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Abstract

The main goal of the present paper is to find exact traveling wave solutions of the space-time fractional order (2+1)-
dimensional breaking soliton equation using the simple equation (SE) method with Bernoulli equation, the simple equation (SE)
method with Riccati equation, and the Riccati sub-equation method. Using these techniques yields nineteen different solutions,
which are in the form of exponential, trigonometric, and hyperbolic functions. This study investigated how varying the time
affected the deeds of the solutions obtained for the given conditions. The predicted solutions, obtained under restricted
conditions, were visualized through 2D, 3D, and contour plots using appropriate parameter values.

Keywords: SE with Bernoulli equation, SE with Riccati equation, Riccati sub-equation method, fractional partial differential
equations, fractional order (2+1)-dimensional breaking soliton equation

1. Introduction

Fractional differential equations (FDEs) arise in
numerous problems in many scientific fields, including
control theory, engineering, biology, physics, mathematics,
and chemistry. Therefore, exact solution methods for FDEs
have become more important. Many researchers have used
diverse methods to get exact solutions, such as the SE method
(Chankaew, Phoosree, & Sanjun, 2023; Sanjun & Chankaew,

*Corresponding author
Email address: sirasrete.pho@sru.ac.th

2022), the Kudryashov method (Thadee, Chankaew, &
Phoosree, 2022), the modified Kudryshov method (Srivastava
et al., 2020), the extended tanh-function method (Sadiya, Inc,
Arefin, & Uddin 2022), the Tanh-coth method (Behera,
Mohanty, & Virdi, 2023), the -expansion method
(Sirisubtawee, Koonprasert, & Sungnul, 2019), the -expansion
method (Djilali & Ali, 2023), the -expansion method (Behera,
Aljahdaly, & Virdi, 2022), the Riccati sub-equation method
(Phoosree, Khongnual, Sanjun, Kammanee, & Thadee, 2024;
Thadee, Phookwanthong, Jitphusa, & Phoosree, 2023), the
functional variable method (Rezazadeh, Vahidi, Zafar, &
Bekir, 2020), the RKHS method (Abu Arqub & Rashaideh,
2018), and so on. There exists a great number of different
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definitions of fractional derivatives that may be found in the
published research, such as Caputo (Abu Arqub, 2019),
Atangana—Baleanu—Caputo fractional derivative (Momani,
Abu Arqub, & Maayah, 2020), Riemann-Liouville (Seddek,
Ebaid, El-Zahar, & Aljoufi, 2023), Beta-fractional derivative
(Wang, 2023), and Jumarie’s modified Riemann-Liouville
(Zeng, Wang, Xiao, & Wang, 2023), etc.

The main aim of this study is to analyze the space—
time fractional order (2+1)-dimensional breaking soliton
equation (Ali et al., 2022),

D (Dfu)—4D;uD; (Dyu)—2D}“u(Dju)+Di“u(Dju)

=0, O<a<l.

(1.1)

where Dfu denotes Jumarie’s modified Riemann—Liouville

derivatives of u, where u = u(x, y, t).

Jumarie's modified Riemann-Liouville derivative
and the properties of the modified Riemann-Liouville
derivative (Sahoo & Ray, 2015) of order o are defined by the
expression

o

Z(—l)k[‘;]f(w(a—k)h)

f(a)(x)zLigg k=0 h“ , O<a<l (1.2)
which can be written as
N PN ~ .
e [ (= IFEO-FOME i a <o,
“ B 1 Ef N B .
D¢ f(x)= ri-a) dx!(x ST -F(O)dS if 0<a<l,  (1.3)
[Fe)™ if n<a<n+ln>],

and some properties of the modified Riemann-Liouville
derivative are as follows:

oy T(y+)x™
U T(y+1-a)’
Dy (f()9(x)) =g(x)D; f (x) + f (x)D{'g(x),
D¢ f(9(x) = fi[9(x)1D{ g (x) = Dy f[g(x)1(g'(x))*.

y>0, x>0,

(1.4)

In this paper, we have solved the space-time
fractional order (2+1)-dimensional breaking soliton equation
by applying Jumarie's modified Riemann-Liouville derivative.
We are also using three different approaches: the SE with
Bernoulli equation, the SE with Riccati equation, and the
Riccati sub-equation method. We have displayed the
analytical solutions and the wave effects on a 2D graph, a 3D
graph, and a contour graph.

