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Abstract 
 

Climate models are essential for understanding and predicting precipitation and temperature patterns, which are 

fundamental to facilitate effective water resource management and the implementation of sustainable practices in a variety of 

sectors such as urban planning, agriculture, and preserving biodiversity. The purpose of this study is to assess the comparative 

performance of the outputs of the twenty global climate models (GCMs) from Coupled Model Intercomparison Project Phase 6 

(CMIP6) to accurately simulate patterns of precipitation (PPT), maximum temperature (TMAX), and minimum temperature 

(TMIN) across the Mahanadi River basin in Chhattisgarh, India, between 1985 and 2014. The evaluation of CMIP6 models 

against observational data involved the utilization of several statistical metrics, including coefficient of determination (R2), Nash-

Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), Percent bias (PBIAS), and the Taylor diagram. Using these statistics, 

it has been found that the CMIP6 model MIROC-ES2L outperforms the others for PPT and TMIN, whereas the model IPSL-

CM6A-LR is superior to the others for TMAX in the study region. While working with the CMIP6 models researchers and 

hydrologists can use the outcome of this study for useful insights to predict and adapt to changing climatic trends, which may 

help them in making well-informed decisions for sustainable and adaptable water resource management within the study region. 
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1. Introduction  
 

The Global Climate Models (GCMs) incorporate 

physical equations and data from various sources to simulate 

the behavior of the climate system over long periods of time. 

These models are used to understand and study climate 

patterns, predict future climate scenarios, and assess the 

potential impacts of various factors such as greenhouse gas 

emissions on the Earth’s climate (Chokkavarapu & Mandla, 

2019). They took into account factors such as solar radiation 

atmospheric composition, land surface characteristics, and 

other variables to generate projections of climate patterns at 

global, regional, and local scales (Giorgi, 2019). Coupled 

Model Intercomparison Project Phase 6 (CMIP6) is a 

 
worldwide climate model intercomparison projection that 

provides an insightful opportunity to investigate past and 

future variations in mean and extreme climates at the regional 

and global levels (Mathbout, Martin-Vide, & Bustins, 2023). 

CMIP6 projections can be employed to analyze future changes 

in precipitation, temperature, and other climatic variables 

which are at finer resolutions, and these variables have an 

influence on runoff and other hydrological variables on a local 

scale (Ali et al., 2023). Out of all the climatic variables, 

precipitation and temperature are major inputs in the context 

of the simulation of runoff and predicting floods or droughts 

(Brunner, Slater, Tallaksen, & Clark, 2021). The floodplains 

of rivers are frequently altered by changing population and 

land use trends, as well as climate change (Hazarika, Das, & 

Borah, 2015). These variables are accountable for the 

uncertainty in hydrological performance assessment (Dibaba, 

Demissie, & Miegel, 2020). Thus, exact measurements of 

precipitation and temperature will be difficult due to their 

irregularities and biased statistics at the regional and local 

levels. In this regard, the use of CMIP6 models is vital 
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because it provides an advanced framework for understanding 

and projecting these complex precipitation and temperature 

dynamics, providing valuable insights for sustainable water 

resource management and agricultural planning in the context 

of India's changing climatic conditions (Kushwaha, Pandey, 

Kumar, Sardana, & Yadav, 2024). Before using GCM outputs, 

it is recommended that relative bias or uncertainty in these 

data must be removed by comparing them to observational 

data (Ngai, Tangang, & Juneng, 2017). The ability of GCMs 

to simulate historical climate is dependent on the modeling 

trend, encompassing the precision of the model network and 

the scientific recognition of specific physical processes such 

as radiative forcing and land surface interactions 

(Chokkavarapu & Mandla, 2019). 

Appropriate GCM selection is critical for removing 

uncertainty and improving the reliability of climate variables 

such as precipitation and temperature (Raju & Kumar, 2020). 

