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Abstract 10 

An effort has been addressed to examine the dual solutions of boundary layer 11 

flow of the Casson fluid over a shrinking sheet with the effects of Joule heating and 12 

power-law heat flux. A homogeneous magnetic field is implemented in the system 13 

along the normal direction of the flow. An appropriate similarity transformations are 14 

employed to renovate the supported equations of the present problem into a set of 15 

solvable form and hence solved these equations using the three-stage Lobatto IIIa 16 

method by developing a numerical bvp4c code in MATLAB. Due to the shrinking 17 

surface, some disturbances occur on the flow which gives two different solutions; one is 18 

stable and another one is unstable. Graphical results have been shown to analyze 19 

velocity and temperature fields. The stability analysis is executed to characterize the 20 

stable and physically attainable solution. It is perceived that the Casson fluid parameter 21 

helps to enhance the speed and temperature of the fluid during the time-independent 22 

case. But, it controls the motion as well as the temperature of the fluid during the time-23 

dependent case.   24 
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1. Introduction 27 

In the recent times, there are multifarious appliance of non-Newtonian fluid in 28 

different areas such as engineering sciences and industrial processes. Again, a huge 29 

number of research on boundary layer flow of non-Newtonian fluids with the effects of 30 

both thermal and mass diffusivity are available in the recent time. Mechanics of non-31 

Newtonian fluid flows preserve a special confront to engineers, physicists and 32 

mathematician due to complexity and vast significance of these fluid in physical fields. 33 

The Casson fluid is a sub class of non-Newtonian fluid which has spacious significance 34 

in food processing, metallurgy, drilling operations and bio-engineering etc. Some 35 

important paradigms of this fluid are honey, concentrated fruit juice, blood and tomato 36 

sauce etc. This type of fluid has yield stress and the characteristics of this fluid is 37 

completely dependent on shear stress and yield stress. If the applying shear stress to the 38 

fluid is smaller than the yield stress, then this type of fluid has infinite viscosity for that 39 

it behaves like a solid. Again, it behaves like a liquid when the shear stress is larger than 40 

the applying yield stress to the fluid. Amilmohamadi, Akram, and Sadeghy (2016), 41 

Zaib, Bhattacharyya, Uddin, and Shafie (2016), Tamoor, Waqas, Khan, Alsaedi, and 42 

Hayat (2017), Maraj, Faizan, and Shaiq (2019) and Shah, Kumam, and Deebani (2020) 43 

have put their ideas and given physical significance of the Casson fluid flow in different 44 

physical areas by taking different geometries. Oke, Mutuku, Kimathi, and Animasaun 45 

(2020) have investigated the Casson fluid under the action of Cariolis force and its 46 

importance in different fields by considering rotating non-uniform surface. Alghamdi et 47 

al. (2020) have investigated the boundary-layer flow of Casson hybrid nanofluid 48 



[3] 

 

streaming above an elongating surface. They have concluded that this fluid model with 49 

the hybrid nanoparticles is very important for the enhancement of thermal conductivity 50 

that is a key requirement for the modern industries. Nandeppanavar, M.C., and 51 

Raveendra (2021) have examined the simultaneous influence of both thermal and mass 52 

transfers of the Casson fluid flow with variable thermal radiation.      53 

 The flow due to the shrinking surface along with the effects of both thermal and 54 

mass diffusivity have taken a great deal of interest in engineering sciences, industrial 55 

processes and many other areas. Some examples are wire drawing, extrusion, metal 56 

spinning and hot rolling etc. Application of both heat and mass transfer over 57 

stretching/shrinking surface is annealing and thickening of copper wire. The boundary-58 

layer flow over contracting/moving surface was first introduced by Crane (1970). The 59 

researchers, Krishna, Reddy, and Makinde (2018), Sarkar et al. (2019), Anuradha and 60 

Punithavalli (2019), Vaidya et al. (2020), Dey and Chutia (2021), Dey and Hazarika 61 

(2021) and Dey, Borah, and Mahanta (2021) have discussed the boundary layer flow of 62 

different fluid models due to stretching/shrinking type surfaces and their importance in 63 

different areas. They have also investigated the thermal transference of the fluid flow 64 

with their importance in different fields. In the recent times, the Joule heating and heat 65 

source effect and magnetohydrodynamics on this present model are found in different 66 

importance applications in different physical areas. Many researchers, Hayat, Shafiq, 67 

and Alsaedi (2014), Khan, Khan, Irfan, and Alshomrani (2017), Saidulu and Lakshmi 68 

