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Abstract

At present, methods for solving the manufacturing cell formation with the assignment of duplicated machines contain
many steps. Firstly, part families and machine cells are determined. Then, the incidence matrix of the cell formation is re-
considered for machine duplications to reduce the interaction between cells with the restriction of cost. These ways are
difficult and complicated. Besides, consideration of machine setup cost should be done simultaneously with the decision
making. In this paper, an effective lexicographic fuzzy multi—objective optimization model for manufacturing cell formation
with a setup cost constrained of machine duplication is presented. Based on the perfect grouping concept, two crucial perfor-
mance measures called exceptional elements and void elements are utilized in the proposed model. Lexicographic fuzzy goal
programming is applied to solve this multi—objective model with setup cost constraint. So, the decision maker can easily solve

the manufacturing cell formation and control the setup cost of machine duplication, simultaneously.

Keywords: manufacturing cell formation, machine duplication, setup cost constrained, perfect grouping concept,

lexicographic fuzzy goal programming

1. Introduction

One of the most important problems in cellular manu-
facturing systems (CMS) is the manufacturing cell formation
problem. It is an application of group technology (GT). It faces
classifying parts into part families and grouping machines
into machine cells (Chandrasekharan and Rajagopalan, 1987;
Chu and Hayya, 1991). In the part-family classifying, similar
geometries, functions, materials and/or production processes
are commonly considered (Wei and Kern, 1989). Whereas in
the machine-cell grouping, necessary machines involving
each part family are assigned to the manufacturing cells (Chu
and Hayya, 1991; Kusiak and Cho, 1992; Mahdavi ef al.,
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2010a). This kind of problem is known as NP-complete (Wang,
1998; Wang, 2003; Fallahalipour et al., 2011; Arkat et al.,
2012; Nouri and Hong, 2013).

The cellular layout in CMS is one of the key elements
of lean production (Russell and Taylor, 2006). It is more
advantageous comparing to process and product layouts.
In process layout, moving and carrying in-process parts from
one machine center to another are needed. So, waste of trans-
porting parts is high especially for large batch sizes. Whereas,
fast changes in product life cycle and the development of
production system require layouts re—arrangement in product
layout. Conversely, necessary machines of each product
group are already set in the cell of cellular layout. So, setup
and rearrangement of machines during the production period
are needless. All products can be processed within their own
manufacturing cell. Moreover, new products can be assigned
to the cell which the necessary machines are already orga-
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nized. The flexibility of the cellular layout is proper for the
modern manufacturing system.

Various methods for solving the manufacturing cell
formation have been proposed (Papaioannou and Wilson,
2010). Basically, rearranging the rows and columns of the
incidence matrix is the fundamental idea for solving this
problem. The well-known matrix rearrangement methods are
the bound energy (BE) algorithm and rank order cluster (ROC)
algorithm (King, 1980; Chandrasekharan and Rajagopalan,
1987; Wei and Kern, 1989; Boctor, 1991; Song and Hitomi,
1992). However, solving the manufacturing cell formation
problem using these methods is complicated and difficult,
particularly in a real-world large-scale problem because a
decision maker (DM) has to face the vast incidence matrix.
Moreover, the number of cells is a result obtained by this
kind of method so it cannot be controlled (Kusiak, 1985).

A more efficient method introduced by Kusiak (1987)
called p-median based on a similarity between any two parts
is a well-known mathematical method (Boctor, 1991; Song
and Hitomi, 1992; Wang and Roze, 1994; Wang, 1998). This
method can get the cell formation solution satisfyingly.
Nevertheless, the p-median method requires two solving
processes, which are part-family and machine-cell. Numerous
mathematical programming approaches have also been
proposed. The optimal solution can be guaranteed (Tsai and
Lee, 2006; Mahdavi et al., 2007; Paydar and Sahebjamnia,
2009; Mahdavi et al., 2010b; Elbenani and Ferland, 2012).

