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Abstract

This paper uses a fractional-order epidemic model to describe the transmission
dynamics of the Ebola virus. The proposed model uses the fractional-order derivative in
Caputo-Fabrizio’s sense. It calculates the time-independent solutions of the proposed model,
and the next-generation matrix method is used to calculate the basic reproduction number. It
obtains the condition for the existence and uniqueness of the solutions of the model. Further,
the stability condition for generalized Ulam-Hyers-Rassias stability of the proposed model is
obtained. In numerical simulations, it shows how the proposed model’s approximate solution
varies for integer and fractional orders. It also shows the behavior of the Ebola infections,
deceased and susceptible for various values of the contact rate. To demonstrate efficiency

while using less time, CPU time is given in the tabular form.
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1. Introduction

The Filoviridae family member Ebola virus (EBOV) causes the inflammatory, severe,
potentially fatal disease known as (EVD) Ebola viral disease (used to be referred to as Ebola
hemorrhagic fever), which affects both humans and great apes. The first species of EBOV
was discovered near the Ebola River in the Democratic Republic of Congo in the Central
African continent in 1976 (Bisimwa, Biamba, Aborode, Cakwira, & Akilimali, 2022;
Feldmann, Sprecher, & Geisbert, 2020). With mortality rates reaching from 50% to 90% in
some instances, Death due to Ebola hemorrhagic fever can take place in as little as a few days
(Hammouch, Rasul, Ouakka, & Elazzouzi, 2022). The illness requires between two and
twenty-one days (typically, six to ten days) to incubate and eight hours to replicate (Feldmann
et al., 2020). Humans can contract EBOV through close physical contact with infected bodily
fluids; blood, faeces, and vomit (World Health Organization [WHQ], 2014). Over the past
three decades, EBOV has been responsible for a series of epidemics (Zhang & Jain, 2020).
The outbreak of 2013-16 was categorized by WHO as a Public Health Emergency of
International Concern, which highlighted the difficulties associated with treating Ebola virus
infections and raised concerns about society’s readiness to manage future epidemics on a

scientific, clinical, and sociological level.

1.1.Literature Survey
Many researchers have created epidemic models to better understand the EBOV virus
disease's mechanics. Some are integer order, and the rest are fractional-order models. The

fractional-order model, in contrast to integer-order models, provides more freedom to fit the
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real data, which enhances the model's coherence with actual data and observations
(Khajehsaeid, 2018). In (Singh, 2020), the author used fractional-order GL-derivative to form
an iterative numerical scheme to find the numerical solutions of the epidemic model based
on EBOV and computed the CPU time usage. In (Srivastava, & Saad, 2020), the authors
looked at three potential kernel-based numerical solutions for the fractal-fractional Ebola
virus. In (Gao, Li, Li, & Zhou, 2021; Shaikh & Nisar, 2019), the authors used the fractional-
order CF-derivatives and fixed-point theorem in the proposed epidemic model to show the
existence and uniqueness of the governing system’s solution. In (Shah, Patel, & Yeolekar,
2019), the authors proposed an integer-order model that discussed the vertical dynamics of
Ebola with media impacts. In (Liu, Feckan, O’Regan, & Wang, 2019; Nwajeri, Omame, &
Onyenegecha, 2021), the authors derived the generalized UHR-stability results using
fractional-order CF- derivatives within their proposed models. Fractional calculus is
currently the focus of numerous studies of epidemic models. Multiple numerical and
analytical methods have been developed to solve fractional calculus problems. Some other
related models are discussed in (Hussain, Baleanu, & Adeel, 2020; Liu, Feckan, & Wang,
2020; Solis-Pérez, Gomez-Aguilar, & Atangana, 2018). In (Singh, Srivastava, Hammouch,
& Nisar, 2021), the authors analyzed the stability conditions and the numerical results of the
proposed fractional-order model on COVID-19. In (Singh, Baleanu, Singh, & Dutta, 2021),
the authors looked at a non-integer order smoking model, utilized an iterative technique to

get numerical findings, and listed CPU time to illustrate the efficiency of solutions.