(2017) and Ibrahim, Kumar, Lorenzini, and Lorenzini (2019) have analysed the 69 

consequence of Joule heating and heat source effects by taking different surfaces. 70 

Adnan, Arifin, Bachok, and Ali (2019) have discussed the importance of the shrinking 71 

type surface during the fluid streaming above the geometries. The effects of the 72 
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magnetic field during the fluid flow of this model have many industrial applications 73 

such as MHD (magneto-hydrodynamics) pump and MHD generators etc. Zehra et al. 74 

(2021) have investigated the Casson nanofluid flow over a curved stretching/shrinking 75 

channel with homogeneous magnetic field. Jamshed et al. (2021) have explored the 76 

ideas of the magnetized fluid streaming above an shrinking/stretching surfaces by 77 

employing the Casson fluid model.        78 

Markin (1980) have introduced the dual type solutions and found that upper 79 

branch i.e., the time dependent solution is unstable. After that, a huge amount of 80 

literatures on boundary layer flow and their dual solutions have been achieved in the 81 

research areas. Many researchers, Najib, Bachok, and Arifin (2017), Ahmed, Siddique, 82 

and Sagheer (2018), Salleh, Bachok, Arifin, Ali, and Pop (2018), Dey and Borah (2020) 83 

and Mishra, Hussain, Seth, and Makinde (2020) have analysed the dual solutions and 84 

their stability. They have found two types of solutions and interpreted that the time 85 

independent solution is stable in nature and physically achievable. Dey and Borah 86 

(2021) have investigated the numerical solutions of the two-fold solutions of the fluid 87 

flow caused due to an elongating surface under the action of both thermal and mass 88 

transmission by considering the second-grade fluid. Dey, Makinde, and Borah (2022) 89 

have scrutinized the nature of the dual solutions and their occurrence during the flow of 90 

the fluid under the effects of both thermal and mass transference by placing 91 

stretching/shrinking surface. Dey, Borah, and Khound (2022) have studied the dual 92 

solutions and their stability analysis of the Casson fluid flow over an elongating sheet. 93 

They have found that the first solution which is responsible for time-independent case is 94 

stable and physically tractable. All the aforesaid literature have studied about the 95 



[5] 

 

impacts of magnetic field in the different fluid flow caused due to stretching/shrinking 96 

surfaces.  97 

In fluid mechanics, all the flow problems have been elaborated by some physical 98 

principles of conservations. This physical laws give leading mathematical equations that 99 

describe the pattern of the motion, temperature as well as mass transmission of the fluid. 100 

These supported equations are highly non-linear, so it can’t be too easy to solve this 101 

problem by analytical approach. In this study, we have adopted the three-stage Lobatto 102 

IIIa formula [referring Shampine, Kierzenka, and Reichelt (2000)] for solving the 103 

boundary value problems by developing a numerical bvp4c codes in MATLAB. Many 104 

researchers such as Dey and Borah (2020, 2021) and Dey, Hazarika, Borah (2021) have 105 

applied the MATLAB routine bvp4c solver scheme to come out from their studies.  106 

 The objective of this problem is to explore the nature of dual solutions of the 107 

Casson fluid flow due to contracting sheet with the causes of joule heating and heat 108 

source. A constant magnetic field is applied in the normal direction of the flow. 109 

Adopting suitable similarity transformations, a third order differential equation 110 

corresponding to flow equation and a second order equation corresponding to heat 111 

transfer equation are developed. The numerical calculations and visualization are 112 

carried out for different flow parameters by using MATLAB built-in bvp4c solver 113 

scheme. Numerical results have been confirmed with the previous results of Jaber 114 

(2016) for a certain case and the comparison is found to be in excellent agreement. The 115 

nature of dual solutions and their stability, the Casson fluid flow due to contracting 116 

surface are the novelty of this work.    117 

2. Formulation of the Problem 118 
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The following assumptions are taken to formulate this present problem in terms 119 

of mathematical equations. The flow diagram of this problem is shown in figure (1).  120 

(i) 2D, time-independent and incompressible flow of Casson fluid over a shrinking 121 

sheet, 122 

(ii) A constant magnetic field of strength 0( )B is applied in the vertical direction of the 123 

sheet,  124 

(iii)  The flow is induced by the (a) inertia force, (b) viscous force, (c) pressure gradient 125 

and (d) Lorentz force,  126 

(iv) The contracting sheet is characterized by the velocity of the fluid u cx , where the 127 

constant 0c  represents the shrinkage of the sheet at 0y   and  128 

(v) In heat transfer, the flow is maintained by both free convection and conduction, heat 129 

generation, dissipation of energy and joule heating with prescribed wall temperature 130 

