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Abstract

A measurement result often dictates an interval containing the correct value. Interval data is also created by round-
off, truncation, and binning. We focus on such common interval uncertainty in data. Inaccuracy in model inputs is typically
ignored on model fitting. We provide a practical approach for regression with inaccurate data: the mathematics is easy, and
the linear programming formulations simple to use even in a spreadsheet. This self-contained elementary presentation
introduces interval linear systems and requires only basic knowledge of algebra. Feature selection is automatic; but can be
controlled to find only a few most relevant inputs; and joint feature selection is enabled for multiple modeled outputs. With
more features than cases, a novel connection to compressed sensing emerges: robustness against interval errors-in-variables
implies model parsimony, and the input inaccuracies determine the regularization term. A small numerical example highlights
counterintuitive results and a dramatic difference to total least squares.

Keywords: compressed sensing, joint sparsity, matrix uncertainty, interval linear systems, robust regression

1.Introduction

It is common to use measured and therefore inaccurate
predictive features while identifying (fitting the parameters
of) a regression model and it is also common to ignore their
inaccuracy. Ordinary regression analysis assumes accurate
inputs (the independent variables) and assigns all inaccuracy
to the output (the dependent variable). For noisy inputs,
there is total least squares (TLS), but recent significant
developments by Wiesel et al. (2008) demonstrate that the
statistical tools and techniques for errors-in-variables are not
yet perfected.

One inherent flaw of TLS is particularly easy to see.
A perfect fit is possible with a full rank square system, or
with an underdetermined system having a lot of candidate
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predictors, and this fit is optimal for the criterion minimized.
This means that the inaccuracies of predictors are completely
ignored, however large they might be. But a human modeler
will avoid giving much weight to a comparatively inaccurate
predictive feature, because in production use of the model
that inaccuracy will be passed on to the predicted output.
We desire and construct an alternative method that, in this
respect, agrees with the modeler.

Also, the TLS approach assumes the inaccuracies are
Gaussian normal, so that maximum likelihood is achieved
by minimizing the sum of squared errors in both inputs and
output, scaled to equal variances.

However, in technical applications this Gaussian
assumption will often be violated: the measurement errors
will never be very large, not even with a small but non—zero
probability. For example, a weighing scale might be accurate
within £5% (proportional inaccuracy) or within 0.1 kg
(uniform inaccuracy). A realistic more complicated scenario
is that the accuracy will be 0.1 kg for weights up to 50 kg,
and 0.2 kg for higher weights up to the maximum of range.
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While such characterizations are not a prominent part of
traditional statistics, they are quite common in measurement
technology. Engineering design benefits from performance
guarantees, and pursuing them is reasonable in deterministic
macroscopic systems: measurement devices come with
guarantees enforced in quality control, and their usage
protocols include regular calibration.

The above deterministic measurements give finite
intervals that contain the correct value, and we have no
probabilistic assumptions about the distribution of errors.
It is perfectly natural for a measurement to have a bias, so that
a 5% accurate scale may consistently show 3% too high
values. In the case of round-off to nearest integer, the error
can be anything from -0.5 to +0.5, and other operations that
generate interval inaccuracy include truncation, binning, and
quantization of any sort. In practice these are sometimes
combined, so that the reading from a 5% accurate scale is
further rounded, for example, to two digits on recording it.
In all these cases, an interval containing the true value is
still easily computable from the recorded value.

Since interval inaccuracy is obviously very common,
we choose to pursue it, and only this one in this paper. We
will provide a simple deterministic approach in using inaccu-
rate predictive features, such that guarantees robustness
against interval uncertainty of the data; the model perfor-
mance suffers from the uncertainty as little as possible. The
above types of measurement inaccuracy will actually be
easily dealt with.

Various number counts can be fully accurate integer
values, and are simply represented by intervals of zero width:
the lower and upper bounds coincide. Therefore accurate
values need no separate treatment in the context of interval
inaccuracy.