2. Preliminaries

Definition 1. The fractional-order ¢ -derivative with ¢ € (0,1] of function f €
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H[a, b] in Caputo’s sense is defined as,

DO = O =9)%ds , t>a (1)
A new derivative is introduced using an exponential kernel to avoid the singularity att = s
in the above expression (1).

Definition 2. (Losada & Nieto, 2015) The new fractional-order ¢-derivative of a

function f in Caputo-Fabrizio’s sense can be written as,

cFpPF(t) = (2—-¢)M (d))ff() o —S)ld

2(1— ®)

where M (¢) is the normalizing constant function depending upon ¢.
Definition 3. The Laplace transform of the fractional-order ¢ -derivative of a

function f in Caputo-Fabrizio’s sense is defined as,

sL{f(t),s} — f(0)
(s+p(1-19))

L{ FDPf(6), 5} =

Definition 4. The fractional integral of order ¢ of a function f in Caputo-Fabrizio’s

sense is defined as,

2(1-¢)

CFq9 —
72 (f(Y) = CERIIES f(t) + f(t)dr, t>a.

ol
2 —¢)M(e))

3. Model formulation

The compartments of the model are defined as follows: Susceptible that are
uninfected (S), exposed to Ebola infection (E), infectious from the infection (I), Hospitalized
(H), Deceased or critically sick (D), and Recovered from infection (R). The total population

(N) is the sum of all the compartments. At any instance of time t,
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N() = S(t) + E(t) + I(t) + H(t) + D(t) + R(t)
The model has the following assumptions:

» Exposed individuals E(t), infectious individuals (I(t)), Hospitalized individuals
(H(t)), and Deceased or critically sick individuals (D (t)) are carriers of the EBOV at any
instance of time t.

* Whenever any susceptible person (S) comes into touch with any deceased (D),
hospitalized (H), exposed (E), or infectious (I) person, it acquires EBOV at the rate a, (E +
I+H+D)S/N.

The meaning of the parameters used in the model is given in Table 1. The governing
system of the fractional-order non-linear differential equations which describe the proposed

epidemic model is as follows:

a1 (E(@)+I1®)+D(t)+H(())S(t)
EOHODOHORO — (1 + ap)E®

CFDLI(t) = a,E(t) — (as + ay + wI(t)
CFDPH(E) = asl(t) — (as + ag + WH(L)

FDPE(L) =

A )
FDID(t) = a,I(t) + asH(t) — uD(¢t)
CFPPR(t) = agH(t) — uR(t)
CF be S(t) =B —uS(t) — al(E(t)H(t);ggt)m(t))s(t)
with non-negative initial condition, (5(0), E(0),1(0), H(0), D(0),R(0)) € RS.
It can be rewritten in vector form as follows:
CFDP(E) = K (t, E(), 1(t), H(t), D(t), R(E), S(1)) 3)
for ¢ € (0,1], t €] = [0, b] with following initial condition, 4
$(0) = P, = (E(0),1(0), H(0), D(0), R(0),S(0))” (5)

where §(6) = (E(), 1(6), H(©), D(£), R(®), S(©))"

and K (t) = (K1 (8), 7 (£), 33 (), Ha (£), K (£), Ko ()"
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4. Analysis of model
4.1. Equilibrium Points

In this section, the equilibrium points of system (2) are evaluated. The points are the
steady-state solution of the system (2). There are two equilibrium points of the proposed

system to be analyzed. The Ebola-free equilibrium point, E° is given by:
E'={s=2F=I=H=D=R=0}
u

The endemic equilibrium point E? is given by:
Elz{S*:j_:,E* =ﬁ—i"*=ﬁ—§'ﬂ*=%§'l’* :%'R*:j_i}
where,
Ay =Np(u+as +ag)(u+az +a)(n+ az)
Ay =a (3 + (ap + as + ay + as + ag)u? + ((az + ay + ag + ag)a, + (as + ag)(az
+ay))p+ ((as + ag)a, + azas)a,)
A; = —=Np® —N(a, + az + as + as + ag)u* + (~N(az + a, + as + ag)a, + Ba;
— N(as + ag)(az + a4))ll3 + ((Ba1 — N(as + ag)(az + a4))a2
+ Bay(az + ay + as + ag))u® + B((as + ay + as + ag)a, + (as
+ ag)(az + ay))au + ((as + ag)a, + a3a5)Ba2a1
Ay= W+ o)W + (a2 +az+as +as+ag)p’ + (a3 + a +as + ag) + (as