Considering this, there is currently no prevailing technique or 

established standards for GCM selection. However, it is 

commonly assumed that selected GCMs will correctly mimic 

historical climate properties such as mean, variance, and 

spatial variability (Hamed, Nashwan, & Shahid, 2022). 

Several researchers examined the performance of GCMs in 

mimicking climate variables using statistical indices such as 

relative bias, Taylor diagram, correlation coefficient, relative 

error, and root mean square error (Gleckler, Taylor, & 

Doutriaux, 2008; Lambert & Boer, 2001). However, the 

comparison is limited to a few GCMs only, and also a 

comprehensive comparison is still missing for implementing 

them at the local scale.  

CMIP6 projects potential shifts in precipitation 

patterns, temperature, and extreme events by offering detailed 

climate model simulations and projections, assisting in 

developing adaptive approaches for safeguarding water 

resources effectively in the context of climate change (Haider 

et al., 2023). However, before employing forecasts, it is 

important to assess model reliability by comparing model 

outputs to observational data. This examination reveals biases, 

ensuring accurate projections that are critical for informed 

decisions as well as effective strategies to reduce the effects of 

climate change.  Considering all of these factors the purpose 

of this study is the comparative analysis of CMIP6 models in 

mimicking climatological variables over the Mahanadi River 

basin in Chhattisgarh State, India with the following specific 

objectives: a) to compare the performance of CMIP6 climate 

models for precipitation (PPT) using various statistical 

measures; b) to compare the performance of CMIP6 climate 

models for maximum and minimum temperatures (TMAX and 

TMIN) using various statistical measures; c) to rank each 

CMIP6 models for PPT, TMAX, and TMIN over the study 

area. The Mahanadi River basin is significantly impacted by 

the intrinsic threats of climate change, such as alterations to 

precipitation patterns and surface hydrology, which cause 

floods, and extended drought. 

The paper begins with an overview of the tools and 

techniques used in this study. Following a description of the 

study area and the data used, the paper goes on to present the 

results and discussions on different statistics calculated for the 

various climatic variables over the years. Finally, the paper 

ends with the conclusions drawn from the study. 

 

2. Tools and Techniques 
 

The study examines the performance of twenty 

different CMIP6 GCMs by assessing their ability to recreate 

historical climate data from 1985 to 2014. For this purpose, 

various statistical indices such as the Coefficient of 

Determination (R2), Nash-Sutcliffe efficiency (NSE, Nash & 

Sutcliffe, 1970), Kling-Gupta efficiency (KGE, Gupta, Kling, 

Yilmaz, & Martinez, 2009), Percent bias (PBIAS), and the 

Taylor diagram (Taylor, 2001) are used to measure 

similarities and compare GCMs to the observed pattern of 

climatic data. R2 is a statistical measure of similarity between 

two datasets that ranges from 0 to 1. A greater value indicates 

more similarity. NSE is frequently used in hydrological and 

environmental modeling to evaluate the precision of a model 

by comparing with observed data (Xie et al., 2019). It has a 

range of -∞ to 1, where a value closer to 1 denotes a higher 

level of model efficacy.  KGE is mostly used in hydrological 

modeling and water resource management to assess models' 

ability to replicate observed datasets (Ahmed, et al., 2019).  It 

was built on multi-criteria evaluation statistics, which include 

three components: correlation, biases, and variability.  KGE 

values vary from -∞ to 1, with values closer to 1 indicating 

better performance of the model. PBIAS is the percentage 

difference between the simulated model and the observed 

dataset. Positive values in the PBIAS reveal overestimation 

bias, negative values imply underestimation bias and a PBIAS 

value of 0 shows no bias.  For a detailed description of each 

statistical measure and its associated formula, interested 

readers may refer to the following literature: Gupta et al. 

(2009), Legates and McCabe (1999), Nash and Sutcliffe 

(1970). Each GCM is ranked based on the values of the scores 

from various statistical indices. Then, the sum of the scores 

from each index is used to establish the overall ranking.  

