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Abstract 
 

The main goal of the present paper is to find exact traveling wave solutions of the space-time fractional order (2+1)-

dimensional breaking soliton equation using the simple equation (SE) method with Bernoulli equation, the simple equation (SE) 

method with Riccati equation, and the Riccati sub-equation method. Using these techniques yields nineteen different solutions, 

which are in the form of exponential, trigonometric, and hyperbolic functions. This study investigated how varying the time 

affected the deeds of the solutions obtained for the given conditions. The predicted solutions, obtained under restricted 

conditions, were visualized through 2D, 3D, and contour plots using appropriate parameter values. 

 

Keywords: SE with Bernoulli equation, SE with Riccati equation, Riccati sub-equation method, fractional partial differential  

                     equations, fractional order (2+1)-dimensional breaking soliton equation 

 

 

1. Introduction  
 

Fractional differential equations (FDEs) arise in 

numerous problems in many scientific fields, including 

control theory, engineering, biology, physics, mathematics, 

and chemistry. Therefore, exact solution methods for FDEs 

have become more important. Many researchers have used 

diverse methods to get exact solutions, such as the SE method 

(Chankaew, Phoosree, & Sanjun, 2023; Sanjun & Chankaew,

 
2022), the Kudryashov method (Thadee, Chankaew, & 

Phoosree, 2022), the modified Kudryshov method (Srivastava 

et al., 2020), the extended tanh-function method (Sadiya, Inc, 

Arefin, & Uddin 2022), the Tanh-coth method (Behera, 

Mohanty, & Virdi, 2023), the -expansion method 

(Sirisubtawee, Koonprasert, & Sungnul, 2019), the -expansion 

method (Djilali & Alı, 2023), the -expansion method (Behera, 

Aljahdaly, & Virdi, 2022), the Riccati sub-equation method 

(Phoosree, Khongnual, Sanjun, Kammanee, & Thadee, 2024; 

Thadee, Phookwanthong, Jitphusa, & Phoosree, 2023), the 

functional variable method (Rezazadeh, Vahidi, Zafar, & 

Bekir, 2020), the RKHS method (Abu Arqub & Rashaideh, 

2018), and so on. There exists a great number of different 
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definitions of fractional derivatives that may be found in the 

published research, such as Caputo (Abu Arqub, 2019), 

Atangana–Baleanu–Caputo fractional derivative (Momani, 

Abu Arqub, & Maayah, 2020), Riemann–Liouville (Seddek, 

Ebaid, El-Zahar, & Aljoufi, 2023), Beta-fractional derivative 

(Wang, 2023), and Jumarie’s modified Riemann–Liouville 

(Zeng, Wang, Xiao, & Wang, 2023), etc. 

The main aim of this study is to analyze the space–

time fractional order (2+1)-dimensional breaking soliton 

equation (Ali et al., 2022), 

 

       2 34 2 0, 0 1.t x x x y x y x yD D u D uD D u D u D u D u D u               

       2 34 2 0, 0 1.t x x x y x y x yD D u D uD D u D u D u D u D u                (1.1) 

where 
tD u  denotes Jumarie’s modified Riemann–Liouville 

derivatives of u, where u = u(x, y, t). 

 Jumarie's modified Riemann-Liouville derivative 

and the properties of the modified Riemann-Liouville 

derivative (Sahoo & Ray, 2015) of order α are defined by the 

expression 
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which can be written as 
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(1.3) 

and some properties of the modified Riemann-Liouville 

derivative are as follows: 
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In this paper, we have solved the space-time 

fractional order (2+1)-dimensional breaking soliton equation 

by applying Jumarie's modified Riemann-Liouville derivative. 

We are also using three different approaches: the SE with 

Bernoulli equation, the SE with Riccati equation, and the 

Riccati sub-equation method. We have displayed the 

analytical solutions and the wave effects on a 2D graph, a 3D 

graph, and a contour graph. 