+ ag)(as + al))p + ((as + ag)as + azas)az)a,
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As = (=Nu® = N(ap + az + ay + as + ag)u* + (—N(az + a, + as + ag)a, — N(as
+ ag)a, — N(as + ag)as + Ba)u® + (=N (as + ag)as — N(as + ag)as
+ Bay)a, + Baj(az + a, + as + ag))u? + B((az + as + as + ag)a,
+ (as + ag)(az + ag))aypu + ((as + ag)ay + azas)Baya)a,
Ag =t a)(u+az+a) (W’ + (a2 + a3 + as + as + ag)u’® + (a3 + as + as
+ ag)ay + (as + ag)(az + al))u + ((as + ag)ay + azas)az)a;
A; = (=Nu® = N(ay + as + ay + as + ag)u* + (—N(az + a4 + as + ag)a, — N(as
+ ag)ay — Nagas — Nazag + Bay))u® + (N ((as + ag)a, + azas
+ azag) + Bay)a, + Bay(as + ay + as + ag))u® + B((az + ay as
+ag)ay + (as + ag)(as + ag))ayp + ((as + ag)ay + as)Baar)ayas
Ag=(u+a)u+az+a)(u+as+ad)(W’ + (az +as +ay + as + ag)u’ + (a3
+ag+as+ag)a; + (as + ag)(as + a))u + ((as + ag)a,
+ azas)az)ay
Ag = (=Nu® = N(ap + az + a, + as + ag)u* + (—N(az + as + as + ag)a, — N(as
+ag)ay — N(as + ag)as + Bay)u® + (=N(as + ag)as — N(as
+ ag)az + Ba))a, + Baj(as + ay + as + ag))u? + B((az + ay + as
+ ag)az + (as + ag)(as + ag))asp + ((as + ag)ay + as)Bayar)ay(auu
+ (a5 + ag)ay + azas

Ajo = puAg



147 A = (—Nu5 —N(a, + az + as + as + ag)u* + (—N(az + a, + as + ag)a, — N(as

148 + ag)a, — Nagas — Nagag + Ba)u® + ((—N(as + ag)a, — Nazas
149 — Nazag + Bay)a, + Bay(az + as + as + ag)p? + B((az + a, + as
150 + ag)ay + (a5 + ag)(az + ag))apu + ((as + ag)ay

151 + aza5) a0 B)a,agas

152 Ap=pu(u+ax))(u+as+ay)(u+as + ae)(ﬂ3 +(a;+as+a,+as+ 056)112 + ((az

153 +a,+as+ag)a, + (as +ag)(az + az))u+ ((as + ag)ay
154 + azas)ay)a,
155

156 4.2 Basic Reproduction Number
157 The next-generation matrix method (Diekmann, Heesterbeek, & Metz, 1990;
158  Otunuga, 2021) is used to calculate the basic reproduction number of the proposed model.

159  The fractional-order system (2) can be rewritten as:

160 FpP(t) = f(t) - B(t)
161  where,
[ a(E+1+D+H)S T
-E(t)- N (,Ll + aZ)E
I(t) 0 (‘u + as + a4)1 — O.’zE
- |H®| 2. 0 seoy _ |t as +ag)H — asl

162 lp(t) = D(t) ,f(t) - 0 and U(t) - ‘LLD — (Z4I — (ZSH

S(D) | _al(E+I+D+H)S | uS —B

N

163  are the column vectors with the initial condition, 1/7(0) = 1/70. Assume that F and V be the

164  Jacobian matrices of the column vectors f and ¥, respectively.

165 At the Ebola-free equilibrium point E°,
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\% \% \% \% 0 0
0 0 0 0 0 O
_ on_| O 0 0 0 0 O _
Fro =F(E®°) = 0 0 0 0 0 0 (where V= Ba;Npu)
0 0 0 0 0 O
-V -v —-v —-v 0 0
U+ a, 0 0 0 0 O
—a, ptazta, 0 0 0 O
0 —a ut+as+a;, 0 0 O
— 0y — 3 5 6
Voo =V(ED =| _a, —as  u 0 0
0 0 —ayg 0 u O
0 0 0 0 0 u

are the singular and non-singular 6 X 6 matrices. The basic reproduction number is the
spectral radius of the matrix FV ~1 at Ebola-free point E°.