Compromised metaheuristic methods also have been
presented to solve this kind of problem (Carrie, 1973; Boctor,
1991; Adenso-Diaz et al., 2001; Adenso-Diaz et al., 2005;
Dimopoulos, 2006; Fallahalipour ef al., 2011; Xing ef al.,
2009; Tavakkoli-Moghaddam ef al., 2011; Chattopadhyay et
al., 2012; Tavakkoli-Moghaddam ef al., 2012; Nouri and
Hong, 2013). Many research papers have applied the notable
metaheuristic algorithms such as genetic algorithm (GA)
(Onwubolu and Mutingi, 2001; Wu et al., 2006; Mahdavi et
al.,2009; Arkat et al., 2011), Simulated Annealing (SA) (Safaei
et al., 2008; Tavakkoli-Moghaddam et al., 2008; Wu et al.,
2008; Fallahalipour et al., 2011; Dalfard, 2013) and evolution-
ary algorithm (EA) (Dimopoulos and Zalzala, 2000; Goncalves
and Resende, 2004). The advantage of these metaheuristic
approaches is that acceptable solutions can be easily obtained
by avoiding the complexity in solving such multivariate data
of the manufacturing cell formation problem. However, the
efficient solutions of these metaheuristic methods are not
always guaranteed. So, more effective methods for solving
the manufacturing cell formation problem are still needed
(Nunkaew and Phruksaphanrat, 2011a, 2011b).

Normally, in the conventional methods, each machine
has been assigned to only one machine cell (Mahdavi et al.,
2007; Paydar and Sahebjamnia, 2009; Elbenani and Ferland,
2012). So, parts may need to be operated by the machine
outside the cell. This interaction between two machine cells
is regularly unavoidable in the solutions of manufacturing
cell formation. This interaction can be shown by “exceptional
elements” in the incidence matrix (Boctor, 1991; Wang and
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Roze, 1997). These unwanted elements may result in an
increase of material handling, scheduling complication, cost
of moving parts between cells and decreasing of operating
quality. To solve such problem, assigning duplicated machines
is needed to eliminate transferring parts between cells with
the additional cost of machine setup. Assigning the dupli-
cated machines has been suggested in many researches
(Seifoddini and Wolfe, 1986; Wang and Roze, 1997; Nunkaew
and Phruksaphanrat, 2012, 2013a). However, in the duplica-
tion process outlined in most of the research work and manu-
facturing systems (assignment of the duplicated machines to
the appropriate machine cells) the DM has to reassign the
duplicated machines after the manufacturing cell formation
process (Seifoddini and Wolfe, 1986; Seifoddini, 1989; Wu,
1998; Botolini et al., 2011). This assignment creates an in-
convenience, especially for huge practical cell formation
problems. Besides, the consideration of machine setup cost
should be done concurrently in the decision making of the
DM.

Therefore, the lexicographic fuzzy multi—objective
optimization (LFMO) model for solving the manufacturing
cell formation with the assignment of duplicated machine and
the consideration of machine setup cost is proposed in this
paper based on perfect grouping concept. Consideration of
exceptional elements and void elements are included in the
proposed mathematical model. Moreover, the financial con-
sideration of machine setup cost is also included.

2. Manufacturing Cell Formation and Machine Duplication

The manufacturing cell formation is concerned with
the classification of parts into part families and grouping
machines into machine cells in CMS as shown in Figure 1. In
part family design, parts can be formed based on similar geo-
metries, functions, materials or processes. Meanwhile, in
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Figure 1. Cellular manufacturing system with two part families and
two machine cells.
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Figure 2. Part-machine incidence matrix of five parts and four
machines.

machine cell design, dissimilar machines are brought together
and then dedicated to the involved part family (Offodile, 1992;
Wang, 1998; Wang, 2003; Papaioannou and Wilson, 2010;
Nouri and Hong, 2013). Consequently, the manufacturing cell
formation is seemly to decompose a manufacturing system
into sub-systems (Kusiak, 1987).