The predictors constructed are linear models, so we
perform linear regression, although not by least squares.
Since we do not know where each correct value is in its
interval, we require that for ANY value in each interval the
predictor gives closely similar output to the targeted values.
This means minimizing the worst case output error, for all
values allowed by the interval uncertainties.

In the language of robust optimization, the intervals
for model inputs define an uncertainty set, specifically of
box type in the terminology used by Ben-Tal ef al. (2009) in
their comprehensive book. Robust optimization could be
used to solve this problem, and the book referred to has in its
exercises some results on box-type (i.e., interval) uncertainty.
However, these results are not accessible to many practical
modelers, who are not familiar with conic duality and convex
optimization, and it is delightful that a much less demanding
pedestrian approach works very well and is transparent.

The work of El Ghaoui and Lebret (1997) on robust
modeling requires even more advanced background in
mathematics, on linear fractional matrix transforms, and is
only accessible to specialists. The tools needed for second
order cone programming or semi-definite programming are
not widely accessible either, but the theory leads to these
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optimization problems.

The book by Tarantola (2005) appears to not give
ready-to-use recipes, but deals in a general setting with topics
related to also our work. Its flavor is more philosophical and
conceptual than for a practitioner who needs a simple solu-
tion to an apparently simple problem.

The impression from prior literature then is that while
robust modeling that acknowledges data inaccuracy has been
practiced, it has been loaded with heavy theory that keeps
it inaccessible to all but select specialists, who must invest
heavily in studying the relevant topics. Our contention is
that simplified approaches and techniques are needed for the
non-specialists who have to fit models to inaccurate data,
so that the most frequent input inaccuracy types become
manageable to a typical student of science or engineering.
This is exactly what the current work provides.

We will emphasize sparsity, meaning that only a few
of the available candidate features are used in the eventual
model. In essence, we perform “feature selection” to achieve
“model parsimony”. Our results on sparsity are not implied
by the general theory of robust optimization, but are an
original observation that links this work to the general field
of compressed sensing.

Prior published work such as Xu et al. (2009) or
Rosenbaum and Tsybakov (2008), that relate to both sparsity
and inaccurate inputs, have restrictive assumptions made
about the inaccuracies in the predictive features, or constrain
the parameters solved for. In contrast, the current work
allows completely arbitrary finite intervals for each and every
measured value, including also accurate values with the
intervals shrunk to points, and the model parameters are not
constrained. However, linear inequality constraints can be
added at will, for example if a model parameter is known to
be positive.

In multiple regression statisticians have practiced
feature selection, to include in the final model only those
predictive input features that are useful (statistically signifi-
cant) and to exclude such candidate features that appear
irrelevant to the prediction task at hand. Forward selection
adds in sequence the most useful new feature to the model,
while backward elimination starts by including all of them
and shaves off the least relevant ones step by step. More
complicated dances that take steps both forward and back-
ward can be found in the literature; the reason has been the
desire to improve stepwise selection methods that are known
to work less than perfectly. However, all these schemes face
an inherent problem and will remain imperfect. They are
greedy approaches trying to deal with a combinatorial
problem: selecting the best predictive subset of features.
None can guarantee that the best set is found. Furthermore,
even with a small number of available features, the problem
of how many predictive features to keep is not simple when
based on assumptions commonly made in statistics, as
illustrated by Akaike or Bayes information criteria, usually
referred to simply as AIC and BIC. These criteria help
compare alternative models identified from the same data,
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but the scores computed for a single individual model are
neither informative nor interpretable. The interested reader
can pursue these topics in great detail with the book by
Hastie et al. (2009), where the approach assumes Gaussian
errors.

In contrast, our approach selects the most robust
feature set, and provides a concrete diagnostic of the model
fit: the tolerance parameter. Too large tolerance compared to
the targeted output values indicates failure of the modeling
with current data: there is no such robust model that would,
within the allowed input uncertainty, always give an accept-
ably good fit (i.e., not too large tolerance) with the targeted
output values. Having such a clear diagnostic, not requiring
artistic interpretation based on experience, is of high value
to practical modelers. There will always be cases worth a try
despite only a small amount of inaccurate data, and success
and failure must be distinguished in such cases.