[BW® + (a2 + as + ay + a5 + ag)u® + (a3 + ay + as + ag)az +]
Ry = p(FgoVl) = | (as + ag)(az + ag))u + (a5 + ag)y + azas)az)ay |
EE N(u+ as + ae) (1 + az + a) (u + az)u?

4.3 Invariant positive region
Lemma 1. The proposed fractional-order model for Ebola infection (2)'s the feasible

domain of solution is
0={(SELHDR)ERLOSN < Z}
positively invariant.
Proof. Adding all the equations in the fractional-order system (2),
CFPPN(t) = B — uN(t)
Using the Laplace transform for both sides of the previous equation,
L{FDPN(t),s} = L{B — uN(t), s}

This gives,
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sL{N(t),s}—N(0) B
(S+¢(1—S)) —;—‘UL{N(t),S}

provided s > 0.

Solving for L{N(t), s} and taking inverse Laplace transform,

L‘l{ s+¢d(l—y3) }

N(t) = N(O)L‘l{ (14 u— pu)s? + pus

s+,us+,u¢(1—s)}+

(1—¢)L? {;qs}

S+

_ N(0) —1{ L }+ 2 M

= — ue - - :

e ) e e )
(1+u-ugd)

- 20 Lo - (2255

faswee[-GEEH] ]
|-

OO0 8] o] (e

and because of the asymptotic decay characteristic of the inverse exponential function as time

grows, tlimN(t) < B/u. Therefore, the fractional-order system has a positively oriented

bounded region.

5. Existence and Uniqueness of the solution

In this section, the existence and uniqueness of the solution of the proposed fractional-

order model are shown. Applying the fractional-integral operator ( ¥ J{f’ ) on both sides into

the system of equations (2),



198

199

200

201

202

203

204

205

206

207

a (E()+I(t)+D(t)+H(t))S(t)
= — (u+ a)E®))

1(6) = 1(0) =F 32 (@, E(t) — (a5 + ay + wI(1))
H(t) — H(0) =CF 3¢ (a3l (t) — (a5 + ag + WH(D))
D(t) = D(0) = 3¢ (asI(t) + asH(t) — uD(t))
R(t) — R(0) =F 72 (asH(t) — uR(L))

(E@®)+1()+D(t)+H(t))S(t
S(6) = S(0) =°F 3¢ (B - uS(e) — 2EQ ()N(tg) )st)

E(t) - E(0) = 79 (

(6)

Solving the right-hand side of the system (6),

E(t) = E(0) = =25, (£, (8)) + ——o— [" K, (7,9 (1))dx

2=-p)M(9) (- ¢)M(¢)

2(1-9)
1(8) = 1(0) = 236, (6, (D) + s Jy Ho (T p(D))dr

2(1-¢)

H(®) = H(0) = GASB 53 (6 (D) + Garas Jy s (B (D) o
D(8) = D(0) = = K (6, (D)) + s [y KT (D)de
R(D) = R(0) = A K (1, (D) + s [y Ks(z,())d
S(B) = 5(0) = GES TS Ko (LY (D) + Gt [y Ko(wb(D)de

where kernels K, K,, K3, K4, K5, and K, are defined as:

E@®)+I(t)+D(t)+H(t))S(t)
7, (£, (1)) = LLEQHODOMOBO _ () 4 g,)E (1)

3o (8, 9(1)) = azE(t) — (az + aq + wI(t)
7(3(t;¢(t)) = a3l(t) — (as + ag + WH(t)
Ka(tY(©)) = asl(t) + asH(t) — uD(t)
Ks(t, (1)) = agH(t) — uR(t)

E)+It)+D(t)+H(t))S(t)
Ko(t(©) = B — us(e) — N )

(8)