To show the relationship between parts and machines,
the part-machine incidence matrix, { @;; } is defined. The part-
machine incidence matrix is a set in which columns and rows
represent parts and machines, respectively. The zero-one
matrix is considered that the (i,/)th element of { a@;; } is 1 ifthe
Jj-th part needs to operate on the i-th machine; otherwise it
is 0. The result of the manufacturing cell formation is obtained
as a diagonal block (Boctor, 1991; Kusiak and Cho, 1992). As
shown in Figure 2(a), the part-machine incidence matrix of
five parts and four machines is created. For example, part 1
has to operate on machine number 2 and 4. After rearranging
the columns and rows, the result of part-machine cell forma-
tion is shown in Figure 2(b).

Practically, not all parts within the part family can con-
stantly be processed only within a single machine cell. So,
interaction between two machine cells is always unavoidable.
For example, the element 45 in Figure 2(b) is an inter-cell
movement as mentioned above. One solution to eliminate this
element is that machine 4 should be duplicated and assigned
to both cells for increasing production performance because
part 5 does not have to be processed outside the belonging
cell anymore. Such assignment of the duplicated machine
can eliminate transferred parts between cells as shown in
Figure 3. However, setup cost of the duplicated machine is
needed.

In a machine duplication process of existing methods,
the DM has to assign the duplicated machines by him/herself.
For example, from the method introduced by Seifoddini and
Wolfe (1986), it is suggested that the DM starts the duplica-
tion process to the machine that creates the largest number
of exceptional elements or the interaction between cells and
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continues the duplication process to the remaining bottle-
neck machines. By this method, the DM has to decide how
many duplicated machines should be added, which is compli-
cated. At the same time, setup cost of machines has to be
considered after the duplication process. So, the DM should
seriously pay attention when he or she follows this approach.

3. Fuzzy Multi-objective Optimization Model based on
Perfect Grouping Concept

In this section, we propose a fuzzy multi—objective
optimization model for manufacturing cell formation in CMS.
The following notations are used in the proposed model.
Index sets:

i index of machine, foralli=1, 2, ...,m.

j index of part, forallj=1,2,...,p

k index of cell, forallk=1,2, ..., n.

g index of objective or goal, forallg=1, 2, ...,q.
Decision variables:

X is 1 if machine i is assigned to cell k; otherwise
Xik is 0.

Vjk 1s 1 if part j is assigned to family k; otherwise
yjk is 0.

Parameters:

ajj is 1 if the j-th part needs to operate on the i-th
machine; otherwise a;; is 0.

U is the total number of 1s contained in the incidence
matrix, { @ } calculatedas U = 377 37 a; .

my; is the maximum number of allowed machines in
each cell k.

mé and myg are the minimum and maximum limits for
the number of duplicated machines.

T, is the maximum acceptable value for the total
setup cost.

S; is the setup cost of duplicated machine i.
3.1 The concept of perfect grouping

In the concept of perfect grouping, all 1s occupy in the
diagonal sub-matrices, and all Os are arranged in the off-
diagonal sub-matrices (Chandrasekharan and Rajagopalan,
1986a; Chandrasekharan and Rajagopalan, 1986b; Chandra-
sekharan and Rajagopalan, 1987; Nunkaew and Phruksa-
phanrat, 2013b) as shown in Figure 4. This kind of matrix is
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Figure 3. Machine duplication.
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Figure 4. Ideal-diagonal matrix.

called an ideal-diagonal matrix. However, the solution of the
cell formation depends on the primary input data. Such an
ideal-diagonal matrix may not always be obtained for a given
data set or in practical real-world manufacturing cell forma-
tion problems.

There are many existing methods to solve a manu-
facturing cell formation. Some of those methods emphasize
the mutuality in a group of parts or machines (Kusiak, 1987;
Singh, 1993; Wang and Roze, 1997; Wang, 2003). Some
methods attempt to create the block diagonalization of
matrices (King, 1980; Chandrasekharan and Rajagopalan,
1987; Boctor, 1991). Moreover, mathematical and metaheuristic
methods have also been proposed (Goncalves and Resende,
2004; Mahdavi et al., 2007; Mahdavi et al., 2009; Safaei et
al., 2008; Wu et al., 2008; Paydar and Sahebjamnia, 2009;
Mahdavi et al., 2010b; Arkat et al., 2011; Fallahalipour ef al.,
2011, Dalfard, 2013). Nevertheless, obtaining solutions from
existing methods are still inefficient when there are many
parts and machines to be considered.