 

2. General form of the Methods 
 

In this part, we discuss the three methods for solving 

fractional PDEs. The general form of a fractional PDEs is  
 

 

 2, , , , , , ,... 0, 0 1,x y t x y x t xG u D u D u D u D u D D u D D u           

 2, , , , , , ,... 0, 0 1,x y t x y x t xG u D u D u D u D u D D u D D u            
(2.1) 

where u(x, y, t) is an unknown function and G is a polynomial 

of u(x, y, t) and its derivatives. Start by considering combining 

the independent variables x, y, and t into one variable 

.
( 1) ( 1) ( 1)

kx ly t  


  
  
     

 

We suppose the traveling wave solution of 

fractional PDEs is a solution that satisfies  
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where constants k and l are non-zero constants, and ω is the 

speed of the traveling wave.  We call this a stationary wave 

when ω = 0. For ω > 0, the wave moves in the positive 

direction, and for ω < 0, the wave moves in the negative 

direction (Phoosree, 2019). The traveling wave transformation 

Equation ( 2. 2)  permits us to reduce Equation ( 2. 1)  to the 

following ordinary differential equation (ODE): 

 
2 3

2 3
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  (2.3) 

where Q is a polynomial in u(ξ) and its total derivatives  
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2.1 Algorithm of the SE method with Bernoulli  

      equation  
  

We outline the fundamental steps of the SE method 

with Bernoulli equation (Chankaew et al., 2023; Phoosree & 

Thadee, 2022) as follows:  

Step 1. Start by considering Equations (2.1) - (2.3). 

Step 2. Suppose that the solution of Equation (2.3) 

is in the following form:  
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in which ai (i = 0, 1, 2, … , N) are constants that need to be 

determined such that aN ≠ 0 and Z(ξ) conforms to the 

following Bernoulli equation:  

 

     2 ,Z Z Z        (2.5) 
 

where β and η are non-zero constants. The two cases of 

solutions to Equation (2.5) are presented here. 

Case 1: β > 0, η < 0,  
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Case 2: β < 0, η > 0,  
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Step 3. The balance number N may be achieved by 

striking a balance between the derivative of the highest-order 

and the highest nonlinear terms that exist in Equation (2.4). 

Step 4. For the terms that were all in the same power 

of Z, we added up all of the coefficients and set them to zero. 

We obtained β, η, ω, and ai. As a result, the traveling wave 

solutions to Equation (2.1) are given. 

 

2.2 Algorithm of the SE method with Riccati  

      equation 
  

The following five processes can be used in the 

simple equation method with Riccati equation (Nofal, 2016). 

Step 1. Start by considering Equations (2.1) - (2.3). 

Step 2. Suppose that the solution of Equation (2.3) 

is in the following form, Equation (2.4), and Z(ξ) conforms to 

the following Riccati equation:  

 

   2 ,Z cZ d     (2.8) 
 

where c and d are non-zero constants. The two cases of 

solutions to Equation (2.8) are presented here.  

Case 1: cd < 0,  
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(2.9)) 

 

Case 2: cd > 0,  

 

    0tan ,
cd

Z cd
c

     (2.10) 

where ξ0 is a constant. 

Step 3. The balance number N may be achieved by 

striking a balance between the derivative of the highest-order 

and the highest nonlinear terms that exist in Equation (2.4). 

Step 4. For the terms that were all in the same power 

of Z, we added up all of the coefficients and set them to zero. 

We obtained c, d, ω, and ai. As a result, the traveling wave 

solutions to Equation (2.1) are given. 

 

2.3 Algorithm of the Riccati sub-equation method 
  

This part presents the Riccati sub-equation method, 

which is a simple technique for finding traveling wave 

solutions.  There are five processes to follow ( Thadee et al. , 

2023).  

Step 1. Start by considering Equations (2.1) - (2.3). 

Step 2. Suppose that the solution of Equation (2.3) 

is in the following form, Equation (2.4). 

Step 3. The Riccati sub-equation method (Khoda 

dad, Nazari, Eslami, & Rezazadeh, 2017) is used to find Z as 

shown below: 

 

   2Z Z ,      (2.11)) 

 

where σ is an arbitrary constant. Here, the prime denotes the 

derivative with respect to ξ.  By using the general solutions of 

Equation (2.11), we obtain the following expressions: 

Case 1. When σ < 0,  

 

   1 tanh ,     pqZ  (2.12)) 
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     4 coth 2 csch 2 ,          pq pqZ  (2.15)) 
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Where A, B are two nonzero real constants and satisfy B2 –A2 

> 0.  

Case 2. When σ > 0,  

 

   8 tan ,   pqZ  (2.19)) 

 

   9 cot ,    pqZ  (2.20)) 

 

     10 tan 2 sec 2 ,      pq pqZ  (2.21)) 
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where A, B are two nonzero real constants and satisfy A2 - B2 

> 0.  

Case 2. When σ = 0,  

 

 15

1
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where g is a constant. 