Also in contrast to statistical feature selection, the
formulated linear programs are not solved by a greedy
approximation, but by a reliable technology that finds the
best solution; and this solution encompasses feature selec-
tion. The solution is best in the sense of minimizing worst
case output error, within the uncertainty intervals of given
data. We note though that examples with multiple (i.e., non-
unique) optimal solutions can be constructed, though this
case occurs rarely in linear programming (LP). A duplicate
column in the design matrix A is an example that can easily
be created accidentally, but this does not prevent LP from
finding one of the solutions. However, it will make the typical
formula for least squares unusable since A"A is not inverti-
ble. As for that “reliable technology”, we will simply assume
the use of an “LP solver”, and that it provides an optimal
solution that could be found with the Simplex method, even
if actually an interior point method may be used by a modern
numerical solver. This LP approach deals handily with an
excess of available features, in other words an underdeter-
mined problem. We will show that the sparsity of solutions
can be controlled with a simple trick, and now we are in the
domain of compressed sensing, finding sparse solutions to
underdetermined linear problems.

We will address the challenging problem of joint
feature selection, also known as the MMV problem (multiple
measurement variables). In this problem, we select one single
set of features that enables predicting several outputs: doing
feature selection separately for each targeted output is not
good enough. This is in the general domain of multi-task
learning where benefits are expected if the outputs are
related, so that the simultaneous learning/modeling tasks
support each other. The approach given is original and quite
different from prior approaches in the literature, to which
some key references are given in the Section Discussion.

Each of the problem domains above, namely inaccu-
racy of predictive features, feature selection, multi-task
learning, and compressed sensing, has its own body of litera-
ture that we will not try to review. However, the references
given cover more than the intersection of these domains.
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We will simply pursue a novel and practically doable algo-
rithmic approach that, within its limitations, does handle all
of these problems in any of their combinations. The limita-
tions will be elaborated in the Section Discussion, where our
theoretical results are also briefly compared to recent closely
related publications.

2.Theory

Consider a linear model B = AX where each of the n
rows in the given B and 4 represents a single case. The p
columns of 4 each represent a measured (candidate) predic-
tive feature, while the p rows of unknown X provide weights
(model parameters) that will be identified by fitting the
model, so it approximates the targeted output values in B.
Ordinarily B and X would be column vectors in multiple
linear regression, but in our case there are m columns in
each, making this an MMV problem. Without requiring joint
feature selection, those m columns could each be treated
separately. In statistics A is called the design matrix as it
reveals the experimental design of controlled inputs, while
in compressed sensing it is called the dictionary and its
columns the atoms.

With an accurate numeric design matrix 4 this would
be the common MMV problem, but we allow inaccuracy in
A as follows. Each element in the interval matrix [4] is a
finite interval, and the lower bounds are collected in matrix
A, while the upper bounds define 4, . The inequality
A, < A< A, holds elementwise for any realization
Ade [A] =[4,,.,A4,..] Think of the realization as a possible
combination of true values based on inaccurate measure-
ments.

So brackets around a single symbol can be read as
“interval”, and brackets around two comma-separated
symbols mean “interval from ... to ...”. Our finite intervals
are always closed, and the corresponding inequalities are
not strict but allow also equality to the bound.

We define the center A=(A4,, +A4,,)/2 and the
elementwise nonnegative radius rad(A4) = (4, —4,.,)/2,
and use these to denote an interval matrix also by [4] =
L;I t+rad (A)] to explicitly show the center and radius.

he symbol “+” within the brackets identifies this case of
notation.

Similar notations are used also with vectors, as they
are just skinny matrices: an interval vector can also be speci-
fied by its bounds, or by its center and radius.

So the interval matrix [A4] is actually a set of matrices,
whose elements independently can take values in their
respective allowed ranges. Fixing these values gives a single

representative or realization, an ordinary matrix 4 € [A]

. o< (07 12
As an example, the numbers in matrix A = 5 03

are rounded off, so that the inaccuracy is given by the radius
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0.05 0.5

md(A):( 0.5 0.05

j. The corresponding interval

matrix is [A] = [;lirrad(/l)}, and the 1,1-element of a

representative can be anything from 0.65 to 0.75.