In this paper, two aspects of the perfect grouping
concept are concerned. Firstly, the optimal solutions of manu-
facturing cell formation should not have any exceptional
elements. Secondly, void elements are also not preferred.
These two types of elements are the important performance
measures of the perfect grouping (Wang, 2003; Nunkaew
and Phruksaphanrat, 2013b). Exceptional and void elements
are described in detail in the following subsections.

3.1.1 Exceptional elements

The exceptional elements (EEs) are often contained in
the manufacturing cell formation (Boctor, 1991; Wang and
Roze, 1997). They indicate discrepancies in the sub-matrices.
When an EE occurs, it means that the considered part
operates on any machines outside the cell. So, the degree of
interaction between cells can be evaluated by the number of
EEs. As shown in Figure 2(b), the EE is represented by the
element ¢,5 (the element of part 5 that needs to operate on
machine 4). This element does not belong to the same
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machine cell of the part 5’s family. This kind of interaction
between cells makes disadvantages in CMS. The DM has to
pay more attention to operations between cells. So, the
number of EEs must be minimized. The number of EEs can be
quantitatively calculated by Equation 1.

EE=U _Zlnc:lz;nzl Zf:lxiky/‘kaij : @)
Generally, conventional methods try to reduce the

number of exceptional elements. However, void elements are
ignored.

3.1.2 Void elements

The void elements (VEs) are used to evaluate the
compactness of a part-machine cell design within block sub-
matrices (Nunkaew and Phruksaphanrat, 2011b). The VE can
be observed if part j does not require machine #, which is the
machine in the machine cell of the part j’s family. This pheno-
menon indicates that the ineffective solutions occur in the
sub-matrices because there is a part that does not use all
machines within the machine cell as shown in Figure 2(b).
The element @35 (the element of part 5 and machine 3) is the
VE because part 5 does not require machine 3 that is one of
the machines within the machine cell for part 5’s family. We
can clearly see that part-machine cell will be better utilized
if part 5 requires machine 3, and it is assigned to that cell
because that sub-matrix would be considered to be a perfect
grouping. The number of VEs can be calculated by

VE = ZZ:IZZI 5:1(1 =y )Xik Y ji - @
3.2 Objective functions

This paper proposes the new method for solving the
manufacturing cell formation based on the perfect grouping
concept. Two elements of the perfect grouping, EEs and VEs,
are considered in the proposed model. These elements should
not exist in the resulting matrix. So, two objective functions
can be explained in detail below.

Minimizing the number of EEs (first priority objective
function)

min f (i, y ) =U _Zzzl Zil Zle Xik Yk Qi . (3)

The aim of this objective function in the proposed
model is to find the solutions of manufacturing cell formation
that has as few EEs as possible. By the idea of a perfect
grouping, most of the elements should be assigned to sub-
matrices which means that fewer EEs would occur.

Minimizing the number of VEs (second priority objective
function)

min f5 (i, ¥ ) = 2oy iy 25 A= ag)xay e @)

Although manufacturing cells in the CMS have
several advantages, lower machine and labor utilization are
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common disadvantages (Singh, 1993). So, reducing the
number of VEs should also be considered in the manufactur-
ing cell formation to increase utilization of cells. The second
objective function is considered to find the solutions of
manufacturing cell formation that has as few VEs as possible.
Most of Os are not assigned to the sub-matrices, which mean
that fewer VEs occur.