Lemma 2. The kernels K, ;, K5, K4, Ks, and K satisfy Lipschitz’s condition if

0 S L= Sup{Ll, Lz, L3,L4, L5, L6} < 1

=lays; — (Wt a)l, Ly =|u+aztayl, Lz =|utas+ag|,Ly =Ls=p,Ls =

la (1 =59 —10) —ul , so = inf SE)/N() < sup S(t)/N(t) = s, and 7o = inf R(t)/
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Proof. Let E;, E, be corresponding functions for the kernel X;. Let I;, I, be corresponding
functions for the kernel X,. Let H,, H, be corresponding functions for the kernel &;. Let
D,, D, be corresponding functions for the kernel ¥,, R;, R, be corresponding functions for

the kernel 5 and S, S, be corresponding functions for the kernel ¥,. Then,

EAAC B A A S (S RS COETAG)] )
< sup [55 = (u + @) 1B () = B0 (10)
Similarly,
Il 3 (8, 11 () — Ko (8, () 1= [[(—=(u + a5 + a) (&) — L) (11)
< |1+ as + aa 1L () — L) (12)
Ly

Il K5(t, Hy () — K3(t, Hp (1)) 1= ||(—(u + as + ag)) (Hy(t) — Hp (1)) | (13)
< |u+ a5 + ol I1Hy (1) = Hy()] (14)

L3
Il K4 (t, Dy (£)) = K (t, Dy(£)) 1= [I(=)(D1(£) = Do) (15)
< | D1 (8) = D, (@) (16)
Il K5 (t, Ry (1)) — K5 (t, Rz (1)) 1= I(—) Ry (£) — R ()| (17)
< |1 IRy () = Ro(B)l (18)
Il Ks(t,S1(8)) — Ke(t, S, (1) 1= | a1(E(t)+1(t)+D(l;\)I:t1)1(t))(S1(t)—Sz(t))” (19)
< sup ey (1= 38 = 75)| 15:0) = S0 (20)

Le
For each n € N, we can get the following system of recursive relations using Picard’s

iteration,
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245

2(1-¢) 2¢ t
En(t) = G pmy T (b En-a (D)) + mfo Ki(z, Ep-1(7))dr

2(1-¢) 2¢ t
L) = Gpme Ko (b n-1 () + mfo ¥ (v, In-1(7))dr

Hy(t) = =230, (8, Hy—1 (£) + =t [ K3(t, Hpq (1)) d

(2-9)M(¢) (2-9)M(¢)

Do (6) = =P 53¢, (t, D1 (1)) + = [ Ky (7, Dy (1)) dl1

(2-9)M(¢) (2-9)M(¢)

2(1-¢) 2¢ t
Ru(t) = = migy X5 (6 R () + mfo Ks(t, Rn-1(7))dr

2(1-¢) 2¢ t
$n(0) = G gymigy Ko (6 Sn-1(0)) + mfo Ko (T, Sp-1(1))d7

Now, using Lipschitz’s inequalities and above recursive equations (21),
I AER () =1 En (8) — En—q (8) I

< 20O ap _I_&fot | AE,_;(7) Il dt

 (@-P)M(9) 2-p)M(9)
< (B e IAE,-1 (O
Similarly,

I AL 1= 1 In(8) = I (8) 1< (FEZ2E80N ag, o)
| AHA®) Il = Il Ha(8) = Hooa () 1< (222880 JAH, , (0)])
I ADL(6) 1l = 1l Dy(8) = Dy (0) N1 (A28 D, (o)
I ARy () 1=l Ra(®) = Rpa (8) N (222220 AR, o)
1 8520) =1 Sa(8) = Spa (0) 1< (FEEERR fias, L, @)

Further, it can be observed using telescopic sum that,
Epn(t) = Eg + Xns1 AER (D), In(t) = Iy + X5tq AL (D)

Hy () = Hy + X321 AHR(£) Dy (t) = Do + X521 ADR ()

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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Ry (t) = Ry + X3t1 AR (1), S (8) = So + Xn=q AS,(8)
This proves the result.

