of 𝐺3−𝑃(𝑁), so edge does not exist between 𝑎 and 𝑏 of 𝐺3−𝑃(𝑁)  𝑎𝑁𝑏 ⊈ 𝑃 and 𝑏𝑁𝑎 ⊈ 𝑃. A 253 

contradiction arises, so 𝑎𝑁𝑏 ⊆ 𝑃 implies 𝑎 ∈ 𝑃 or 𝑏𝑛 ∈ 𝑃. This prove that 𝑃 is -primary ideal.  254 

Lemma 3.7  (i) Let 𝑃 be a -primary ideal of 𝑁 and a be the vertex of 𝐺3−𝑃(𝑁). If 255 

deg(a) = deg(0), then 𝑎 ∈ 𝑃. 256 



(𝑖𝑖) Suppose 𝑁 is a zero-symmetric near-ring and vertex of 𝐺3−𝑃(𝑁) is 𝑎. If 𝑎 ∈ 𝑃, 257 

then deg(𝑎) = deg(0). 258 

(𝑖𝑖𝑖) Suppose 𝑁 is a zero-symmetric near-ring and 𝑃 be its -primary ideal. Then 𝑎 ∈ 𝑃 259 

if and only if deg(𝑎) = deg(0) in 𝐺3−𝑃(𝑁).  260 

Proof. (𝑖) ⇒ Suppose deg(𝑎) = deg(0), then 𝑎𝑁𝑏 ⊆ 𝑃 or 𝑏𝑁𝑎 ⊆ 𝑃, for all 𝑏 ∈ 𝑁 i.e., 261 

𝑎 ≠ 𝑏. Assume that 𝑎𝑁𝑏 ⊆ 𝑃, for all 𝑏 ∈ 𝑁. If 𝑃 = 𝑁, then 𝑥 ∈ 𝑃. Let 𝑃 ≠ 𝑁 and choose 𝑏 ∈262 

𝑁 − 𝑃. It is clear that 𝑃 is -primary ideal of 𝑁 and 𝑎𝑁𝑏 ⊆ 𝑃 implies 𝑎 ∈ 𝑃 or 𝑏𝑛 ∈ 𝑃 for 𝑛 ∈263 

𝑍+, which proves condition (𝑖). Now to prove (𝑖𝑖), let 𝑎 ∈ 𝑃 and if 𝑎 = 0, then the proof is 264 

straightforward. On the other hand, let 𝑎 ≠ 0 and deg(𝑎) ≤ deg(0), then there is vertex 𝑏 such 265 

that 𝑏 is not adjacent to 𝑎 in 𝐺3−𝑃(𝑁). Hence we can conclude that 𝑎𝑁𝑏 ⊈ 𝑃 and 𝑏𝑁𝑎 ⊈ 𝑃. 266 

Now according to our supposition 𝑎 ∈ 𝑃 and 𝑃 is an ideal of 𝑁 implies 𝑎𝑁 ⊆ 𝑃. Thus 𝑎𝑁𝑏 ⊆267 

𝑃. As we know that 𝑁 is zero-symmetric, then 𝑃𝑏 ⊆ 𝑃  𝑎𝑁𝑏 ⊆ 𝑃 which contradicts our 268 

supposition. Hence deg(𝑎) = deg(0). Condition (𝑖𝑖𝑖) is follows form (𝑖) and (𝑖𝑖).  269 

Theorem 3.8 Suppose 𝑃 is an ideal of 𝑁; 270 

(i) If 𝑁 is zero-symmetric and 𝑃 is -primary ideal, then 𝐺3−𝑃(𝑁) is ideal 271 

symmetric. 272 

(ii) If 𝐺3−𝑃(𝑁) is ideal symmetric with 𝑃 is -semiprimary and for every 𝑎 ∈ 𝑁, 273 

deg(𝑎) = deg(0) in 𝐺3−𝑃(𝑁)  𝑎 ∈ 𝑃, then 𝑃 is -primary and 𝑃 is a strong 274 

vertex cut of 𝐺3−𝑃(𝑁).  275 

Proof. To show condition (i), suppose 𝑎, 𝑏 are any two vertices of 𝐺3−𝑃(𝑛) having an 276 

edge between 𝑎 and 𝑏. Then, 𝑎𝑁𝑏 ⊆ 𝑃 or 𝑏𝑁𝑎 ⊆ 𝑃. Let 𝑎𝑁𝑏 ⊆ 𝑃 and 𝑃 is -primary ideal  277 

𝑥 ∈ 𝑃 or 𝑏𝑛 ∈ 𝑃, where 𝑛 is any positive integer. Since 𝑁 is a zero-symmetric, by using Lemma 278 

3.7 (ii), deg(𝑎) = deg(0) or deg(𝑏) = deg(0). It implies 𝐺3−𝑃(𝑁) is an ideal symmetric. To 279 



verify (ii), suppose 𝑎, 𝑏 ∈ 𝑁, 𝑎𝑁𝑏 ⊆ 𝑃. According to given condition 𝑃 is -semiprimary 280 

implies 𝑎 = 𝑏  𝑎 ∈ 𝑃. Suppose 𝑎 ≠ 𝑏 then there exists an edge between 𝑎 and 𝑏 in 𝐺3−𝑃(𝑁). 281 

Since 𝐺3−𝑃(𝑁) is ideal symmetric, deg(𝑎) = deg(0) or deg(𝑦) = deg(0) implies 𝑎 ∈ 𝑃 or 𝑏𝑛 ∈282 

𝑃. As 𝑃 is -primary ideal of 𝑁. So by Theorem 3.6, 𝑃 is a strong vertex cut of 𝐺3−𝑃(𝑁).  283 

Conclusion 284 

In this paper, we have introduced the notions of 𝑣-primary ideals  (𝑣 = 0,1,2,3, 𝑐) in 285 

near-ring, which are the generalization of 𝑣-prime ideals  (𝑣 = 0,1,2,3, 𝑐). We verify these 286 

defined ideals by examples and counter examples. We have investigated the relations of these 287 

ideals among each other as well. During this we have established that 𝑐 − primary ⇒ 3 −288 

primary ⇒ 2 − primary ⇒ 1 − primary ⇒ 0 − primary, but converse of this implication is 289 

not true.  Furthermore, we have proved some logical results and verified them through 290 

examples. Finally, we have studied different types of graphs associated with 𝑣-primary ideals  291 

(𝑣 = 0,1,2,3, 𝑐) and also proved some algebraic results by using the concepts of graph theory. 292 

In future, 𝑣-primary ideals (𝑣 = 0,1,2,3, 𝑐) and their defined relations with other ideals in near-293 

ring will help to differentiate and introduce more algebraic structure, which are not yet initiated 294 

in near-rings. One can also study the sequential machine via using these newly established 295 

ideals and the graphs associated with them. 296 
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Figure 1. 𝐆𝟎−𝐏(𝐍) 

 

 

Figure 2. 𝐆𝟏−𝐏(𝐍) 
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Figure 3. 𝐆𝟑−𝐏(𝐍) 

 

 

 Figure 4. 𝐆𝐜−𝐏(𝐍) 