3.3 Linearization of the objective functions

Obviously, the term Xj; ) jx (product of two binary
variables) in Equations 3 and 4 are quadratic functions. So the
objective functions are nonlinear functions that may cause a
problem in solving efficiency especially in a large scale cell
formation problem. To transform this nonlinear term into a
linear binary programming, new additional variables wy; are
used to replace a product of Xy i . Let Wi =Xy yjx and
Wijk = 0 or 1. The following two linear constraints are added
to the model (Chen et al., 2010);

Xie + Y Swpe +1, Vi, V), Vk, ®)

Xik +y]k 2 2M]k , Vi, v] >, Vk - (6)
The new objective functions become

min f; (wye ) =U =20 200 20 wieay )

and

min f5 (Wi ) = 2y 20 25 (= @i ) wige . ®)
3.4 Lexicographic fuzzy goal programming

Generally, in multi-objective problem, several conflict-
ing objectives are considered. Such kind of the problem is
called multiple objective decision making (MODM) problem.
Methods to solve this problem are fuzzy linear programming
(Liand Lai, 2000; El-Wahed, 2001), compromise programming
(Zeleny, 1982; Romero, 1990), interactive approaches (Zeleny,
1982), etc. Furthermore, one of the most popular methods to
solve MODM problems is goal programming (GP) (Charnes
and Cooper, 1965; Zeleny, 1982; Romero, 1990).

However, in many MODM problems, certain goals are
much more important than others. This means that the DM
cannot simultaneously consider the attainment of all goals.
Differentiating goals into different levels of importance, in
which a higher level goal must first be satisfied before lower
level goals are considered, called pre-emptive or lexico-
graphic ordering. Fuzzy goal programming with a priority
structure for ordering goals is called lexicographic fuzzy goal
programming (LFGP) (Hannan, 1981; Liand Hwang, 1994).
The LFGP model is defined as follows:

lex max =[p1fi(A), p2.f2(A)sees prfr (A ©O)

subject to
Ae S u(fe), Vg,

de > 2y, Vg,

(10)
(11)
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Aq €[01], Vg. (12)
where lg is a satisfactory level for goal g, Z:; is an accept-
able satisfactory level for goal g, and u(f,) is the member-
ship function for goal g.

In LFGP, there are T'priority levels (where each priority
may include K, goals for ¢ = 1, 2,..., T) with pre-emptive
weights p, >>> p,,1,and f;(A) is the satisfactory function
of priority ¢. The problem is then partitioned into 7' sub-
problems or T fuzzy goal programming. For simplicity, the
goals are ranked according to the following rule: if 7 < s,
then goal set G-(x) has higher priority than goal set G, (x)
(Li and Hwang, 1994; Nunkaew and Phruksaphanrat, 2010;
2011b).

3.5 Membership function

A fuzzy set (Zadeh, 1965; Zimmermann, 1978; 1991)
is dedicated to each goal of the objective functions in the
proposed model. Defining the specific target (7 ) and accept-
able deviation (A ¢ ) of each goal g in setting the membership
function is based on the positive-ideal solution (PIS) and
negative-ideal solution (NIS) (Yoon and Hwang, 1995; Chen,
2000; Abo-Sinna et al., 2008). The PIS is the best possible
solution ( 4”) in which each objective function is optimized,
whereas the NIS is the worst feasible value (4~) for each
objective function (Yoon and Hwang, 1995). By the PIS and
NIS, all possible solutions can be covered in the membership
function.

In the proposed model, the first goal is to reduce the
number of EEs to the most preferred value. Similarly, the
second goal is to reduce the number of VEs to the most
preferred value. From the DM’s viewpoint, the PIS is used to
set the most preferred value with a satisfactory degree of 1.
In the same way, a satisfactory degree of 0 is assigned to the
NIS. Acceptable deviation from the goal can be calculated as
the difference between the PIS and NIS (A, = ‘PIS - NIS‘ ).
Assume that a linear membership function under the at most
fuzzy relation is used for each goal g (Phruksaphanrat and
Ohsato, 2003; Phruksaphanrat and Ohsato, 2004). Then, the
membership function of the g-th goal based on the DM’s
preference is shown in Figure 5. Mathematical representation
of the membership function is given in Equation 13.

Membership level, 12(f;)
14

Figure 5. Linear membership function under the at most condition.
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1, if f, <z,
- Je—Tg ifr. < f < A
/J(fg)_ A , 1 Tg—fg—7g+ &> (13)
g
0, if f, 27, +A,.