Theorem 1. (Existence of solution) There exists a solution of the fractional system

ZL(1_¢+¢Tsup)

(2) provided if 0 < 6 < 1. where § = (= e

) and L = sup{Ly, Ly, Ly, Ly, Ls, Lo}

Proof. The functions E(t),I(t), H(t), D(t),R(t),S(t) are bounded and respective kernels
satisfy the Lipschitz’s conditions. Using the recursive formula for the inequalities (22) - (29),

2L1(1-¢p+PTsup)

n-1
s M IO

I AE, () 11 < (

<O AE(D)

n—-oo

—0,as 060 <1.

Similarly, it can be observed that each of the following sequences of,

n—-oo
I AL,(t) I I AH, () I, 1 AD,, () I 1 AR, () II, I AS,,(t) I—0, as 0 <6 < 1.
This proves the solutions of the fractional system exist and are of the form mentioned in (7).

Lemma 3. (Nwajeri, Panle, Omame, Obi, & Onyenegecha, 2022) Consider the initial
value problem CFl/Jf’ (t) = K(t,¥(t)), ¥(0) =y, and suppose that there exists a
Lipschitz’s constant L = 0 such that

| K (& 1(8) = K (& 2 ()] = LI (6) — 2D, (30)

2(1-¢)+2¢Tsup

for all t € J = [0,b] and ¥, ¥, € C(J,R). If L( )

) < 1, Then, there exists a

unique solution of the initial value problem on J = [0, b].
Proof. The uniqueness of the solution to this initial value problem is the consequence of the
Banach-Fixed point theorem. Let C(J, R) denotes the Banach space of all the continuous

functions from J to R with infinity-norm.
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I f lleo= Slip{lf(t)llt €J=1[0,b]}, VfeC(UR)
Consider the mapping w: C?(J,R) - C?(J, R) defined by,

wp(t) = Po + —2_(3¢(£) — K (0)) + f; K (D)dr

(2-$)M() (2- ¢)M(¢)

Assume 14,9, € C%(J,R) and for each t € J,

|1 (5) = 2 (O] < oo 19 (61 (8)) = K (6 o (D))

(2- ¢)M(¢)f |jC(T ¢1(T)) jC(T lpZ (T))ldT

Using inequality (30) and for each t € J,

|1 (6) — 02 (D] < o B T1 (8) = 2 ()

- fI)L)Z((p)f [Y1(7) — Y (7)|dT

2(1-¢) 2¢Tsup
<L t) — t
= (<2—¢)M(¢>) + (2—¢)M(¢>)) ¥1(0) = ¥2(0)]

Taking supremum over t € J,

2(1_¢)+2¢Tsup

@-P)M () )1 =2 N

| wipy — Py o< L

2(1-¢)+2¢Tsup

Thus, w is a contraction mapping if 0 < L( Z-PM (D)

) < 1. Consequently, by Banach-

fixed point theorem, the operator w has a fixed point say (y) i.e. (wy = ) which is the
required unique solution of the initial value problem on C(J, R).

Theorem 2. (Uniqueness of solution) The solution (as mentioned in system 7) of the
fractional system (2) is unique.
Proof. We use Lemma 3 to show the uniqueness of the solution (as mentioned in system 7)
for the fractional system (2). By Lemma 2, kernels ¥;, K5, K5, K4, K, and K satisfies the

Lipschitz’s conditions with constants L,, Ly, L3, Ly, Ls, and Le, respectively. Letting L =
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2(1_¢)+2¢Tsup

sup{Lq, Ly, L3, Ly, L, Lg} and 6 = ( 2-p)M(P)

). Since solution exists iIf 0 <8< 1

(hypothesis of existence Theorem 1). Thus, the hypothesis of the Lemma 3 is satisfied for
each of the equations (with initial values) of the fractional-order system (2). Hence, using
Lemma 3, we conclude that the fractional-order system (2) has a unique solution if 0 < 8 <

1.

6. Stability
This section obtains the appropriate stability condition for the generalized Ulam-

Hyers-Rassias stability of the proposed fractional-order model.