Arithmetic operations with [4] are immediately
defined by recognizing it as a set, and the outcome of an
operation is the set collecting outcomes for all realizations

Ae [A] However, in practice the effect of an interval matrix
on multiplying an accurate numeric vector x is best expressed
in terms of the center and radius of the outcome: [A]x =

[Axirad(A)|x|]. The corresponding upper and lower
bounds can be expressed by using the positive and negative
parts of vector x, and are shown in the linear program formu-
lations later. Note that the absolute value of x is needed in
the resulting radius. This causes the inaccuracies to add up
for the worst case, instead of canceling each other with
different signs.

The conversion to the form used in the LP formula-
tions is basic algebra, using the facts that x =x, —x_ and

X|=x, +Xx_, where the positive part X, has the negative
components of x replaced by zeroes, and the negative part
X_ is the positive part of —x .

It is uncommon to calculate with intervals, as
inequalities are more difficult to handle than ordinary equali-
ties/equations, and an interval is just a combination of two
inequalities. The algebra of computing with intervals is
known as interval analysis, and the book by Moore (1966)
provides an introduction to it. However, we do not need
specific results from it.

While a linear system of equations 4Ax =b of reason-
able size is routinely solved, it is not obvious what is meant
by a solution to the interval equations “[A]x =b”, where
b is the targeted output of our linear model and [4] holds
our inaccurate feature values. The interval vector on left
cannot equal the accurate numeric vector on right unless
x and b are both zeroes. We have to expand also b to an
interval vector.

We choose to require that [A]xg [b], and note
that for scalar intervals [a] c[pB] if, and only if
‘& — [3‘ <rad (/3') —rad(a) . This is easily seen by making a
sketch on the real line, or considering when a smaller circle
in plane fits within a larger one. Our condition for a solution
becomes this component-wise inequality between two
vectors: ‘Ax -b |+ rad(A) |x| <rad (b) B

Once x satisfies this condition, any realization 4 € [A]
gives Ax €[b]. In other words, the identified model para-
meters x will map inaccurately replicated data A alsoto b,
not accurately but within tolerance rad (D). This is exactly
the kind of robustness we want of an identified linear model;
if repeating the experiment would give drastically altered
predictions for each repeated case, the model would be too
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sensitive to measurement noise in the predictive features.
When the tolerance rad(b) is given, the solution set for x
is known as the tolerance solutions in the theory of linear
interval systems (Fiedler et al., 2006).

Clearly any x satisfies the condition above if we just
make rad (b) big enough, but for a useful model it should be
small compared with b itself. So we will pursue the smallest
possible rad(b) and select the optimal x accordingly.

For convenience, we measure the size of rad(b) by
the largest absolute value of its elements, which is known as
the sup-norm ||rad (b)”w A linear program (LP) that mini-
mizes this sup-norm (scalar denoted by s) is :

Minimize s

x,20,x 20,s=0
Amaxx+ - Aminx— < b +se
Aminx+ - Amaxx— 2 b —se

where e =(1,.. .,l)T has all elements equal to one, and our
optimal solution is x' = X, —Xx_.

This program solves for the parameters x that are
most robust against the uncertainty within interval matrix
[A4], in the sense that b is reproduced as closely as possible
for any matrix realization. The closeness is explicitly given
by the numerical solution as the tolerance parameter s that
limits deviation from targeted output for each and every
component (i.e., for each case). Obviously [4] can include
accurate elements, columns that have a uniform radius (same
for each element), those that have proportional radii, and
columns with no simple rule for the radii: mixtures of common
types of measurement inaccuracy are covered by this
approach.