The different types of generalized hyperbolic 

functions are defined as follows (Thadee et al., 2023), with p 

and q as arbitrary constants, p > 0, q > 0,  
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where ζ is an independent variable. 

The different types of generalized triangular functions are 

defined as follows ( Thadee et al. , 2023) , with p and q as 

arbitrary constants, p > 0, q > 0,  
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where ζ is an independent variable. 

Step 4. The balance number N may be achieved by 

striking a balance between the derivative of the highest-order 

and the highest nonlinear terms that exist in Equation (2.11). 

Step 5. Substituting Equations (2.4) and (2.11) into 

Equation (2.3), the coefficients of all terms of the same order 

Zi (i = 0, 1, 2,…) are gathered, and the coefficients are then set 

to zero. We get an overdetermined system of algebraic 

equations with respect to ai (i = 0, 1, 2,…, N). When all the 

parameters in Equation (2.4) are substituted, the solutions to 

Equation (2.1) for the traveling wave are reached. 

 

3. Mathematical analyses of the equation and their  

    solutions 
 

 Next, we wish to apply the preceding methods in 

Sections 2.1–2.3 to solve both the space-time fractional order 

(2+1)-dimensional breaking soliton equation. We will reduce 

it to an ODE using u(x, y, t) = u(ξ) and the traveling wave 

variable 

     1 1 1

kx ly t  


  
  
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. The substitution of 

the transformation into equation (1.1) yields 
 

 42 2 34 2 0.k u k lu u k lu u k lu           (3.1) 

 

Integrating Equation (3.1) with the zero constant, we get: 
 

 
22 33 0.k u k l u k lu        (3.2) 

 

The subsequent sections employ the planned methods to 

obtain the desired solutions. 
 

3.1 Solutions with the SE method with Bernoulli  

      equation 
  

Next, we balanced the highest-order derivative 

terms u with the highest-power nonlinear terms (u΄)2 of 

Equation (3.2). Then N = 1. We have the solution to Equation 

(3.2) as follows: 

 

   0 1 ,u a a Z    (3.3) 

 
where z satisfies Equation (2.5). Therefore, the expressions for 

u΄, (u΄)2, and u  are expressed as: 
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 
2 2 2 2 2 3 2 2 4

1 1 12 ,u a Z a Z a Z       (3.5) 

 
3 2 2 2 3 3 4
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Substituting Equations (3.4)-(3.6) into Equation (3.2), the 

outcome is 
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(3.7) 

 

Then we set each coefficient of Zi to zero, where i = 1, 2, 3, 4 

yields 

 
1 3 3

1 1; 0,Z k a k l a     (3.8) 

 
2 2 2 2 3 2

1 1 1; 3 7 0,Z k a k l a k l a        (3.9)) 

 
3 2 2 3 2

1 1; 6 12 0,Z k l a k l a     (3.10)) 

 
4 2 2 2 3 3

1 1; 3 6 0.Z k l a k l a     (3.11)) 

 

Solving this system of algebraic equations, we obtain 

 

1 2a k  and 2 2k l  . (3.12)) 

 
By Equations (2.6), (2.7), (3.12), and 
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     1 1 1

kx ly t  


  
  
     

 the exact solutions to the 

space-time fractional order (2+1)-dimensional breaking 

soliton equation are shown for two cases with an arbitrary 

constant ζ0.  

Case 1: β > 0, η < 0,  

 

 
 

 

0

0
1 0, , 2 .

1

e
u x y t a k

e

  

  










 
     

 
(3.13) 

Where 

 

( 1) ( 1) ( 1)

kx ly t  


  
  
     

  

and ζ0 is a constant of the integration.  

 

Case 2: β < 0, η > 0, 

 

 
 

 

0

0
2 0, , 2 .

1

e
u x y t a k

e

  

  










 
     

 
(3.14) 

Where 

 

( 1) ( 1) ( 1)

kx ly t  


  
  
     

  

and ζ0 is a constant of the integration.  