3.6 Proposed efficient fuzzy multi—objective model

In the proposed method, the LFGP model is
constructed. The two fuzzy goals about EEs and VEs are
considered. The satisfaction level (A4) of each goal g (g =
1, 2) needs to be satisfied consecutively. For applying the
proposed model to solve the part-machine cell formation
problem, the membership function (u(f,) ), the aspiration
level (7 ), the acceptable satisfactory level (l;) and the
acceptable deviation (A, ) for each goal have to be set. To
enhance the performance of the manufacturing cell, dupli-
cated machines are usually assigned to the cell. This is the
way to reduce interaction between cells. However, budget of
machine setup cost should be in concern. This issue takes
into account during the cell formation process. In this paper,
the financial constraint about machine setup cost is added in
the proposed formulation model to control the setup cost of
machine duplication. Then, the proposed linearized LFMO
model for the manufacturing cell formation problem with the
assignment of duplicated machine and the consideration of
machine setup cost is derived as follows,

lex max=[/;,4,], (14)
subject to constraints (5) and (6),
Ag Sl_ fg_Tg avga (15)
Ag
dg >N, Vg (16)
mh < Do Xik Smy, Vi (17)
2 (s xa) ST (18)
Y v =1.Y, (19)
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D xu <mit, k. 20)
X =1, Yk, @1)
2y =1, vk, 22)
Xig» Vji» Wik =0or L, Vi, Vj, vk, (23)
OSEZSI,Vg. (4)

Equation 14 is the objective function of the proposed
model for lexicographically maximizing the satisfaction level
of each fuzzy goal. Equations 15 and 16 are the satisfaction
level of each fuzzy goal according to Equations 7 and 8. The
limit for the number of duplicated machines is shown in
Equation 17. The total setup cost of machine duplication is
limited to 7; as shown in Equation 18. Equation 19 is added
to ensure that each part will be assigned to only one cell.
Equation 20 controls the number of machines in each cell £
which is limited to m . Equations 21 and 22 are non-empty
cell constraints. The binary decision variables are expressed
in Equation 23. The acceptable satisfaction level of each goal
is limited to values between 0 and 1 as shown in Equation 24.
The effectiveness of the proposed linearized LFMO model
for the manufacturing cell formation problem with the assign-
ment of duplicated machine and the consideration of machine
setup cost is illustrated in the following section. The number
of variables and constraints in the proposed linearized model
are presented in Table 1 and 2, respectively.

Table 1. Number of variables in the proposed linearized
model.
Variable Count
X, mxn
Vik pxn
W mxpxn

Sum= (mxn)+ (pxn)+(mxpxn)

Table 2. Number of constraints in the proposed linearized model.

Constraint Count Constraint Count Constraint Count
o) MmXpxn (17) m 21 n
©6) MmXpxn (18) 1 (22) n
(15) q (19) p (23) (mxn)+(pxn)
+(mx pxn)
(16) q (20) n @4 q

Sum=3(mx p xn)+ (mxn)+(pxn)+3(ntqg)+mtl
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Figure 6. Incidence matrix and setup cost of machine i (s,).

4. Numerical Example and Discussions

The 37-operations manufacturing cell formation
problem, involving 12 parts and 8 machines has been selected
as an example to demonstrate the efficiency of the proposed
model. The incidence matrix and machine setup costs are
shown in Figure 6. The part-machine cells can be formed us-
ing the p-median model, which is a similarity based methods
or other traditional cell formation methods (Kusiak, 1987;
Boctor, 1991; Wang and Roze, 1997). Nevertheless, the result
obtained from these conventional methods solves only part
families and machine cell problems but the assignment of
duplicated machines (to eliminate the exceptional elements or
interaction between cells) and also the total setup cost of
selected machines are not considered.

Conversely, the proposed linearized LFMO model can
solve both forming and duplicating processes at the same
time. Moreover, the machine setup cost is also controlled. For
this example, three cases of different minimum and maximum
number of duplicated machine for each type of machine
(m} ,m%) are set. In applying the proposed model for this
example, the DM firstly needs to find the PIS and NIS of each
objective function for setting the aspiration level or goal and
defining its membership function. Let P,, N, and P, , N, re-
presents the PIS and NIS of objective 1 and objective 2
accordingly. These parameters of three cases are shown in
Table 3.