LP problems have been numerically solved for over
half a century, and their numerical treatment has developed
into a reliable technology. For example, all common spread-
sheet programs include LP solvers by default, capable of
treating at least up to 200 unknowns. In the program above,
the number of unknowns is 2*dim(x)+1, so at least tens of
parameters can be identified in these basic and popular,
commonly accessible software tools.

Having multiple vectors b with the same design or
measurement matrix [4], we could apply the above LP
separately to each. In case there are many more cases than
parameters to identify, meaning that the matrix is tall and
skinny (n > p), this is a quite reasonable approach.

Assume now that we have more candidate features
than cases (p >> n), the matrix is fat with more columns than
rows. Such situation is common for example in genomics,
where tens of thousands of features are measured from each
sample. The LP will provide a solution x* with no more than
n non—zero components, where n is the number of cases.
However, unlike linear equation systems the LP is quite
happy with many more unknowns than equations. We are
able to solve underdetermined systems without any changes
to the LP formulation.



S. Karrila / Songklanakarin J. Sci. Technol. 36 (2), 241-248,2014

The solution found will be the best in the sense of
leaving the least tolerance that bounds the deviation of
model outputs from targeted output values in the available
training data. An underdetermined system always allows
multiple solutions, and selecting one of them algorithmically
should match some common sense criterion, as it does here.
So a basic level of feature selection, down to n features,
happens by the nature of the solution method. Further
pruning of the features, to find the most important ones, is
possible as follows. Consider again the condition for
solution ‘Ax—b‘ +rad(A)|x| < rad(b)

If we force a component of x to zero, the first term
changes at a rate proportional to coefficients in the respective
column of A , while the second term improves for minimiza-
tion purposes at a rate proportional to the same column in
rad(A). The improvement dominates in all equations for
component 1, for example, if the first column in rad(4) domi-
nates the first column of 4: rad(A)e, > |A| é

Then the optimal solution must have x * = x*-¢, = 0.
The condition given is sufficient, not necessary: components
get eliminated also because of competition with other vari-
ables, and because it is the maximal component(s) in rad(b)
that need to be reduced while the other inequalities are not
similarly binding. But the inequality above proves beyond
doubt that any component will be forced to zero by increas-
ing rad(A4) sufficiently, and doing this gradually is a way to
leave less and less non—zero components in the optimal
solution. By this means, we can in an orderly fashion pursue
sparse solutions, by using in the LP upper and lower bounds
that fake excess (for £ > 1) inaccuracy:

[ Avin e Avas e | < [ A2 1*rad(A) |, with ¢20.

Now ¢ is an extra parameter by which the sparsity of
the solution is controlled, with larger values inducing higher
sparsity, so there are less non—zero parameters in the model
and it uses fewer inputs. Once the feature selection has been
performed in this manner, for example, picking 3 features, the
model parameters for these features should be re-determined
with the real (¢ = 1) inaccuracy. The trick with excess inaccu-
racy helps eliminate “inaccuracy sensitive” features, but also
affects the parameters identified for the remaining ones, so
these intermediate parameter values are not optimal for the
true data inaccuracy.

Whether the sparsity of solutions comes naturally
from the LP, or is forced further by requiring robustness
against some excess level of inaccuracy, in MMV we face the
problem of joint sparsity: the non—zero components of para-
meter vectors should coincide by indexed location, while
their actual numeric values are not coupled.

In an LP the joint variable selection can be handled
with a simple “large M” trick, which we illustrate with the
simultaneous solution of equations

[A]x=band [4]y=c.

The LP performing joint variable selection is:
Minimize s
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x,20,x 20,y, 20,y 20,s>0

A,.x. —A,x <b+se
Aminx+ - Amaxx— 2 b —se
Amaxy+ - Aminy— Sc+se

Aminy+ _Amaxy— 2c—se
v, +y <M(x +x)

The last inequality performs the coupling with a large
constant M, for example M =10°. It can be written as
| y| <M |x| , which forces y to have zeroes where x does, and
if x is already “too sparse” then y-values can be allowed with
an in comparison small perturbation to the corresponding
component of x. The optimal solution for x remains x* =
x,-x_,and yis similar.

