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Abstract

Climate models are essential for understanding and predicting precipitation and temperature patterns, which are
fundamental to facilitate effective water resource management and the implementation of sustainable practices in a variety of
sectors such as urban planning, agriculture, and preserving biodiversity. The purpose of this study is to assess the comparative
performance of the outputs of the twenty global climate models (GCMs) from Coupled Model Intercomparison Project Phase 6
(CMIP6) to accurately simulate patterns of precipitation (PPT), maximum temperature (TMAX), and minimum temperature
(TMIN) across the Mahanadi River basin in Chhattisgarh, India, between 1985 and 2014. The evaluation of CMIP6 models
against observational data involved the utilization of several statistical metrics, including coefficient of determination (R?), Nash-
Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), Percent bias (PBIAS), and the Taylor diagram. Using these statistics,
it has been found that the CMIP6 model MIROC-ES2L outperforms the others for PPT and TMIN, whereas the model IPSL-
CMBA-LR is superior to the others for TMAX in the study region. While working with the CMIP6 models researchers and
hydrologists can use the outcome of this study for useful insights to predict and adapt to changing climatic trends, which may
help them in making well-informed decisions for sustainable and adaptable water resource management within the study region.
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1. Introduction

The Global Climate Models (GCMs) incorporate
physical equations and data from various sources to simulate
the behavior of the climate system over long periods of time.
These models are used to understand and study climate
patterns, predict future climate scenarios, and assess the
potential impacts of various factors such as greenhouse gas
emissions on the Earth’s climate (Chokkavarapu & Mandla,
2019). They took into account factors such as solar radiation
atmospheric composition, land surface characteristics, and
other variables to generate projections of climate patterns at
global, regional, and local scales (Giorgi, 2019). Coupled
Model Intercomparison Project Phase 6 (CMIP6) is a
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worldwide climate model intercomparison projection that
provides an insightful opportunity to investigate past and
future variations in mean and extreme climates at the regional
and global levels (Mathbout, Martin-Vide, & Bustins, 2023).
CMIP6 projections can be employed to analyze future changes
in precipitation, temperature, and other climatic variables
which are at finer resolutions, and these variables have an
influence on runoff and other hydrological variables on a local
scale (Ali et al., 2023). Out of all the climatic variables,
precipitation and temperature are major inputs in the context
of the simulation of runoff and predicting floods or droughts
(Brunner, Slater, Tallaksen, & Clark, 2021). The floodplains
of rivers are frequently altered by changing population and
land use trends, as well as climate change (Hazarika, Das, &
Borah, 2015). These variables are accountable for the
uncertainty in hydrological performance assessment (Dibaba,
Demissie, & Miegel, 2020). Thus, exact measurements of
precipitation and temperature will be difficult due to their
irregularities and biased statistics at the regional and local
levels. In this regard, the use of CMIP6 models is vital
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because it provides an advanced framework for understanding
and projecting these complex precipitation and temperature
dynamics, providing valuable insights for sustainable water
resource management and agricultural planning in the context
of India's changing climatic conditions (Kushwaha, Pandey,
Kumar, Sardana, & Yadav, 2024). Before using GCM outputs,
it is recommended that relative bias or uncertainty in these
data must be removed by comparing them to observational
data (Ngai, Tangang, & Juneng, 2017). The ability of GCMs
to simulate historical climate is dependent on the modeling
trend, encompassing the precision of the model network and
the scientific recognition of specific physical processes such
as radiative forcing and land surface interactions
(Chokkavarapu & Mandla, 2019).

Appropriate GCM selection is critical for removing
uncertainty and improving the reliability of climate variables
such as precipitation and temperature (Raju & Kumar, 2020).
Considering this, there is currently no prevailing technique or
established standards for GCM selection. However, it is
commonly assumed that selected GCMs will correctly mimic
historical climate properties such as mean, variance, and
spatial variability (Hamed, Nashwan, & Shahid, 2022).
Several researchers examined the performance of GCMs in
mimicking climate variables using statistical indices such as
relative bias, Taylor diagram, correlation coefficient, relative
error, and root mean square error (Gleckler, Taylor, &
Doutriaux, 2008; Lambert & Boer, 2001). However, the
comparison is limited to a few GCMs only, and also a
comprehensive comparison is still missing for implementing
them at the local scale.