2 1( )WT x T Bx c 

  .  131 

(vi) The constitutive equation of the present fluid model [referring Lund, Omar, Khan, 132 

Baleanu, and Nisar (2020)] which represents the isotropic and incompressible 133 

progression of the fluid is stated as: 134 
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where, the plastic dynamic viscosity of this fluid model is meant by B , ij ije e  is the 136 

( , )thi j deformation rate of the fluid, c the critical value of the deformation rate and 137 

the yield stress of the fluid is meant by .yP   138 
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(vii)  One of the most important force which induce the present fluid model streaming 139 

above a contracting surface is Lorentz force that can be expressed as 140 

.F q v B
  

   141 

where, 0B B y is the magnetic field that can be applied in the normal direction of the 142 

flow and q the charge and v the velocity vector.   143 

Following boundary layer theory, the foremost equations of this study are:   144 
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The conditions at the surface are: 148 
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Where, c is the constant and its negative value recognizes shrinkage of the sheet at the 150 

surface.  151 

The following similarity transformations are employed to remodel the equations 152 

[(1)-(3)].  153 
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The equation (1) is clearly hold and other two equations become in the following form:  155 
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The boundary condition (4) becomes:   158 
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The flow parameters that are involved in this investigation are defined in the following 160 

way:   161 
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 The following physical quantities are observed in this study that are very 163 

important in several physical areas such as engineering sciences and industrial 164 

processes. The skin friction coefficient ( )fC  and the Nusselt number (rate of heat 165 

transfer) ( )Nu are defined in the following way:  166 
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Then we have, 168 
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3. Flow Stability 170 

 To characterize the more stable and physically attainable solution, the time 171 

dependent governing equations are needed. So, we have considered the unsteady form 172 

of governing equations (2) and (3) by adding the terms &
u T

t t
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in (2) and (3) 173 

respectively. To solve the unsteady form of governing equations, the following new 174 

similarity transformations are employed: 175 
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Where, t  is the time. After applying the equation (11) into the unsteady governing 177 

equations, we have achieved the following set of equations: 178 
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the pertinent boundary conditions are: 181 
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 Following Markin (1980) and Weidman and Awaludin (2016), the following 183 

perturb (separation of variables ) equations are considered which helps to simplify the 184 

equations (12) and (13) and transform into a set of linearized form. 185 
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where, 
0 0&f  are the solutions of the time free equations and &F G the small relative to 187 

steady flow solutions and  the unknown eigen-value parameter. To obtain the steady 188 

flow solutions, we have to set 0  , which give 0 0&F F G G  . Therefore, we have 189 

perceived the following set of linearized eigen-value problems. 190 
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and the conditions at the surface become 193 
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Solving these equations, we have got infinite set of eigen values. Among these eigen 195 

values, the positive smallest eigen value represents initial decay of disturbances on the 196 

flow and hence the flow will be in stable nature. If the least eigen value is found to be 197 

negative, then an initial growth of disturbances is happened on the flow and hence the 198 

flow will be in unstable in nature. To evaluate the fixed eigen values, we have relaxed 199 

the boundary condition
0 '( ) 0F   into a new boundary condition 0 ''(0) 1F  [following 200 

Harish, Ingham, and Pop (2009) and Weidman and Awaludin (2016)].  201 

4. Discussion of the results 202 

 The “MATLAB built in bvp4c solver technique” is taken up to work out this 203 

problem [following Shampine, Kierzenka, and Reichelt (2000), Dey and Hazarika 204 

(2020) and Dey and Chutia (2020)]. The non-dimensional Prandtl number (Pr) is fixed to 205 

0.72  throughout this investigation which physically signifies the higher thermal 206 

conductivity materials-air ( Pr 0.7 1,  thermal diffusivity is greater than momentum 207 

diffusivity) [referring Salleh, Bachok, Arifin, Ali, and Pop (2010)]. The visualization of 208 

flow behaviours are made in terms of graphs with different values of flow parameters. A 209 

special highlights are given on the Casson fluid parameter ( ) such that its value    210 

recognize the Newtonian fluid, heat source parameter ( )H and Joule heating parameter 211 