The level of desired sparsity can again be enforced by
adjusting excess inaccuracy with parameter ¢, and once the
jointly used features, to predict both b and ¢, have been
selected, their model parameters should be re-solved with
the real level of inaccuracyat (¢1=1).

For an MMV problem with m simultaneous outputs,
the number of unknowns is 2 * m * p + 1, where p is the
number of features available. This equals twice the number of
elements in the X matrix, because these are split to positive
and negative parts, plus one for the tolerance parameter s.

An alternative approach to force jointly sparse solu-
tions, in a linear program, would be to introduce binary
variables: 0/1 indicators of whether a feature is used or not.
However, such binary variables make numerical LP solutions
much harder to compute, requiring on top of basic Simplex
algorithm also branch-and-bound —type algorithms. In com-
parison, the above “large M trick” is computationally efficient,
as all variables remain continuous and a single run of
Simplex suffices. Too large M-values can lead to numerical
instability, which is the reason for giving a rule of thumb to
set its value.

In summary, we have developed a theory and the LP
formulations that allow robust jointly sparse solutions of
multivariable multiple linear regression problems with errors-
in-variables, for the particular case of errors bound within
deterministic intervals. The approach has not required
advanced concepts; instead it has remained on a pedestrian
level in its requirements.

3. Results
3.1 A numerical example illustrating key points

Consider the square linear system b = Ax with b =

1 0
(0,1,2)"and A= 0

1
1 1| which is clearly non-singular
0 0 3
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and invertible. In such a case, the statistical method Total
Least Squares (TLS) will always simply give the solution of
this linear system, x =A4'b, regardless of how inaccurate each
element in 4 is. The square sum of errors is at its minimum
which is zero, as neither the matrix nor the output needs
tuning to match each other. To the contrary, the solutions
from our approach are affected by the inaccuracies, and
changing the level of inaccuracy in general changes the solu-
tion. This is a desirable feature of our approach compared
with TLS, because we don’t want to let a very inaccurate
measurement affect the predictions of our regression model.
Assume the first feature/column is uniformly inaccu-
rate, the second accurate, and the third proportionally

02 0 0.5
inaccurate, with radius matrix rad(4)=0.2 0 0.5
02 0 1.5

T
21
The accurate solution is x = (——,—,EJ , while the most

robust solution against the large inaccuracy given is x =

3

able drops out, showing that sparsification takes place by
competition between the feature variables. The solution was
numerically computed within a spreadsheet, with the LP
formulation in the preceding Section Theory.

The purpose of this numerical example was to illustrate
how easily different types of inaccuracy can be combined,
and to provide a simple test case for anyone who writes code
to carry out similar computations. Simultaneously a dramatic
difference to TLS, which ignores matrix uncertainty when
an accurate solution is possible, was made concrete. Our
approach will drop inaccurate features, and even fully accu-
rate features, if it increases robustness of the solution. Also,
the solution will change with the level of inaccuracy, and all
inaccurate features can be eliminated with sufficient excess
inaccuracy. It may seem counterintuitive that the least accu-
rate third feature provided the most robust solution above,
and the fully accurate feature turned out to be irrelevant.
An MMV problem with the same matrix and its radius is cre-
ated by requiring simultaneous solution targeting output ¢ =
(0,1,0)". The accurate solution is y = (0,1,0)". When solved
for the interval matrix, with joint sparsity requirement, we get
the same x as before, while now y = (0,0,0)". The reason is,
that the x solution has output tolerance s = 1 relative to
targeted output b, and forcing the middle component of y to
zero does not exceed this tolerance relative to targeted
output c¢. So the best jointly sparse solution does not perturb
x at all, which would worsen the tolerance, instead it forces
v to zero in components where x is zero.

It is recommended that readers implementing this in
a spreadsheet should try out various values of the sparsity-
controlling parameter ¢, with ¢ = 0 giving the accurate solu-
tions, while ¢ = 1 gives the other solutions listed above, and

T
2
[Oa O’_J . In this case, even the fully accurate second vari-
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intermediate values show how the components of accurate
solution are gradually forced to zero.