 

3.2 Solutions with the SE method with Riccati  

      equation  
  

From N = 1. We have the solution to Equation (3.2), 

which is Equation (3.3). Here Z  satisfies Equation (2.8), 

therefore, the expressions for u΄, (u΄)2, and u  are: 

 
2

1 1,u ca Z da    (3.15) 

 

 
2 2 2 4 2 2 2 2

1 1 12 ,u c a Z cda Z d a     (3.16) 

 
3 4 2 2 2

1 1 16 8 2 .u c a Z c da Z cd a     (3.17) 

 

Substituting Equations (3.15)-(3.17) into Equation (3.2), the 

outcome is 

 

   

 

2 2 2 3 2 2 2 3 2 2

1 1 1 1 1 1

2 2 2 3 3 4

1 1

3 2 6 8

3 6 0.

k da k ld a k lcd a k ca k lcda k lc da Z

k lc a k lc a Z

       

      

 

2 2 2 3 2 2 2 3 2 2

1 1 1 1 1 1

2 2 2 3 3 4

1 1

3 2 6 8

3 6 0.

k da k ld a k lcd a k ca k lcda k lc da Z

k lc a k lc a Z

       

   

   

 

2 2 2 3 2 2 2 3 2 2

1 1 1 1 1 1

2 2 2 3 3 4

1 1

3 2 6 8

3 6 0.

k da k ld a k lcd a k ca k lcda k lc da Z

k lc a k lc a Z

       

   

 
(3.18) 

 

Then we set each coefficient of Zi to zero, where i = 0, 2, 4 

yields 

0 2 2 2 3 2

1 1 1; 3 2 0,Z k da k ld a k lcd a     (3.19) 

 
2 2 2 3 2

1 1 1; 6 8 0,Z k ca k lcda k lc da     (3.20) 

 
4 2 2 2 3 3

1 1: 3 6 0.Z k lc a k lc a    (3.21) 

 

Solving this system of algebraic equations, we obtain 

1 2a kc  and 24 .k lcd    (3.22) 

 

By Equations (2.9), (2.10), (3.22), and  

,
( 1) ( 1) ( 1)

kx ly t  


  
  
     

the exact solutions of the 

space-time fractional order (2+1)-dimensional breaking 

soliton equation are shown for two cases with an arbitrary 

constant ζ0. 

Case 1: cd < 0,  

 

 
 0

3 0

ln
, , 2 tanh ; 1.

2
u x y t a k cd cd

 
 

 
       

 

 

 
 0

3 0

ln
, , 2 tanh ; 1.

2
u x y t a k cd cd

 
 

 
       

 

 
(3.23) 

where 

 

( 1) ( 1) ( 1)

kx ly t  


  
  
     

 and ζ0 > 0.  

 

Case 2: cd > 0,  

 

    4 0 0, , 2 tan .u x y t a k cd cd      (3.24) 

where 

  

( 1) ( 1) ( 1)

kx ly t  


  
  
     

 

and ζ0 is a constant of the integration. 

 

3.3 Solutions with the Riccati sub-ODE method 

  
Using the balance between the derivative of the 

highest-order and the highest nonlinear terms in Equation 

(3.2), we obtain N = 1. For N = 1, Equation (2.4) has the form: 

 

  0 1 ,  u a a Z  (3.25) 

 

where Z  satisfies Equation (2.11). Therefore, the expressions 

for u΄, (u΄)2, and u  are expressed as: 

 
2

1 1 ,  u a a Z  (3.26) 

 

  11 1

2 2 2 2 2 2 42 ,    u a a Z a Z  (3.27) 

 
2 2 4

1 1 12 8 6 .    u a a Z a Z  (3.28) 

 

Substituting Equations (3.26)-(3.28) into Equation (3.2), the 

outcome is 

 

     2 2 2 3 2 2 2 3 2 2 2 3 4

1 1 1 1 1 1 1 13 2 6 8 3 6 0.k a k l a k l a k a k l a k l a Z k la k la Z                

     2 2 2 3 2 2 2 3 2 2 2 3 4

1 1 1 1 1 1 1 13 2 6 8 3 6 0.k a k l a k l a k a k l a k l a Z k la k la Z                

     2 2 2 3 2 2 2 3 2 2 2 3 4

1 1 1 1 1 1 1 13 2 6 8 3 6 0.k a k l a k l a k a k l a k l a Z k la k la Z                 

(3.29) 

 

Then we set each coefficient of Zi to zero, where i = 0, 2, 4 

yields 
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0 2 2 2 3 2

1 1 1; 3 2 0,Z k a k l a k l a       (3.30) 

 
2 2 2 3

1 1 1; 6 8 0,Z k a k l a k l a       (3.31) 

 
4 2 2 3

1 1; 3 6 0.  Z k la k la  (3.32) 

 

Solving this system of algebraic equations, we obtain 

 

1 2a k  and 24k l   . (3.33) 

 

By Equations (2.12)-(2.26), (3.33), and  

,
( 1) ( 1) ( 1)

kx ly t  


  
  
     

 the exact solutions of the 

space-time fractional order (2+1)-dimensional breaking 

soliton equation are shown for three cases. 