CMIP6 projects potential shifts in precipitation
patterns, temperature, and extreme events by offering detailed
climate model simulations and projections, assisting in
developing adaptive approaches for safeguarding water
resources effectively in the context of climate change (Haider
et al.,, 2023). However, before employing forecasts, it is
important to assess model reliability by comparing model
outputs to observational data. This examination reveals biases,
ensuring accurate projections that are critical for informed
decisions as well as effective strategies to reduce the effects of
climate change. Considering all of these factors the purpose
of this study is the comparative analysis of CMIP6 models in
mimicking climatological variables over the Mahanadi River
basin in Chhattisgarh State, India with the following specific
objectives: a) to compare the performance of CMIP6 climate
models for precipitation (PPT) using various statistical
measures; b) to compare the performance of CMIP6 climate
models for maximum and minimum temperatures (TMAX and
TMIN) using various statistical measures; c) to rank each
CMIP6 models for PPT, TMAX, and TMIN over the study
area. The Mahanadi River basin is significantly impacted by
the intrinsic threats of climate change, such as alterations to
precipitation patterns and surface hydrology, which cause
floods, and extended drought.

The paper begins with an overview of the tools and
techniques used in this study. Following a description of the
study area and the data used, the paper goes on to present the
results and discussions on different statistics calculated for the
various climatic variables over the years. Finally, the paper
ends with the conclusions drawn from the study.

2. Tools and Techniques

The study examines the performance of twenty
different CMIP6 GCMs by assessing their ability to recreate
historical climate data from 1985 to 2014. For this purpose,
various statistical indices such as the Coefficient of
Determination (R?), Nash-Sutcliffe efficiency (NSE, Nash &
Sutcliffe, 1970), Kling-Gupta efficiency (KGE, Gupta, Kling,
Yilmaz, & Martinez, 2009), Percent bias (PBIAS), and the
Taylor diagram (Taylor, 2001) are used to measure
similarities and compare GCMs to the observed pattern of
climatic data. R? is a statistical measure of similarity between
two datasets that ranges from 0 to 1. A greater value indicates
more similarity. NSE is frequently used in hydrological and
environmental modeling to evaluate the precision of a model
by comparing with observed data (Xie et al., 2019). It has a
range of -co to 1, where a value closer to 1 denotes a higher
level of model efficacy. KGE is mostly used in hydrological
modeling and water resource management to assess models'
ability to replicate observed datasets (Ahmed, et al., 2019). It
was built on multi-criteria evaluation statistics, which include
three components: correlation, biases, and variability. KGE
values vary from -co to 1, with values closer to 1 indicating
better performance of the model. PBIAS is the percentage
difference between the simulated model and the observed
dataset. Positive values in the PBIAS reveal overestimation
bias, negative values imply underestimation bias and a PBIAS
value of 0 shows no bias. For a detailed description of each
statistical measure and its associated formula, interested
readers may refer to the following literature: Gupta et al.
(2009), Legates and McCabe (1999), Nash and Sutcliffe
(1970). Each GCM is ranked based on the values of the scores
from various statistical indices. Then, the sum of the scores
from each index is used to establish the overall ranking.

Taylor diagrams (Taylor, 2001) are mathematical
visualizations used to compare the accuracy of multiple
statistical models by graphically representing the correlation,
root mean square error (RMSE), and standard deviation ratio
between IMD observed and CMIP6 simulated climatic
variables datasets.

3. Study Area and Data Used

The Mahanadi River, India's eighth-largest basin
and a major peninsular river, flows from Sihawa in
Chhattisgarh's Dhamtari district to the Bay of Bengal. The
Mahanadi River basin is one of India's most vulnerable
regions to climate change. The river's overall length is around
851 kilometers and passes from many states, however, the
study area is Mahanadi in Chhattisgarh state only as shown in
Figure 1. Figure 1 also shows the variation of annual rainfall
over the basin. The basin is primarily drained by the Seonath,
Arpa, Pairi, Sukha, and Hasdeo Rivers as major tributaries.

The climate of this region is primarily subtropical,
and the temperature varies from 4°C to 12°C during the
winter, and from 39°C to 40°C during the summer. The
maximum rainfall occurred between July and September, with
values ranging from 800 to 1,200 mm. The basin is dominated
by forested hills, fertile plains, and plenty of vegetation. The
observed daily temperature and precipitation for 83 grids with
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a resolution of 0.25°x 0.25° were obtained from the Indian
Meteorological Department (IMD), Pune from 1985 to 2021.
CMIP6 precipitation and temperature data are derived from
NASA's Earth Exchange Global Daily Downscaled
Projections-Coupled Model Intercomparison Project Phase 6
(NEX-GDDP-CMIP6), which has been statistically bias-
corrected (using Bias-Correction Spatial Disaggregation
method) and has a high spatial resolution of 0.25°x 0.25° in
daily time steps. The downscaled data for these GCMs were
obtained from the NASA portal (https://www.nccs.nasa.
gov/services/data-collections/land-based-products/nex-gddp-