The small MMV problem demonstrates how sharing
the same output tolerance is a key part of the coupling
between the problems for x and y. The large M trick only
couples the sparsity pattern, while the rest of the coupling
also affects the numeric values. Applications should be scaled
so that the tolerance levels of different outputs are similar,
before they are combined in an MMV problem and solved as
above.

4. Discussion and Conclusions

The theory presented provides several original contri-
butions. Compressed sensing is a relatively new field with
highly active research, where many algorithms to find the
sparsest solutions to an underdetermined linear problem
have been developed. The only deterministic interval
approaches within that field, known to this author, are
Rosenbaum and Tsybakov (2008), and very closely similar
work by Liu et al. (2010). The former develops a non-convex
formulation related to the Oettli-Prager theorem, as presented
in Polyak and Nazin (2004), for the special case of uniform
interval inaccuracies. A convex problem suitable for LP
solution is only obtained by restricting all solved parameter
values to be non—negative. These assumptions severely
restrict the practical applicability of these prior results. In the
theory of optimization, convexity is close to the same as
“numerically solvable”, while non-convex often translates to
“requiring excessive computation, if solvable at all”. In this
case, only allowing non—negative parameters made the
problem convex, so the restrictive assumption was made for
acompelling reason.

In contrast, our approach is convex to begin with,
and sparsity is induced by requiring robustness of solution
against matrix inaccuracy. Our solution becomes sparser as
we allow more inaccuracy, while Rosenbaum and Tsybakov
separately pursue the sparsest solution within a convex
portion of the Oettli-Prager solution set.

The robust regression work of Xu ef al. (2009) is
closely similar to ours, but limits the matrix uncertainty to
featurewise norm bounds for whole matrix columns, with the
same norm applied to output error. They focus on the Euclid-
ean norm, although with some generalizations to other norms.
In contrast we give a straightforward explicit LP approach to
handling arbitrary error interval bounds, measurement by
measurement, while the sup-norm of output error is in fact a
uniform elementwise tolerance. The equations that describe
he solution set sometimes known as tolerance solutions

Ax— bT+ rad(A) |x| <rad(b) were here derived effortlessly
along the lines given by Mayer (2007). A comprehensive and
quite elaborate treatment of interval linear systems, including
a more excruciating derivation of the equations above, is
available in the book by Fiedler ef al. (2006). This book can
point the interested reader to relevant references from the
recent about 50 years. While our references are very recent,



S. Karrila / Songklanakarin J. Sci. Technol. 36 (2), 241-248,2014

the foundations have been laid much earlier.

The sparsifying effect of the “regularization term”
rad (A)|x| proven here provides a generalization to the L1-
norm regularization practiced in compressed sensing, and
goes beyond the connection earlier noted by Xu et al. (2009).
Our regularization term in essence is a weighted L1-norm,
allowing different weights for each case. Prior compressed
sensing literature has not introduced such complicated
weighing, because it has not considered measurement-by-
measurement interval inaccuracy.

Statisticians are well familiar with the Lasso that is
extensively discussed by Hastie ef al. (2009), where least
squares fit is regularized with the L1-norm ||x||] (the sum of
elements in |x| ) An analogous special case is recovered from
our theory when [4] is uniformly inaccurate and rad(A) =
ee’ with some constant scaling. The e’s are again vectors of
ones, here not necessarily of the same dimension. On appli-
cation of the Lasso, the regularization coefficient is indeter-
minate, and it is typically tuned with cross-validation. In our
approach the regularization is fully determined by the in-
accuracy in measured predictive features. However, additional
sparsity to save in measurement costs, not for optimality in
fitting, can be sought with the t-parameter that here seemed
an ad hoc construct for those not familiar with the Lasso.