Case 1: σ < 0,  

 

 5 0 2 tanh ,pqu a k       (3.34) 

 

 6 0 2 coth ,pqu a k       (3.35) 

 

     7 0 2 tanh 2 2 sech 2 ,pq pqu a k ki           

     7 0 2 tanh 2 2 sech 2 ,pq pqu a k ki            
(3.36) 

 

     8 0 2 coth 2 2 csch 2 ,pq pqu a k k          
 

     8 0 2 coth 2 2 csch 2 ,pq pqu a k k            
(3.37) 

 

 9 0 tanh coth ,
2 2

pq pqu a k k
 

    
    

          
   

 

 9 0 tanh coth ,
2 2

pq pqu a k k
 

    
    

          
   

 
(3.38) 

 
   

 

2 2

10 0

cosh 2
2 ,

sinh 2

pq

pq

A B A
u a k

A B

  




     
  
   
 

 

 
   

 

2 2

10 0

cosh 2
2 ,

sinh 2

pq

pq

A B A
u a k

A B

  




     
  
   
 

 
(3.39) 

 

 
   

 

2 2

11 0

sinh 2
2 .

cosh 2

pq

pq

B A A
u a k

A B

  




     
  
   
 

 

 
   

 

2 2

11 0

sinh 2
2 .

cosh 2

pq

pq

B A A
u a k

A B

  




     
  
   
 

 
(3.40) 

 

Where  

     1 1 1

kx ly t  


  
  
     

  

and 2 2 0.B A   

Case 2: σ > 0,  

 

   12 0 2 tan ,pqu a k     (3.41) 

   13 0 2 cot ,pqu a k     (3.42) 

 

     14 0 2 tan 2 2 sec 2 ,pq pqu a k k       

     14 0 2 tan 2 2 sec 2 ,pq pqu a k k        
(3.43) 

 

     15 0 2 cot 2 2 csc 2 ,pq pqu a k k      
 

     15 0 2 cot 2 2 csc 2 ,pq pqu a k k        
(3.44) 

 

 16 0 tan cot ,
2 2

pq pqu a k
 

    
    

          
    

 

 16 0 tan cot ,
2 2

pq pqu a k
 

    
    

          
    

 
(3.45) 

 

 
   

 

2 2

17 0

cos 2
2 ,

sin 2

pq

pq

A B A
u a k

A B

  




   
  
  
 

 
(3.46) 

 

 
   

 

2 2

18 0

sin 2
2 .

cos 2

pq

pq

A B A
u a k

A B

  




   
  
  
 

 
(3.47) 

 

Where  

     1 1 1

kx ly t  


  
  
     

  

and 2 2 0.A B   

Case 3: σ = 0, 

 

 19 0

2
.



 
  

 

k
u a

g

 
(3.48) 

 

Where  

   
.

1 1

 


 

 
   

kx ly  

 
4. Discussion and Results 
 

 The analytical solutions of the space-time fractional 

order (2+1)-dimensional breaking soliton equation of the three 

methods are in the form of exponentials, trigonometric 

functions, and hyperbolic functions. We substitute the 

parameters shown in Table 1, Table 2, and Table 3. The graph 

effects of Equations (3.13) and (3.14) by the SE method with 

Bernoulli, which portrays the wave behaviors as kink waves, 

are presented in Table 1. Table 2 shows the resulting graph 

effects of the SE method with Riccati in Equations (3.23), 

which present the wave behaviors as kink waves, and 

Equations (3.24), which present the wave behaviors as 

periodic waves. Table 3 by using the Riccati sub-equation 

method, Equations (3.34), (3.40), and (3.48), which show the 

wave behaviors as kink waves.  