Taylor diagrams (Taylor, 2001) are mathematical 

visualizations used to compare the accuracy of multiple 

statistical models by graphically representing the correlation, 

root mean square error (RMSE), and standard deviation ratio 

between IMD observed and CMIP6 simulated climatic 

variables datasets.   

 

3. Study Area and Data Used 
 

The Mahanadi River, India's eighth-largest basin 

and a major peninsular river, flows from Sihawa in 

Chhattisgarh's Dhamtari district to the Bay of Bengal. The 

Mahanadi River basin is one of India's most vulnerable 

regions to climate change. The river's overall length is around 

851 kilometers and passes from many states, however, the 

study area is Mahanadi in Chhattisgarh state only as shown in 

Figure 1. Figure 1 also shows the variation of annual rainfall 

over the basin. The basin is primarily drained by the Seonath, 

Arpa, Pairi, Sukha, and Hasdeo Rivers as major tributaries.  

The climate of this region is primarily subtropical, 

and the temperature varies from 4℃ to 12℃ during the 

winter, and from 39℃ to 40℃ during the summer. The 

maximum rainfall occurred between July and September, with 

values ranging from 800 to 1,200 mm. The basin is dominated 

by forested hills, fertile plains, and plenty of vegetation. The 

observed daily temperature and precipitation for 83 grids with 
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a resolution of 0.25°x 0.25° were obtained from the Indian 

Meteorological Department (IMD), Pune from 1985 to 2021. 

CMIP6 precipitation and temperature data are derived from 

NASA's Earth Exchange Global Daily Downscaled 

Projections-Coupled Model Intercomparison Project Phase 6 

(NEX-GDDP-CMIP6), which has been statistically bias-

corrected (using Bias-Correction Spatial Disaggregation 

method) and has a high spatial resolution of 0.25°x 0.25° in 

daily time steps. The downscaled data for these GCMs were 

obtained from the NASA portal (https://www.nccs.nasa. 

gov/services/data-collections/land-based-products/nex-gddp-

cmip6, retrieved on 10-Oct-2023) and the twenty CMIP6 

models developed by different agencies across the globe 

whose performance in mimicking various climatic variables 

assessed in this study are described in Table 1. These GCMs 

are selected based on availability of data for Mahanadi River 

basin and are popularly utilized by researchers (Zamani, 

Monfared, Moghaddam, & Hamidianpour, 2020; 

Hemanandhini, 2023). 

 

4. Results and Discussion 
 

The performances of all the twenty CMIP6 models 

in mimicking PPT, TMAX, and TMIN with corresponding 

IMD observations of these variables have been assessed using 

various statistical measures and the Taylor diagram. Table 2 

shows the quantitative analysis of various statistical measures 

for monthly mean PPT across various CMIP6 models in 

comparison to IMD observed PPT data. The rankings assigned 

to each measure, and then the sum of these rankings, highlight 

the overall performance of a specific model.  From Table 2, it 

can be observed that the CMIP6 model MIROC-ES2L 
 

 
Figure 1. Mahanadi River basin, Chhattisgarh, India and variation of annual rainfall over the basin 

 

Table 1. CMIP6 Models used in this study 
 

S. NO. CMIP6 Model Institute/Agency 

   

1 ACCESS-CM2 Australian Community Climate and Earth-System Simulator 

2 ACCESS-ESM1-5 Australian Community Climate and Earth-System Simulator 
3 BCC-CSM2-MR Beijing Climate Center and China Metrological Administration 

4 CAN ESM5  Canadian Centre for Climate Modelling and Analysis, Canada 

5 CMCC-ESM2  Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 
6 CNRM-CM6-1 National Centre for Meteorological Research, France 