cmip6, retrieved on 10-Oct-2023) and the twenty CMIP6
models developed by different agencies across the globe
whose performance in mimicking various climatic variables
assessed in this study are described in Table 1. These GCMs
are selected based on availability of data for Mahanadi River
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basin and are popularly utilized by researchers (Zamani,
Monfared, = Moghaddam, &  Hamidianpour,  2020;
Hemanandhini, 2023).

4. Results and Discussion

The performances of all the twenty CMIP6 models
in mimicking PPT, TMAX, and TMIN with corresponding
IMD observations of these variables have been assessed using
various statistical measures and the Taylor diagram. Table 2
shows the quantitative analysis of various statistical measures
for monthly mean PPT across various CMIP6 models in
comparison to IMD observed PPT data. The rankings assigned
to each measure, and then the sum of these rankings, highlight
the overall performance of a specific model. From Table 2, it
can be observed that the CMIP6 model MIROC-ES2L
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Figure 1. Mahanadi River basin, Chhattisgarh, India and variation of annual rainfall over the basin

Table 1. CMIP6 Models used in this study
S. NO. CMIP6 Model Institute/Agency
1 ACCESS-CM2 Australian Community Climate and Earth-System Simulator
2 ACCESS-ESM1-5 Australian Community Climate and Earth-System Simulator
3 BCC-CSM2-MR Beijing Climate Center and China Metrological Administration
4 CAN ESM5 Canadian Centre for Climate Modelling and Analysis, Canada
5 CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy
6 CNRM-CM6-1 National Centre for Meteorological Research, France
7 CNRM-ESM2-1 National Centre for Meteorological Research, France
8 EC-Earth3 EC-Earth consortium, Europe
9 EC-Earth3-Veg-LR EC-Earth consortium, Europe
10 FGOALS-g3 Chinese Academy of Sciences, China
11 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA
12 GISS-E2-1-G Goddard Institute for Space Studies, USA
13 INM-CM5-0 Institute for Numerical Mathematics, Russia
14 IPSL-CM6A-LR Institute Pierre Simon Laplace, France
15 MIROC-ES2L Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan
16 MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany
17 MPI-ESMI-2-HR Max Planck Institute for Meteorology, Germany
18 MRI-ESM2 Meteorological Research Institute, Japan
19 NOR ESM2-MM Norwegian Climate Centre, Norway
20 NorESM2-LM Norwegian Climate Centre, Norway
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outperformed the other models with a high R? (0.81), a high
NSE (0.80), an excellent KGE (0.90), and a satisfactory
PBIAS (-2.93), making it the most suitable choice for
mimicking PPT in the study region. The graphical
representations in terms of bar chart and radar diagram are
presented in Figure 2(a) and Figure 2(b), respectively, which
provide a clear visual understanding that aids in the
identification of the most effective model by comparing the
CMIP6 simulated output with IMD observed data to mimic
PPT. The graphical representation supports the quantitative
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analysis by adding a layer of insight, making it simpler to
detect the performance of the models. The bar charts highlight
the relative performance across different metrics such as R?,
NSE, KGE, and PBIAS, while the radar charts provide a
holistic view by showcasing the models across multiple
criteria simultaneously. The performance of each metric is
shown on a radar chart as the radial distance from the center
and the best model is shown as a solid line with a shaded
region. It can be observed from Figure 2(a) and Figure 2(b)
that the MIROC-ES2L CMIP6 model outperforms the other