The graphs of Equations (3.35)-(3.39) and (3.41)-

(3.47) exhibit periodicity. 
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Table 1. Parameters values of Equations (3.13) and (3.14) 
 

Equations Parameters Figure Wave effects 

    

(3.13) 
0 1

0

0, 2, 1, 1, 2, 1,

2, 0.5, 0, 1 , 30, 50, 100

a a k l

x y t

 

  

       

     

 
1 kink 

(3.14) 
0 1

0

0, 2, 1, 1, 2, 1,

2, 0.5, 0, 1 , 30, 50, 100

a a k l

x y t

 

  

      

     

 
- kink 

    

 

Table 2. Parameters values of Equations (3.23) and (3.24) 

 

Equations Parameters Figure Wave effects 

    

(3.23) 
0 1

0

0, 1, 1, 1, 0.5, 1, 1,

2, 0.5, 10, 1 , 30, 50, 100

a a k l c d

x y t



  

         

     
 

- kink 

(3.24) 
0 1

0

0, 1, 1, 1, 0.5, 1, 1,

2, 0.5, 0, 1 , 30, 50, 100

a a k l c d

x y t



  

        

     
 

2 periodic 

    

 

Table 3. Parameters values of Equations (3.34)-(3.35) and (3.37)-(3.48) 
 

Equations Parameters Figure Wave effects 

    

(3.34) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

     

    

 - kink 

(3.35) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

     

    
 

- periodic 

(3.37) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

     

    
 

3 periodic 

(3.38) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

     

    
 

- periodic 

(3.39) 
0 10, 2, 1, 1, 0.15, 1,

0.6, 2, 0.5, 1 , 30, 50, 100

a a k l A

B x y t



 

      

     
 

4 periodic 

(3.40) 
0 10, 2, 1, 1, 0.15, 1,

0.6, 2, 0.5, 1 , 30, 50, 100

a a k l A

B x y t



 

      

     
 

- kink 

(3.41) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

    

     
 

- periodic 

(3.42) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

    

     
 

5 periodic 

(3.43) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

    

     
 

- periodic 

(3.44) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

    

     
 

- periodic 

(3.45) 
0 10, 2, 1, 1, 0.15,

0.6, 0.5, 1 , 30, 50, 100

a a k l

x y t



 

    

     
 

- periodic 

(3.46) 
0 10, 2, 1, 1, 0.15, 2,

0.6, 1, 0.5, 1 , 30, 50, 100

a a k l A

B x y t



 

     

      
 

- periodic 

(3.47) 
0 10, 2, 1, 1, 0.15, 2,

0.6, 1, 0.5, 1 , 30, 50, 100

a a k l A

B x y t



 

     

      
 

6 periodic 

(3.48) 
0 10, 2, 1, 1, 0, 10,

0, 0.5, 1 , 30, 50, 100

a a k l g

x y t



 

     

    
 

- kink 

    

 

 

 



J. Sanjun et al. / Songklanakarin J. Sci. Technol. 47 (6), 396-405, 2025   403 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Figure 1. The kink effect in 3D, contour, and 2D plot for t=50, 100 in  

                equation (3.13) 

Figure 2. The periodic effect in 3D, contour, and 2D plot for t=50, 100  

                in equation (3.24) 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

Figure 3. The periodic effect in 3D, contour, and 2D plot for t=50, 100  

                in equation (3.37) 

Figure 4. The periodic effect in 3D, contour, and 2D plot for t=50, 100  

                in equation (3.39) 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure 5. The periodic effect in 3D, contour, and 2D plot for t=50, 100  

                in equation (3.42) 

Figure 6. The kink effect in 3D, contour, and 2D plot for t=50, 100 in  

                equation (3.47) 
 

 



404 J. Sanjun et al. / Songklanakarin J. Sci. Technol. 47 (6), 396-405, 2025 

 

5. Conclusions  
  

In this work, we determined the traveling wave 

solution for the space-time fractional order (2+1)-dimensional 

breaking soliton equation using the SE method with Bernoulli, 

the SE method with the Riccati equation, and the Riccati sub-

equation method. Nineteen distinct solutions are produced by 

the results: two using the SE method with Bernoulli equation, 

two using the SE method with Riccati equation, and fifteen 

using the Riccati sub-equation method. Consequently, we 

came up with a lot of different kinds of exact traveling wave 

solutions for the model, exponentials, trigonometric functions, 

and hyperbolic functions. 

 The SE method with Bernoulli, the SE method with 

Riccati equation, and the Riccati sub-equation method are 

straightforward to comprehend and can be applied to other 

nonlinear fractional differential equations (FDEs). This study 

shows that the suggested method is suitable and effective for 

accurately solving the breaking soliton equation in space-time 

fractional order (2+1) dimensions. Three approaches proved to 

be dependable and effective in providing accurate solutions 

for solitary waves. 

 We also presented 3D, 2D, and contour plots for a 

few of the space-time fractional order (2+1)-dimensional 

breaking soliton equation solutions, which we demonstrated in 

Figures 1–6, where all graphs are kink and periodic waves. 
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