( )J .  212 

Verification of the results:  213 

To validate our results, we have compared our numerical values of the shear 214 

stress at the surface for the steady Newtonian fluid ( )   in the case of stretching 215 

sheet with the pioneer work of Jaber (2016). Table (1) shows a very good conformity of 216 

our results. This conformity help us to work out the other results.     217 
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The numerical values of smallest eigen value is tabulated in table (2). From this 218 

table, it seen that least eigen values for the steady flow solution are positive. It decays 219 

the initial disturbances on the flow and consequently the steady flow solution is stable. 220 

But, for unsteady solution, the smallest eigen values are found to be negative which 221 

generates the disturbances on the flow and the flow is unstable.  222 

Figures (2) and (3) are depicted to illustrate the motion and temperature of the 223 

fluid for developing values of the Casson fluid parameter ( ).  From figure (2), it is 224 

perceived that the enhancing values of  accelerates the motion of the fluid during both 225 

the time-independent and time-dependent cases. Generally, enhancement of   226 

decelerates the motion of the fluid because it raises the plastic dynamic viscosity. But an 227 

opposite behaviour is observed during the flow and this happens only because of the 228 

considering geometry (shrinking surface). From figure (3), it is noticed that temperature 229 

of the fluid reduces during the flow with  . This can be physically ascribed that higher 230 

values of   enhances the resistance of the fluid and reduces the effects of yield stress on 231 

the fluid and hence temperature pattern get slower during both the cases. Further, it can 232 

be concluded that during time-dependent case, the velocity and temperature of the fluid 233 

converge to its free stream region more quickly than the time-independent case. Due to 234 

the appliance of magnetic meadow on the system, the speed of the motion during both 235 

the cases (steady and unsteady cases) accelerates [shown in figure (4)]. It can be 236 

physically attributed that enhancing values of magnetic parameter reduce the effects of 237 

viscosity of the fluid at the surface and dominate the Lorentz force and hence speed of 238 

the fluid increases. From figure (5), it is seen that both the solutions (steady and 239 

unsteady solutions) of the temperature distribution of the fluid enhance near the surface 240 

of the sheet with M. It can be physically justified that enlarging values of M enhance the 241 
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magnetic force as well as friction of the fluid and hence the temperature pattern of the 242 

fluid during both the cases increases. Also, maximum variation of the temperature field 243 

of the fluid is seen in the region 0 0.5.   Figure (6) is portrayed to investigate the 244 

nature of speed of the fluid due to the effects of suction parameter ( 0).s   Increasing 245 

values s enhances the speed of the fluid during both the cases. Again, it is observed that 246 

the speed of the fluid during steady case is completely negative for various values of .s  247 

From this figure, it is also perceived that the speed of the fluid during time-dependent 248 

case gets oscillation in the region 2 10  with the increasing values of .s  This happens 249 

only because of the additional fluid suctioned by the system and the considering 250 

geometry that shrinkage in the opposite direction of the flow.   251 

 The consequences of heat source and Joule heating parameters on temperature 252 

distribution are plotted in figures (7) and (8) respectively. From figure (7), it is 253 

perceived that the temperature of the fluid decreases with the improving values of 254 

H during both the time-independent and time-dependent solutions. Generally, 255 

developing values of H generates an additional heat in the system and hence the 256 

temperature pattern of the fluid enriches. But, an opposite nature is seen during this 257 

study because the considering geometry shrink in the opposite direction of the flow. 258 

Also, it is seen that maximum temperature of the fluid generates in the vicinity of the 259 

surface and then gradually going to its free stream region at which both the solution are 260 

same manner. The temperature of the fluid during both steady and unsteady cases 261 

accelerate with developing values of Joule heating parameter ( ).J  It is also noticed that 262 

the thermal boundary layer width during steady solution is more thinner as compared to 263 

the unsteady (time-dependent) solution. All the figures satisfy the far field boundary 264 

conditions asymptotically. Also, we have seen that both the solution exists up to some 265 
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certain region of the similarity variables .  Again, the steady solution is occurred in the 266 

vicinity of the surface and converges to its free stream region than the unsteady 267 

solutions, so the steady solution is more realizable than the unsteady solution.      268 

5. Conclusions 269 

In this study, we have investigated the two-fold solutions of the thermally 270 

stratified Casson fluid streaming above a contracting surface under the influence of 271 

magnetic field. The pertinent flow parameters discussed in the result section of this 272 

study have multifarious applications in different physical areas. Again, the considering 273 

fluid model is one of the most important area for the recent research trends. The 274 

scientists and industrialists may use this fluid model under the influence of different 275 

flow factors such as magnetic field, Joule heating, heat source and suction/injection for 276 

achieving more benefits. The following major keys observed in this study are: 277 