Table 2.  Performance evaluation measures of CMIP6 models with IMD observed data for PPT
CMIP6 MODEL R? NSE PBIAS KGE
ACCESS-CM2 0.61 0.41 4.48 0.69
EC-Earth3 0.65 0.57 -1.29 0.78
GFDL-ESM4 0.60 0.54 -9.61 0.75
INM-CM5-0 0.58 0.45 -4.95 0.73
CAN ESM5 0.56 0.45 -5.94 0.73
CMCC-ESM2 0.61 0.54 -1.45 0.77
MPI-ESMI-2-HR 0.72 0.67 -2.67 0.84
MRI-ESM2 0.59 0.53 -10.59 0.75
NOR ESM2-MM 0.65 0.56 1.02 0.78
EC-Earth3-Veg-LR 0.66 0.60 -3.74 0.80
FGOALS-g3 0.68 0.65 -4.81 0.82
ACCESS-ESM1-5 0.57 0.43 -7.01 0.72
GISS-E2-1-G 0.61 0.53 -5.47 0.77
IPSL-CMBA-LR 0.69 0.66 -12.05 0.79
MIROC-ES2L 0.81 0.80 -2.93 0.90
MPI-ESM1-2-LR 0.70 0.67 -3.98 0.83
NorESM2-LM 0.70 0.61 0.62 0.79
BCC-CSM2-MR 0.74 0.72 -2.69 0.86
CNRM-CM6-1 0.63 0.56 -4.35 0.78
CNRM-ESM2-1 0.67 0.61 -3.73 0.80
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(a) Bar Chart

Figure 2. Performance of various CMIP6 models

(b) Radar Chart
to mimic PPT over the study region in 1985-2014
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models assessed in this study. From both numerical analysis
and graphical visualization, it is clear that MIROC-ES2L is
the most efficient and reliable model to mimic the PPT.
Similarly, this analysis has been performed for
TMAX and TMIN, since these variables are crucial for
assessing climate patterns. Table 3(a) shows the different
statistics measures of monthly mean data for TMAX across
various CMIP6 models in comparison to IMD observation
data. From Table 3, it is observed that IPSL-CM6A-LR
surpasses the other models for mimicking TMAX with a high
R? (0.87), a high NSE (0.86), an excellent KGE (0.93), and a
good PBIAS (0.49), making it the most efficient preference
for TMAX based on these metrics. The graphical
representation supports this conclusion that IPSL-CM6A-LR
CMIP6 model performs better than the other models in
mimicking TMAX, as illustrated in Figure 3. Table 3(b)

displays the monthly mean data statistics metrics for TMIN
across various CMIP6 models in comparison to IMD
observation data. It is noteworthy that MIROC-ES2L
performs better than the other models to mimic TMIN because
it has a higher R? (0.95), a higher NSE (0.92), an excellent
KGE (0.91), and a satisfactory PBIAS (4.75), making it the
best choice for TMIN based on these metrics. This result is
also supported by Figure 4.

Figure 5 depicts the Taylor Diagram, which is based
on correlation, standard deviation, and the RMS error matrix.
This metric is assessed by comparing each averaged CMIP6
model for the basin to averaged observational datasets
collected over a period of 30 years. It is clear that the RMSE
is less for the MIROC-ES2L model for PPT. Also, the
correlation shown by the inclined line is stronger for the
MIROC-ES2L model, and the standard deviation which is

Table 3. Performance evaluation measures of CMIP6 models with IMD observed data for TMAX and TMIN
(@) TMAX
CMIP6 MODEL R? NSE PBIAS KGE
ACCESS-CM2 0.83 0.82 -0.69 091
EC-Earth3 0.82 0.80 -0.13 0.90
GFDL-ESM4 0.74 0.71 0.01 0.86
INM-CM5-0 0.77 0.74 0.15 0.87
CAN ESM5 0.78 0.76 0.14 0.88
CMCC-ESM2 0.71 0.68 -0.13 0.84
MPI-ESMI-2-HR 0.86 0.85 -0.48 0.93
MRI-ESM2 0.85 0.84 -0.52 0.92
NOR ESM2-MM 0.73 0.70 -0.55 0.85
EC-Earth3-Veg-LR 0.83 0.81 -0.47 0.90
FGOALS-g3 0.86 0.86 -0.06 0.93
ACCESS-ESM1-5 0.84 0.83 -0.23 091
GISS-E2-1-G 0.84 0.84 -0.52 0.92
IPSL-CMBA-LR 0.87 0.86 0.49 0.93
MIROC-ES2L 0.85 0.84 -1.04 0.92
MPI-ESM1-2-LR 0.84 0.83 -0.44 0.92
NorESM2-LM 0.85 0.84 -0.37 0.92
BCC-CSM2-MR 0.87 0.85 -0.45 0.92
CNRM-CM6-1 0.84 0.83 -0.26 091
CNRM-ESM2-1 0.84 0.82 -0.37 091
(b) TMIN
CMIP6 MODEL R? NSE PBIAS KGE
ACCESS-CM2 091 0.88 5.23 0.93
EC-Earth3 0.92 0.88 6.02 091
GFDL-ESM4 0.86 0.82 5.50 0.90
INM-CM5-0 0.87 0.83 5.90 0.90
CAN ESM5 0.87 0.82 5.79 0.90
CMCC-ESM2 0.85 0.82 450 0.89
MPI-ESMI-2-HR 0.90 0.85 5.55 0.91
MRI-ESM2 0.93 0.89 5.74 0.90
NOR ESM2-MM 0.84 0.80 4.90 0.90
EC-Earth3-Veg-LR 0.93 0.88 5.87 091
FGOALS-g3 0.92 0.87 5.82 0.90
ACCESS-ESM1-5 0.93 0.88 6.03 0.92
GISS-E2-1-G 091 0.89 4.09 0.92
IPSL-CM6A-LR 0.92 0.87 6.39 091
MIROC-ES2L 0.95 0.92 4.75 091
MPI-ESM1-2-LR 0.90 0.86 5.56 091
NorESM2-LM 091 0.87 5.39 0.92
BCC-CSM2-MR 0.93 0.88 5.52 0.90
CNRM-CM6-1 0.92 0.89 5.09 091
CNRM-ESM2-1 091 0.88 5.01 0.92
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similar to that of observational data. As a result, the overall
performance of that model is superior to the other models for
mimicking PPT over the study region. Similarly, IPSL-
CMG6A-LR outperforms the others when mimicking TMAX,
and MIROC-ES2L performs better than the other models
when mimicking TMIN, as illustrated in Figure 5.