Moreover, suppose the DM prefers the acceptable
sa}}isfaction levels of the first goal and the second goal (the
AL and A5) of each case as shown in Table 4 under the
following constraints. The number of manufacturing cells is
three (7 =3). There are not more than six machines in each
cell (m} = 6) and not more than $32,000 is allowed for total
machine setup cost (7" =32,000). So, the proposed linear-
ized LFMO model for this example can be expressed as
follows,

lex max =[4;,4,],

subject to
x,-k+yjk S\'V,‘jk'*‘l, i= 1,2, ...,8,j: 1,2, ey 12,k: 1,2,3,

Xie +yje 22wy, i=1,2,...,8,j=1,2,...,12,k=1,2,3,

; <1_([37—221 S0 X w1 J
< 2

2 <1 _([Zzﬂ Z§=1 21,2:1 (A=ay)wi]-72 ]
< A,

L=

a2 A5

mhy <30 xp <mb,i=1,2,...,8,

> (53 xx) <32,000,

S vk =lj=12,..,12,

> X <6,k=1,2,3,

> e >1,k=1,2,3,

Y v 21k=1,2,3,
Xk yiowg =0or1,i=1,2, .., 8,j=1,2, .., 12,k=1,2,3,
0< g <1,g=1,2.

Advantages of the proposed linearized LFMO model
are not only the easiness in cell formation with the consider-
ation of machine setup cost, but also the flexibility to find a
satisfying solution. In the proposed model, there are three
related important elements, which are a number of EEs, VEs
and selected machines. Change in each element always
affects the others. Illustratively, when the number of EEs is
minimized, the number of VEs is increased in order to assign

Table 3. Parameters of three cases.

Case No. mé , My P ,N, P,,N, T, , T,
| 1,1 0,37 3,46 0,3
I 1,2 0,37 2,52 0,2
il 1,3 0,37 2,52 0,2
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the EEs to the appropriate cell. Moreover, the duplicated
machines are also added to support this activity. So, the setup
cost of the machines also increased. Conversely, when EEs
are acceptable and VEs is minimized, the number of selected
machines can be reduced and only the necessary machines
are assigned to the cell to maintain the important operations.
Then, the setup cost of the machine can be decreased. By
these phenomena, there are many alternative solutions in
formulating the problem. Using the proposed model to solve
this example, the DM can adjust the satisfactory values of
the 2 and 4, to find the satisfied alternative solutions as
detailed shown in Table 4. In case I, both of the minimum and
maximum numbers of machine duplication for each type of
machine are set to 1 (mé =1, mg =1). It means that only
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single unit of each type of machine can be used. So, this
scenario refers to the normal cell formation model, which an
assignment of duplicated machine is not done. Then, a large
number of EEs occur in this kind of solution.

To enhance the performance of manufacturing cells in
case 11, the mé and m} are set to 1 and 2, respectively. my
equals to 2 means that duplicated machines are allowed.
So, the number of EEs can be reduced when the satisfactory
values of the ﬂj is set between 0.8 and 0.9. However, when the
satisfactory values of the is set lower than 0.7 (which means
a large number of EEs are accepted), the obtained solution
of cell formation is the same as the one which achieved from
case 1. Moreover, the total setup cost is also low because the
assignment of duplicated machines is unnecessary.

Table 4. Different level of the 21* and ﬂ; , satisfied alternative solutions of three cases.

Case No. EEs, VEs

A’I*’AZ* }\‘l’}\?

Number of
selected machines,

Total machine
setup cost ($)

{Part family}/
(Machine cell)

[duplicated machine]

I 1.0,0.7
0.9,0.7

1 1
0.91,0.77

0.8,0.7 0.85,0.95

0.7,0.7 0.85,0.95

!
8,[0]

8,[0]

8,[0]

| |
21,405 {34,5,6,9,10,11}/(A,B,C.D,F)
{1,2,8,}/(H)
{7,12}/(E,G)
{3,4,6,10/(A,C,D,F)
{1,2,5,89,11}/(B,H)
{7,12}/(E,G)
{3,4,6,10/(A,C,D,F)
{1,2,5,89,11}/(B,H)
{7,12}/(E,G)

21,405

21,405

I 1.0,0.7
0.9,0.7

[ [
o o

0.92,0.88 11

0.8,0.7 0.81,0.92

0.7,0.7 0.76,0.96

1
3]

9.[1]

8,[0]

! !