7 CNRM-ESM2-1 National Centre for Meteorological Research, France 
8 EC-Earth3 EC-Earth consortium, Europe 

9 EC-Earth3-Veg-LR EC-Earth consortium, Europe 

10 FGOALS-g3 Chinese Academy of Sciences, China 
11 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA 

12 GISS-E2-1-G Goddard Institute for Space Studies, USA 

13 INM-CM5-0 Institute for Numerical Mathematics, Russia 
14 IPSL-CM6A-LR Institute Pierre Simon Laplace, France 

15 MIROC-ES2L Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan 
16 MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 

17 MPI-ESMI-2-HR  Max Planck Institute for Meteorology, Germany 

18 MRI-ESM2  Meteorological Research Institute, Japan 
19 NOR ESM2-MM  Norwegian Climate Centre, Norway 

20 NorESM2-LM Norwegian Climate Centre, Norway 
   



154 G. Sahu, & V. K. Vidyarthi / Songklanakarin J. Sci. Technol. 47 (2), 150-159, 2025 

outperformed the other models with a high R2 (0.81), a high 

NSE (0.80), an excellent KGE (0.90), and a satisfactory 

PBIAS (-2.93), making it the most suitable choice for 

mimicking PPT in the study region. The graphical 

representations in terms of bar chart and radar diagram are 

presented in Figure 2(a) and Figure 2(b), respectively, which 

provide a clear visual understanding that aids in the 

identification of the most effective model by comparing the 

CMIP6 simulated output with IMD observed data to mimic 

PPT. The graphical representation supports the quantitative 

analysis by adding a layer of insight, making it simpler to 

detect the performance of the models. The bar charts highlight 

the relative performance across different metrics such as R2, 

NSE, KGE, and PBIAS, while the radar charts provide a 

holistic view by showcasing the models across multiple 

criteria simultaneously. The performance of each metric is 

shown on a radar chart as the radial distance from the center 

and the best model is shown as a solid line with a shaded 

region. It can be observed from Figure 2(a) and Figure 2(b) 

that the MIROC-ES2L CMIP6 model outperforms the other 

 
Table 2. Performance evaluation measures of CMIP6 models with IMD observed data for PPT 
 

CMIP6 MODEL R2 NSE PBIAS KGE 

     

ACCESS-CM2 0.61 0.41 4.48 0.69 
EC-Earth3 0.65 0.57 -1.29 0.78 

GFDL-ESM4 0.60 0.54 -9.61 0.75 
INM-CM5-0 0.58 0.45 -4.95 0.73 

CAN ESM5 0.56 0.45 -5.94 0.73 

CMCC-ESM2 0.61 0.54 -1.45 0.77 

MPI-ESMI-2-HR 0.72 0.67 -2.67 0.84 

MRI-ESM2 0.59 0.53 -10.59 0.75 
NOR ESM2-MM 0.65 0.56 1.02 0.78 

EC-Earth3-Veg-LR 0.66 0.60 -3.74 0.80 
FGOALS-g3 0.68 0.65 -4.81 0.82 

ACCESS-ESM1-5 0.57 0.43 -7.01 0.72 

GISS-E2-1-G 0.61 0.53 -5.47 0.77 
IPSL-CM6A-LR 0.69 0.66 -12.05 0.79 

MIROC-ES2L 0.81 0.80 -2.93 0.90 
MPI-ESM1-2-LR 0.70 0.67 -3.98 0.83 

NorESM2-LM 0.70 0.61 0.62 0.79 

BCC-CSM2-MR 0.74 0.72 -2.69 0.86 

CNRM-CM6-1 0.63 0.56 -4.35 0.78 

CNRM-ESM2-1 0.67 0.61 -3.73 0.80 
     

 

 

 

(a) Bar Chart (b) Radar Chart 
 

Figure 2. Performance of various CMIP6 models to mimic PPT over the study region in 1985-2014 
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models assessed in this study. From both numerical analysis 

and graphical visualization, it is clear that MIROC-ES2L is 

the most efficient and reliable model to mimic the PPT. 