Table 4 shows the basic statistical variation for the
monthly mean of observed and the best CMIP6 model for
PPT, TMAX, and TMIN during the years 1985 to 2014. It is
found that the minimum, maximum, mean, and standard
deviation for both datasets are nearly equivalent. The mean of
monthly CMIP6 PPT data is 3.19 mm, which is approximately
identical to the mean of observed PPT, which is 3.32 mm.
While the standard deviation of CMIP6 monthly mean data is
4.62 mm, it is approximately comparable to the standard
deviation of observed PPT, which is 4.63 mm. Similarly, the
mean of CMIP6 TMAX monthly mean data is 31.96 °C,
which is approximately identical to the mean of observed
TMAX, which is 32.23 °C, and the standard deviation of
CMIP6 TMAX monthly mean data is 4.53 °C, which is nearly
equivalent to the standard deviation of observed TMAX,
which is 4.49 °C. The mean of the CMIP6 TMIN monthly
mean data is 27.94 °C, which is quite similar to the mean of
the observed TMIN, which is 27.12 °C, and the standard
deviation of CMIP6 TMIN is 4.94 °C, which is nearly
equivalent to the standard deviation of the observed TMIN,
which is 5.31 °C. This indicates that these models are most
suited for replicating these climate variables. Since these
models demonstrate superior performance compared to other
models for historical periods, they can also be a preferred
choice for projecting climate variables for future periods. This
kind of investigation contributes in assessing the reliability of
CMIP6 in mimicking climate variables. As a result, it was
recognized that CMIP6 is a useful resource for decision-
makers and researchers across numerous fields, supporting
more well-informed strategies and actions in dealing with
climate change challenges. Figure 6 shows the time series
plots and scatter plots between IMD data and the best CMIP6
model data for the PPT, TMAX, and TMIN. This visual aid
enables an in-depth examination of how well the model
matches the real data for the historical period spanning from
1985 to 2014. This systematic representation makes it easier
to comprehend the level of agreement between the values in
the model and the observations, which offers important
insights into the reliability as well as the effectiveness of the
model. It is noteworthy that these models accurately capture
the IMD data and may simulate the PPT, TMAX, and TMIN
across the years. From the scatter plot, it is also evident that
PPT is not as well simulated compared to TMAX and TMIN.
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This may be due to more complex patterns of PPT, which are
impacted by a variety of factors so that the PPT can change
dramatically over short distances and time periods, resulting
in high spatial and temporal variability that climate models
struggle to capture accurately.