29,055 {3,4,6,10}/(A,C,D,F)
{1,2,5,8,9,11}/(B,C,H)
{7,12}/(B.E,EG)
{3,4,6,10}/(A,D,F)
{1,2,5,8,9,11}/(B,C,H)
{7,12}/(B,E,G)
{3,4,6,10}/(A,C,D,F)
{1,2,5,8,9,11}/(B,H)
{7,12}/(E,G)

23,405

21,405

1.0,0.7 1.0,0.82 0,11

09,0.7 0.92,0.88 3,8

0.8,0.7 0.84,0.92 6,6

0.7,0.7 0.76,0.96 9,4

12,[4]

11,[3]

9.[1]

8,[0]

31,055 {3,4,5,6,10}/(A,B,C,D,F)
{1,2,89,11}/(B,C,H)
{7,12}/(B.E,EG)
{3,4,6,10}/(A,C,D,F)
{1,2,5,8,9,11}/(B,C,H)
{7,12}/(B.E,EG)
{3,4,6,10}/(A,C,D,F)
{1,2,5,9,11}/(B,C,H)
{7.8,12}/(E,G)
{3,4,6,10}/(A,C,D,F)
{1,2,5,8,9,11}/(B,H)
{7,12}/(E,G)

29,055

24,905

21,405

! There is no feasible solution under the DM requirements
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In case III, the mf; and m}; are respectively set to 1
and 3. All of EEs can be eliminated when the ﬂ: issetat 1. The
necessary machines are duplicated and assigned to the cells
meanwhile the total setup cost is still not over the budget.
This solution is the one which the interaction between cells
does not occur.

All 3 cases are solved using Premium Solver Platform
V10.5.0.0 on a PC with Intel® Core™ 2 Duo CPU and 4.00
GB RAM. The proposed linearized model can solve these
problems within the maximum computational time of 66
seconds. Whereas using non-linearized model (Equation 14
with constraints 15-24 according to Equation 3 and 4), the
maximum computational time is 221 seconds. These results
clearly show that the proposed linearized model is more
capable to find the efficient solutions for the large-scale
problems within a reasonable computational time.

5. Conclusions

This paper proposes a new lexicographic fuzzy multi—
objective optimization model for a manufacturing cell forma-
tion problem with the consideration of machine duplication
and machine setup cost. Conventionally, matrix rearrangement
methods, mathematical programming methods and heuristic
methods have been proposed to solve the manufacturing cell
formation problem. However, the DM has to reconsider the
duplicated machines for enhancing a cell performance and
reducing an interaction between cells by him/herself. This
way is complicated especially for huge incidence matrix. So,
the efficient solution cannot be guaranteed. Besides, the setup
cost of machinery is not considered. Based on the perfect
grouping concept, two crucial performance measures, EEs
and VEs, are applied to the proposed lexicographic fuzzy
optimization model. The proposed model is also enhanced by
converting the original quadratic objective functions to the
linear objective functions. So the proposed linearized model
is now capable to solve large-scale cell formation problems.
Moreover, financial constraint is also integrated into the
proposed model to control the setup cost of machines. So, not
only assignment of part families and machine cells can be
done but also the decision of the appropriate machine dupli-
cation and the consideration of machine setup cost are
integrated simultaneously. Moreover, this method can
generate preferred alternative solutions for the DM by adjust-
ment of an acceptable satisfactory level. These benefits make
the proposed model outperforms the existing methods. It can
be effectively applied to the real-world manufacturing cell
formation problem in many industries such as electronic
manufacturing service (EMS), original equipment manu-
facturer (OEM), food manufacturing, etc.
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