 All the profiles satisfy the far-field boundary conditions asymptotically and 278 

exists dual type solutions up to certain region of the similarity variables .  279 

 From the stability point of view, it is perceived that the steady flow solutions is 280 

stable and the unsteady flow solution is unstable.  281 

 The Casson fluid parameter has major significance to develop the speed of the 282 

fluid as well as to control the temperature of the fluid for which we can save the 283 

system from damage.   284 

 Influence of magnetic parameter enhances the motion of the fluid during both 285 

the cases (both time-independent and time-dependent cases). Again, increasing 286 

values of magnetic parameter develops the temperature field of the fluid. 287 

 The Joule heating parameter enhances the entire temperature field of the system. 288 
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 We can control the temperature of the fluid by utilizing the heat source 289 

parameter.   290 

 The suction of the fluid in the system develops the motion of the fluid during 291 

both steady and unsteady case.   292 

“ Nomenclature: 293 
c   constant 294 
B   constant 295 

'( )f   dimensionless velocity 296 

Ec   Eckert number  297 

H   heat source parameter 298 

*Q   heat generation parameter 299 

J   Joule heating parameter 300 

0B   magnetic field (T)  301 

M   Magnetic parameter  302 

Nu   Nusselt number 303 

Pr   Prandtl number 304 

u   rate of displacement along x -directions (m/s) 305 

v   rate of displacement along y -directions (m/s) 306 

PC  specific heat at constant pressure 307 

0v   suction/injection parameter 308 

s   suction/injection parameter 309 

fC   skin friction coefficient 310 

T   temperature of the fluid (K)  311 

t   time variable (s)  312 

k   thermal conductivity (m2/s) 313 

yP   yield stress of the fluid (MPa) 314 

Greek Symbols: 315 

   Casson fluid parameter 316 

   density (kg/m3)  317 

  dimensionless time variable 318 

( )    dimensionless temperature field 319 

  electric density of the fluid (s/m) 320 

   kinematic viscosity (m2/s) 321 

   kinematic viscosity (m2/s) 322 

   plastic dynamic viscosity (pa.s) 323 

   similarity variable 324 

   stream function 325 

   unknown eigen-value parameter 326 

Suffix: 327 

w   at wall 328 
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   at free stream region”  329 
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Figure 1 Flow diagram 

 
Figure 2 Impact of   on velocity distribution when 

Pr 0.72, 3, 1, 1, 0.2 & 2.23.Ec J H M s       

 
Figure 3 Impact of   on Temperature field when 

Pr 0.72, 3, 1, 1, 0.2 & 2.23.Ec J H M s       
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Figure 4 Impact of M on velocity field when  

Pr 0.72, 3, 1, 1, 2.23& 0.2.Ec J H s          

 

Figure 5 Impact of M on Temperature field when 

Pr 0.72, 3, 1, 1, 2.23& 0.2.Ec J H s        

 
Figure 6 Impact of s on velocity field when  

Pr 0.72, 3, 1, 1, 0.2& 0.2.Ec J H M        

 



 
Figure 7 Impact of H on Temperature field when 

Pr 0.72, 3, 1, 2.23, 0.2& 0.2.Ec J s M         

 
Figure 8 Impact of J on Temperature field when 

Pr 0.72, 3, 1, 2.23, 0.2& 0.2.Ec H s M        

 
 

 



 

 

M 

Jaber (2016) works 

(shooting technique 

solutions) 

Present Results (bvp4c solution) 

Steady Solution Unsteady Solution 

1.0 2.00007 2.0009 3.0311 

3.0 2.56155 2.5616 3.1138 

5.0 3.0 3.0 3.5311 

Table-1: Numerical values of negative magnitude of skin-friction coefficient ( )fC for 

various values of Magnetic parameter (M) when Pr 0.72, 3, 1, 1& 1Ec J H s     in 

the case of Newtonian fluid and stretching sheet. 

 

s  

Smallest Eigen-value  

       Steady Solution  Unsteady  Solution  

2.5  2.5000  -2.3380  

2.6  2.6000  -2.1521  

2.7  2.7000  -2.7426  

Table-2: Numerical values of smallest eigen-values for a range of suction parameter (s) 

when Pr 0.72, 3, 1, 1, 0.2 & 0.2.Ec J H M        
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