Similarly, this analysis has been performed for 

TMAX and TMIN, since these variables are crucial for 

assessing climate patterns. Table 3(a) shows the different 

statistics measures of monthly mean data for TMAX across 

various CMIP6 models in comparison to IMD observation 

data. From Table 3, it is observed that IPSL-CM6A-LR 

surpasses the other models for mimicking TMAX with a high 

R2 (0.87), a high NSE (0.86), an excellent KGE (0.93), and a 

good PBIAS (0.49), making it the most efficient preference 

for TMAX based on these metrics. The graphical 

representation supports this conclusion that IPSL-CM6A-LR 

CMIP6 model performs better than the other models in 

mimicking TMAX, as illustrated in Figure 3. Table 3(b) 

displays the monthly mean data statistics metrics for TMIN 

across various CMIP6 models in comparison to IMD 

observation data. It is noteworthy that MIROC-ES2L 

performs better than the other models to mimic TMIN because 

it has a higher R2 (0.95), a higher NSE (0.92), an excellent 

KGE (0.91), and a satisfactory PBIAS (4.75), making it the 

best choice for TMIN based on these metrics. This result is 

also supported by Figure 4. 

Figure 5 depicts the Taylor Diagram, which is based 

on correlation, standard deviation, and the RMS error matrix. 

This metric is assessed by comparing each averaged CMIP6 

model for the basin to averaged observational datasets 

collected over a period of 30 years. It is clear that the RMSE 

is less for the MIROC-ES2L model for PPT. Also, the 

correlation shown by the inclined line is stronger for the 

MIROC-ES2L model, and the standard deviation which is 

 
Table 3. Performance evaluation measures of CMIP6 models with IMD observed data for TMAX and TMIN 

 

(a) TMAX 

 

CMIP6 MODEL R2 NSE PBIAS KGE 

ACCESS-CM2 0.83 0.82 -0.69 0.91 

EC-Earth3 0.82 0.80 -0.13 0.90 
GFDL-ESM4 0.74 0.71 0.01 0.86 

INM-CM5-0 0.77 0.74 0.15 0.87 

CAN ESM5 0.78 0.76 0.14 0.88 
CMCC-ESM2 0.71 0.68 -0.13 0.84 

MPI-ESMI-2-HR 0.86 0.85 -0.48 0.93 

MRI-ESM2 0.85 0.84 -0.52 0.92 
NOR ESM2-MM 0.73 0.70 -0.55 0.85 

EC-Earth3-Veg-LR 0.83 0.81 -0.47 0.90 

FGOALS-g3 0.86 0.86 -0.06 0.93 
ACCESS-ESM1-5 0.84 0.83 -0.23 0.91 

GISS-E2-1-G 0.84 0.84 -0.52 0.92 

IPSL-CM6A-LR 0.87 0.86 0.49 0.93 
MIROC-ES2L 0.85 0.84 -1.04 0.92 

MPI-ESM1-2-LR 0.84 0.83 -0.44 0.92 

NorESM2-LM 0.85 0.84 -0.37 0.92 
BCC-CSM2-MR 0.87 0.85 -0.45 0.92 

CNRM-CM6-1 0.84 0.83 -0.26 0.91 

CNRM-ESM2-1 0.84 0.82 -0.37 0.91 
     

(b) TMIN 

 