6.1. Generalized Ulam-Hyers-Rassias stability

Definition 5. (Nwajeri et al., 2021, 2022; Liu, Feckan, O’Regan, & Wang, 2019) The
fractional-order model CFDf’t/J(t) =K (t,(t)) is generalized Ulam-Hyers-Rassias
(UHR) stable in accordance with Y (t) € H'[J, R*] if there exists a positive real value &
(depending upon ¢) such that for every solution vy of the following inequality,

| FDPp() — K (6, p(®)] < Y(©),
There exists a solution 1) € H'(J, R*) of the model with the following,
[w(@® —P®)| < Y @) for each t € J.

Lemma 4. The fractional-order model ¢F fo’ Y(t) = K(t,P(t)) (satisfying
Lipschitz’s condition with Lipschitz constant L depending upon kernel ') is generalized
UHR-stable in accordance with non-decreasing positive function Y if,

ZL((1_¢)+¢Tsup)
< =
0<6 2-¢p)M(¢)

<1 (31)
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Proof. We let Y(t) represent any arbitrary positive function, then there exists a positive real

number n such that,

(21 - $)Y(® + 26 f; Y@dr) <nY(©®). (32)
Since the kernel of the fractional-order model satisfies Lipschitz’s condition with Lipschitz’s
constant L (depending upon kernel X) i.e.

|7 (&, (©) — K& P@)] < LIp@) —d(®)| (33)
So, using the existence and uniqueness theorem of the model, there exists a unique solution

say (1) of the fractional-order model of the following form,

B(6) = Po + 2306, P()) + —o— [ K (5, P())dT  (34)

@C-p)M(¢) (2- ¢)M(¢)
Assume that 1 is the solution of the following inequality,
| PP Y(e) — K (Y| < Y(©), (35)

Applying fractional-order integral operator,

WO =T H (L Y(O)] < o (36)
7 2(1-¢)
[W(©) =P — Frt= K (YD) = s [ K (@ ()| n
Yy
T @2-p)M(9)

Now, Consider the following,
(&) — P D)

= [W(®) = ho — 230 (8, (1)) —

- oM (@) - ¢)M(¢)f K@ ¢(T))df|

Y(O) = Po — s K (1, ¢<t>)—(z o Jy K@ D@)dr

_ + =230 (£, () + o [ K (1, Y (0))dT

2-p)M(p) (2- ¢)M(¢)
— 28304, () — ——— [ K (1, Y (0))dT

2-¢)M(¢) (- ¢>)M(¢>)
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< [w(®) = Po — =525 (t, (1)) —

oM (@) - ¢>)M(¢>)f K@ w(T))dT|

_201-¢)
o | KEW©) = K (& h(D)]

o [ | (0 (@) K (@ ) |dr
Using Lipschitz’s inequality (33), we get the following:
¥(@®) — b))

< [w(t) = Po — P K (6, Y (1)) — s [ K (x, Y (x) ) 7|

(2-p)M(¢) (2- ¢)M(¢)

a-9) @ ~
F s s (O — O] + G fy (@ — P(@)]dr

= [(®) = o — 230 (6, (1) — e [ K (1, (1)) |

(2-9)M(¢) (O ¢>)M (¢)

ZL((1_¢)+¢Tsup)

o PO PO

Using (31) and (37), we get,

yw®
[W(©) = DO < 57w + Olw® = P(©)]

nYy()
= @=0e-oM@) €Y ()

7. Numerical Scheme
In this section, a new numerical scheme is obtained to solve numerically the

fractional-order system representing the proposed model. Consider the fractional-order

equation CFDf’l/J(t) = K (t,y(t)), applying the fundamental theorem of fractional calculus

yields; an iterative scheme is obtained as follows:

Y(tnsr) = Y(0) = P K (b Y(tn)) + s fy ™™ K (@ p(D)dT  (38)

Replacing value of 1 (t,,), we get,
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Y(tnsn) = Y(tn) + ool (K (b () = K (b, Y ()]

2¢ tn+1

Considering uniform step-size h along the time axis, the integral can be approximated as in

the classical two-step Adams-Bashforth scheme as follows:

S 30 (2 () dr = 22t P (tn) = 5K (b, Y (En1)) (40)

Substituting the value of approximated integral (40) into the above equation (39),

_2(-¢)
Pltnsr) = W(tn) + G s [ty (60)) = K (B P (En1))]

2 [ K (0, Y(00)) ~ K (b1, Y1)

Since, M (¢) is a normalizing function with M(0) = M(1) = 1. So, let us assume M(¢) =
(2 — ¢?)/(2 — ¢) which satisfies M(0) = M(1) = 1. Thus,

2+(3h-2)¢
2—¢p2

2+(h=2)¢

Y(tus) =) + ———— 2— 2

— gz Kt P(tn) —— 7 K-, ¥(tn-1))  (41)

Hence, the fractional-order model (3) has the following numerical scheme to obtain the

numerical solutions.