We have now shown with a wide generality that
pursuing robustness against errors-in-variables leads to
sparse or parsimonious solutions. While parsimony has been
widely viewed as a virtue promoting simplicity, beauty, or
interpretability, and compliance with “Occam’s razor”, here it
is not a purpose in itself but emerges from robustness that
engineer’s desire. As noted earlier, the right level of parsi-
mony remains hard to decide, and this is where statisticians
resort to AIC and BIC used in model comparisons. For us,
optimal robustness decides that right level automatically.
This apparently significant difference is due to different
assumptions. Our approach could be described as belonging
to “approximation theory”, while the statistical approach is
probabilistic with assumed distributions, and leads to the
complications with AIC and BIC.

Jointly sparse solutions have been pursued in various
ways by Cotter et al. (2005), Mishali and Eldar (2008), and
Lee and Bresler (2010), as select highlights among many
others. The “large M” trick provided here for linear program-
ming solution of the MMV problem is original, making the
widely accessible LP solvers a reasonable tool to deal with
such problems at least in small scale. This is in contrast to
greedy approximations that proliferate in compressed sensing
algorithms. With large scale problems though, the greedy
methods remain undisputed.

The reader may note that both commercial and freely
downloadable LP solvers are available, those that plug into
a spreadsheet as well as others, that are designed to handle
thousands of variables. Very large problems should still be
reduced in size by pre-filtering the features, based on prior
knowledge that depends on the context.
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On the positive side, the simple approach we have
disclosed empowers any typical researcher with access to a
spreadsheet to create models that are robust against inaccu-
rate inputs, with quite complicated patterns of inaccuracy if
so happens. The tolerance parameter s solved shows how
robust the model is: if s is large in comparison to target vector
b, please reject the model. Such simple and understandable
diagnostic is indeed concrete in comparison to AIC and BIC.
Further, one can choose to pursue sparsity, and even joint
sparsity (MMV), beyond the basic level induced by robust-
ness against the true noise level in model features, simply by
exaggerating the inaccuracy in computations.

On the negative side, the approach does have its limi-
tations. The worst case estimates with intervals tend to be
pessimistic, and our robust LP approach minimizes the worst
case tolerance. Adding k variables with the same interval
inaccuracy multiplies the interval width with &, while for
random independent variables it is the variances that add
the same way and the standard deviation only grows as \/E .
The worst case is extremely unlikely when the disturbances
are random, unbiased, and independent, and worst case
tolerances can be made irrelevant by this fact. Probabilistic
approaches including Total Least Squares can then be worth
considering, but the assumptions of Gaussian unbiased in-
dependent errors should not be made lightly. However, if the
number of retained features remains small (i.e., k£ above is
small), our approach is very reasonable.

Based on the assumptions required by alternative
approaches and their known behavior, the worst case
estimates and our linear programming formulations are most
appropriate when

e The “noisy” predictive features are naturally
described by finite intervals.

o Thenumber of retained features in the final model
is relatively small.

o There are batch effects and other biases, not well
described as random unbiased independent noise.

o Hard performance bounds are required of the
fitted model, by its eventual users.

As for the assumption of interval inaccuracy in the
noisy predictive features, it does naturally fit quantization,
binning, rounding or truncation of numbers, and physical
situations where an actuator or measurement device has
hysteresis or slack within given bounds, or is calibrated to
perform within an interval accuracy specification. It does not
fit well inherently stochastic processes.

The method presented is currently the only one
known to the author that can deal with an underdetermined
system with errors-in-variables, and still find jointly sparse
robust solutions for multiple targeted outputs. The ease of
understanding the method and implementing it will hope-
fully contribute to a wide range of future applications.

Future publications expanding this work may include
minimizing the L1 norm of fitting error, while here we used
the sup-norm as in Chebyshev approximation. When the
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inputs are accurate L1 fitting is known as LAD, least absolute
deviations. The sup-norm is appropriate when the target
values are reliable, while L1 suits the case with outliers or
spike errors in the predicted variable. Also robust polynomial
regression with a single inaccurate input may in the future
complement the current multiple multivariable regression
results, specifically with an approach doable with LP. An
approach for robust polynomial regression, with matrix linear
fractional transforms and advanced optimization methods,
is given by El Ghaoui and Lebret (1997).
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