CMIP6 MODEL R2 NSE PBIAS KGE 
ACCESS-CM2 0.91 0.88 5.23 0.93 

EC-Earth3 0.92 0.88 6.02 0.91 

GFDL-ESM4 0.86 0.82 5.50 0.90 
INM-CM5-0 0.87 0.83 5.90 0.90 

CAN ESM5 0.87 0.82 5.79 0.90 

CMCC-ESM2 0.85 0.82 4.50 0.89 
MPI-ESMI-2-HR 0.90 0.85 5.55 0.91 

MRI-ESM2 0.93 0.89 5.74 0.90 

NOR ESM2-MM 0.84 0.80 4.90 0.90 
EC-Earth3-Veg-LR 0.93 0.88 5.87 0.91 

FGOALS-g3 0.92 0.87 5.82 0.90 

ACCESS-ESM1-5 0.93 0.88 6.03 0.92 

GISS-E2-1-G 0.91 0.89 4.09 0.92 

IPSL-CM6A-LR 0.92 0.87 6.39 0.91 

MIROC-ES2L 0.95 0.92 4.75 0.91 
MPI-ESM1-2-LR 0.90 0.86 5.56 0.91 

NorESM2-LM 0.91 0.87 5.39 0.92 

BCC-CSM2-MR 0.93 0.88 5.52 0.90 
CNRM-CM6-1 0.92 0.89 5.09 0.91 

CNRM-ESM2-1 0.91 0.88 5.01 0.92 
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(a) Bar Chart (b) Radar Chart 
 

Figure 3. Performance of various CMIP6 models to mimic TMAX over the study region in 1985-2014 
 

 

 

(a) Bar Chart (b) Radar Chart 
 

Figure 4. Performance of various CMIP6 model to mimic TMIN over the study region in 1985-2014 
 

   
(a) Precipitation (b) TMAX (c) TMIN 

 

Figure 5. Taylor diagram for different climatic variables obtained from various CMIP6 models versus observed IMD data over the study region 
in 1985-2014 
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similar to that of observational data. As a result, the overall 

performance of that model is superior to the other models for 

mimicking PPT over the study region. Similarly, IPSL-

CM6A-LR outperforms the others when mimicking TMAX, 

and MIROC-ES2L performs better than the other models 

when mimicking TMIN, as illustrated in Figure 5. 

Table 4 shows the basic statistical variation for the 

monthly mean of observed and the best CMIP6 model for 

PPT, TMAX, and TMIN during the years 1985 to 2014. It is 

found that the minimum, maximum, mean, and standard 

deviation for both datasets are nearly equivalent. The mean of 

monthly CMIP6 PPT data is 3.19 mm, which is approximately 

identical to the mean of observed PPT, which is 3.32 mm. 

While the standard deviation of CMIP6 monthly mean data is 

4.62 mm, it is approximately comparable to the standard 

deviation of observed PPT, which is 4.63 mm. Similarly, the 

mean of CMIP6 TMAX monthly mean data is 31.96 ℃, 

which is approximately identical to the mean of observed 

TMAX, which is 32.23 ℃, and the standard deviation of 

CMIP6 TMAX monthly mean data is 4.53 ℃, which is nearly 

equivalent to the standard deviation of observed TMAX, 

which is 4.49 ℃. The mean of the CMIP6 TMIN monthly 

mean data is 27.94 °C, which is quite similar to the mean of 

the observed TMIN, which is 27.12 °C, and the standard 

deviation of CMIP6 TMIN is 4.94 °C, which is nearly 

equivalent to the standard deviation of the observed TMIN, 

which is 5.31 °C. This indicates that these models are most 

suited for replicating these climate variables. Since these 

models demonstrate superior performance compared to other 

models for historical periods, they can also be a preferred 

choice for projecting climate variables for future periods. This 

kind of investigation contributes in assessing the reliability of 

CMIP6 in mimicking climate variables. As a result, it was 

recognized that CMIP6 is a useful resource for decision-

makers and researchers across numerous fields, supporting 

more well-informed strategies and actions in dealing with 

climate change challenges. Figure 6 shows the time series 

plots and scatter plots between IMD data and the best CMIP6 

model data for the PPT, TMAX, and TMIN. This visual aid 

enables an in-depth examination of how well the model 

matches the real data for the historical period spanning from 

1985 to 2014. This systematic representation makes it easier 

to comprehend the level of agreement between the values in 

the model and the observations, which offers important 

insights into the reliability as well as the effectiveness of the 

model. It is noteworthy that these models accurately capture 

the IMD data and may simulate the PPT, TMAX, and TMIN 

across the years. From the scatter plot, it is also evident that 

PPT is not as well simulated compared to TMAX and TMIN. 