2+(h 2)p 72

Pltnsn) = B(tn) + ZL2E K (b B(6)) — 517

L K (b1, P (1)) (42)

7.1. Numerical Simulations

This section uses MATLAB software to perform the numerical simulations from the
obtained numerical scheme (42). The total initial population is assumed to be N(0) = 100
and the initial values of the compartments are assumed to be S(0) = 80,E(0) = 10,1(0) =
5 H(0) = 3,D(0) = 2,R(0) = 0. The used values of the parameters are as follows: B = 10,

u=0.1a, =0.75 a, =0.85, ag = 0425, a, = 0.2, a5 = 0.15, and az = 0.25.
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Figure 2 shows the transmission dynamics of each compartment listed in the model
over time. The behavior is smooth, and it validates the theoretical results. Figure 3 shows the
behavior for different values of fractional order. For relatively small values of the fractional
order, the number of infectious individuals reaches the exact peak of approximately 19 cases
but takes a relatively long time.

Figure 4 shows the behavior of the Ebola infectious cases for the different values of
the contact rate over time. The relatively more contact rate of susceptible with the pathogen
carriers individuals will surge the number of Ebola infectious individuals. The contact rate is
the crucial parameter for this model that directly influences the cases of Ebola. It shows that
the most efficient way to control the spread of EBOV infection is to control the contact rate
parameter.

Figure 5 and Figure 6 illustrate the behavior of the Susceptible S(t) and Deceased
D(t) for various values of contact rate o; over time, respectively.

In Table 2, the CPU time usage is listed with the different values of step size At and
iterations n of the mentioned numerical scheme for this proposed model. The table makes it

clear that the proposed strategy increases efficiency while taking less time.

8. Conclusions

In this study, an epidemic model for the Ebola disease is formulated using the Caputo-
Fabrizio fractional derivative. The basic reproduction number (R,) is calculated using the
next-generation matrix approach. It analyzed the condition for the existence and uniqueness
of the model’s solution using the Fixed-point theorem approach. Additionally, the stability

condition for the suggested model's generalized Ulam-Hyers-Rassias stability is found. It
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illustrates how the approximate solution of the proposed model differs for integer and
fractional orders in numerical simulations. Additionally, it displays the behavior of Ebola
infections in deceased and vulnerable individuals at various contact rate values. In future, the
authors can study this approach for other infectious diseases to get better insight about the

transmission of the diseases whose outcomes may help medical fraternity to work effectively.
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Figure 1 The flow diagram of the proposed model.
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Figure 2 Smooth behavior of compartments over time using integer-order ¢ = 1.
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Figure 4 Effect of the contact rate c; on infectious individuals I(t) over time t with
integer-order ¢ = 1.
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Figure 6 Effect of the contact rate «; on deceased individuals D(t) over time t with

integer order ¢ = 1.



Table

Parameter Meaning

B The birth rate of the population

a, Contact rate of susceptible with EBOV carriers

a, The transmission rate of exposed getting infectious from the Ebola
as The transmission rate of infectious getting hospitalized

ay The transmission rate of infectious getting critically ill or deceased
Qs The transmission rate of hospitalized getting critically ill or deceased
Qg The transmission rate of hospitalized getting recovered

U The death rate of the population

Table 1 Meaning of parameters used in the proposed model.

Step size (At) Number of iterations (n) CPU time (s)
0.1 100 0.29
0.01 1000 0.34
0.001 10* 0.41
0.0001 10° 131
0.00001 106 2.39

Table 2 CPU time usage of the different values of At and n.