5. Conclusions

To examine the changing climatic scenario, it is
vital to use an appropriate climate model. CMIP6 provides an
advanced framework for mimicking many components of the
climate system of the earth, offering vital insights for
sustainable water resource management and agricultural
development.  Precipitation, maximum and minimum
temperatures are essential factors for assessing climate
patterns since they have a large impact on atmospheric
weather conditions. The primary objective of this study was to
assess the performance of twenty coupled model
intercomparison project phase 6 (CMIP6) global circulation
models (GCMs) to mimic PPT, TMAX, and TMIN by
comparing these models to observational data obtained from
Indian Meteorological Department (IMD), Pune, for the
Mahanadi River basin in Chhattisgarh from 1985 to 2014. The
GCMs assessed in this study are derived from NASA's Earth
Exchange Global Daily Downscaled Projections (NEX-
GDDP). Several statistical metrics, such as the Coefficient of
Determination (R?), Nash-Sutcliffe efficiency (NSE), Kling-
Gupta efficiency (KGE), Percent bias (PBIAS), and the Taylor
diagram are utilized to assess the performance of these
GCMS. The metrics are evaluated by comparing monthly
mean simulated data from CMIP6 models and IMD
observational data. The results obtained from this study
suggest that the CMIP6 model MIROC-ES2L performs the
best in mimicking PPT as compared to the other CMIP6
models, achieving in this study an R2of 0.81, an NSE of 0.80,
and a KGE of 0.90 with respect to IMD observational PPT
data. Similarly, in mimicking observed IMD TMAX, IPSL-
CMBG6A-LR model outperforms the other models with an R? of
0.87, an NSE of 0.86, and a KGE of 0.93. The CMIP6 model,
MIROC-ES2L surpasses the other CMIP6 models to replicate
observed IMD TMIN data with an R2 of 0.95, an NSE of 0.92,
and a KGE of 0.91. Additionally, the calculated PBIAS values
of all these best models obtained are under acceptable limits.
Their mean and standard deviation are also almost equivalent
to observational data. The graphical visualization of the
performance using the Taylor diagram and Radar chart
provides a clear visual understanding that aids in the
identification of the most effective model and supports the
outcomes from the quantitative statistical analysis.

Table 4. Comparison of the best CMIP6 model with IMD data

Variable Model Minimum Maximum Mean Std. Deviation

PPT (mm) IMD 0.00 mm 18.51 mm 3.32mm 4.63 mm

( CMIP6 (MIROC-ES2L) 0.00 mm 16.90 mm 3.19 mm 4.62 mm

o IMD 23.58 °C 42.28 °C 32.23°C 4.49°C

TMAX(*C) CMIP6 (IPSL-CMBA-LR) 23.33°C 43.36 °C 31.96 °C 453°C

TMIN (°C) IMD 8.85°C 27.12°C 19.31°C 5.31°C

CMIP6 (MIROC-ES2L) 10.25 °C 27.94 °C 20.16 °C 4,94 °C




158 G. Sahu, & V. K. Vidyarthi / Songklanakarin J. Sci. Technol. 47 (2), 150-159, 2025
(@) 50 50
TMAX R2 =0.87 ——IMD --- IPSL-CM6A-LR
45
(°C) | , 4 .
~ 40 {; i 5 ! t I x oo by .
e A :(1 40 R 3¢ o8
o] E ¢ L .
% 35 ' § 35 S 2 ..
2 | R [ SRR LTI : Q 3 ¢
Ty A% R(NE A" {ATH 2 30 .
25 ' Ha P g o .
] v *
25 .
20 20
1 37 73 109 145 181 217 253 289 325
Number of Month from 1985 to 2014 2 % %0 Il?/ISD 40 4 50
(b) 35 35
TMIN R2 =0.95 —IMD ----MIROC-ES2L
30
30
0) S A .
iy ;
G % N 25
< @ X
g 201 O 20 .
= ¢] R
& 15 £ . Y A
10 ‘ R F || I || AR = ~ Wil
10
5 5
1 37 73 109 145 181 217 253 289 325
Number of Month from 1985 to 2014 5 10 1 Il%/(I)D % %0 ®
© 20
PRCP 20{ R2=08L ——IMD ----MIROC-ES2L
*
mm ] 16 “ro
£ 5) . AN *
E 12 4 w 12 ¢ :“ Y » X
9 8 Wt 2T .
T 8 xr 8 o' 4 o ° .
= QK B .
s * e s.‘ . .
4 - ¢4 -
4 22 AER
. NERARAVARRNANEY 202 Uy | v Y *, *
3 0 . F3
1 37 73 109 145 181 217 253 289 325
Number of Month from 1985 to 2014 0 4 8 IMD 12 16 20

Figure 6. Time series and scatter plots between the best CMIP6 models and IMD data for different climatic variables in 1985 to 2014

It is hoped that the outcome of this study will help
the researchers, hydrologists, and policymakers to select the
most accurate climate models for mimicking different climatic
variables for use in the monitoring and forecasting of various
climatic factors at the local scale by utilizing standard
statistical measures for the development of sustainable and
adaptive water resource management strategies.
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