This may be due to more complex patterns of PPT, which are 

impacted by a variety of factors so that the PPT can change 

dramatically over short distances and time periods, resulting 

in high spatial and temporal variability that climate models 

struggle to capture accurately. 

 

5. Conclusions 
 

To examine the changing climatic scenario, it is 

vital to use an appropriate climate model. CMIP6 provides an 

advanced framework for mimicking many components of the 

climate system of the earth, offering vital insights for 

sustainable water resource management and agricultural 

development. Precipitation, maximum and minimum 

temperatures are essential factors for assessing climate 

patterns since they have a large impact on atmospheric 

weather conditions. The primary objective of this study was to 

assess the performance of twenty coupled model 

intercomparison project phase 6 (CMIP6) global circulation 

models (GCMs) to mimic PPT, TMAX, and TMIN by 

comparing these models to observational data obtained from 

Indian Meteorological Department (IMD), Pune, for the 

Mahanadi River basin in Chhattisgarh from 1985 to 2014. The 

GCMs assessed in this study are derived from NASA's Earth 

Exchange Global Daily Downscaled Projections (NEX-

GDDP). Several statistical metrics, such as the Coefficient of 

Determination (R2), Nash-Sutcliffe efficiency (NSE), Kling-

Gupta efficiency (KGE), Percent bias (PBIAS), and the Taylor 

diagram are utilized to assess the performance of these 

GCMS. The metrics are evaluated by comparing monthly 

mean simulated data from CMIP6 models and IMD 

observational data. The results obtained from this study 

suggest that the CMIP6 model MIROC-ES2L performs the 

best in mimicking PPT as compared to the other CMIP6 

models, achieving in this study an R2 of 0.81, an NSE of 0.80, 

and a KGE of 0.90 with respect to IMD observational PPT 

data. Similarly, in mimicking observed IMD TMAX, IPSL-

CM6A-LR model outperforms the other models with an R2 of 

0.87, an NSE of 0.86, and a KGE of 0.93. The CMIP6 model, 

MIROC-ES2L surpasses the other CMIP6 models to replicate 

observed IMD TMIN data with an R2 of 0.95, an NSE of 0.92, 

and a KGE of 0.91. Additionally, the calculated PBIAS values 

of all these best models obtained are under acceptable limits. 

Their mean and standard deviation are also almost equivalent 

to observational data. The graphical visualization of the 

performance using the Taylor diagram and Radar chart 

provides a clear visual understanding that aids in the 

identification of the most effective model and supports the 

outcomes from the quantitative statistical analysis. 

 
Table 4. Comparison of the best CMIP6 model with IMD data 

 

Variable Model Minimum Maximum Mean Std. Deviation 

      

PPT (mm) 
IMD 0.00 mm 18.51 mm 3.32 mm 4.63 mm 

CMIP6 (MIROC-ES2L) 0.00 mm 16.90 mm 3.19 mm 4.62 mm 

TMAX (℃) 
IMD 23.58 ℃ 42.28 ℃ 32.23 ℃ 4.49 ℃ 

CMIP6 (IPSL-CM6A-LR) 23.33 ℃ 43.36 ℃ 31.96 ℃ 4.53 ℃ 

TMIN (℃) 
IMD 8.85 ℃ 27.12 ℃ 19.31 ℃ 5.31 ℃ 

CMIP6 (MIROC-ES2L) 10.25 ℃ 27.94 ℃ 20.16 ℃ 4.94 ℃ 
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Figure 6. Time series and scatter plots between the best CMIP6 models and IMD data for different climatic variables in 1985 to 2014 

 

It is hoped that the outcome of this study will help 

the researchers, hydrologists, and policymakers to select the 

most accurate climate models for mimicking different climatic 

variables for use in the monitoring and forecasting of various 

climatic factors at the local scale by utilizing standard 

statistical measures for the development of sustainable and 

adaptive water resource management strategies. 
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