2. General form of the Methods

In this part, we discuss the three methods for solving
fractional PDEs. The general form of a fractional PDEs is

G(u, Dfu, Dyu, D¢y, D}“u, Dy D{u, D¢ D, ..)
=0, O<a<l]
where u(x, y, t) is an unknown function and G is a polynomial

of u(x, y, t) and its derivatives. Start by considering combining
the independent variables x, y, and t into one variable
= kx* . y*  at® '
INa+l) T'(a+l) T(a+l)
We suppose the traveling wave solution of
fractional PDEs is a solution that satisfies

2.1)

kx“ N ly* ot”

[(a+l) T(a+l) T(a+l)’
where constants k and | are non-zero constants, and o is the
speed of the traveling wave. We call this a stationary wave
when w = 0. For @ > 0, the wave moves in the positive
direction, and for » < 0, the wave moves in the negative
direction (Phoosree, 2019). The traveling wave transformation
Equation (2.2) permits us to reduce Equation (2.1) to the
following ordinary differential equation (ODE):

ux, y,t)=u(s), &= (2.2)

du d%u d%u
g =0, 2.3
Q(udg e ) (23)
where Q is a polynomial in u(¢) and its total derivatives
du d?u
u’ =— . u" -, and so on.

2.1 Algorithm of the SE method with Bernoulli
equation

We outline the fundamental steps of the SE method
with Bernoulli equation (Chankaew et al., 2023; Phoosree &
Thadee, 2022) as follows:

Step 1. Start by considering Equations (2.1) - (2.3).

Step 2. Suppose that the solution of Equation (2.3)
is in the following form:

N
u(e)=>az'(&). (2.4)
i=0
in which ai (i=0, 1, 2, ..., N) are constants that need to be
determined such that an # 0 and Z(¢) conforms to the
following Bernoulli equation:

Z'(&)=pz(&)+nz*(£),

where # and x are non-zero constants. The two cases of
solutions to Equation (2.5) are presented here.
Case1: 5>0,7<0,

(2.9)

ﬁeﬂ(5+§o)
()= 1— el E8) (2.6)
Case 2: <0, >0,
B(E+&)
e
z(&)=-"F @.7)

1+ ne/f(§+§o) '
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Step 3. The balance number N may be achieved by
striking a balance between the derivative of the highest-order
and the highest nonlinear terms that exist in Equation (2.4).

Step 4. For the terms that were all in the same power
of Z, we added up all of the coefficients and set them to zero.
We obtained f, 5, w, and ai. As a result, the traveling wave
solutions to Equation (2.1) are given.

2.2 Algorithm of the SE method with Riccati
equation

The following five processes can be used in the
simple equation method with Riccati equation (Nofal, 2016).

Step 1. Start by considering Equations (2.1) - (2.3).

Step 2. Suppose that the solution of Equation (2.3)
is in the following form, Equation (2.4), and Z(¢) conforms to
the following Riccati equation:

Z'(&)=cz?(&)+d, (2.8)

where ¢ and d are non-zero constants. The two cases of
solutions to Equation (2.8) are presented here.
Case 1l:cd <0,

Z(f):@tanh(ﬁé%]: &% >0, y==%1 (2.9)

Case 2: cd > 0,
Z(¢) =@tan(\/a(§+§o)), (2.10)

where & is a constant.

Step 3. The balance number N may be achieved by
striking a balance between the derivative of the highest-order
and the highest nonlinear terms that exist in Equation (2.4).

Step 4. For the terms that were all in the same power
of Z, we added up all of the coefficients and set them to zero.
We obtained ¢, d, w, and ai. As a result, the traveling wave
solutions to Equation (2.1) are given.

2.3 Algorithm of the Riccati sub-equation method

This part presents the Riccati sub-equation method,
which is a simple technique for finding traveling wave
solutions. There are five processes to follow ( Thadee et al.,
2023).

Step 1. Start by considering Equations (2.1) - (2.3).

Step 2. Suppose that the solution of Equation (2.3)
is in the following form, Equation (2.4).

Step 3. The Riccati sub-equation method (Khoda
dad, Nazari, Eslami, & Rezazadeh, 2017) is used to find Z as
shown below:
Z'(&)=o+2Z2(¢), (2.11)
where ¢ is an arbitrary constant. Here, the prime denotes the
derivative with respect to & By using the general solutions of
Equation (2.11), we obtain the following expressions:

Case 1. When 6 <0,
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2,()=—-o tanh , (V=0¢), (2.12)

Z,(£) == coth , (V=0¢), (2.13)

Z,(¢) == tanh , (=) tiv=o sech,, (2v=0¢), (2.14)

z,(£)=—-ocoth,, (2J=0¢) - csch,, (24-0¢),  (2.15)

25(5)——i[ﬁtanhpq(‘/;_”§]+ —acothpq[J;_oéjj, (2.16)
_{-(#+B?)o - AV-ocosh,, (2v-0¢)

Ze(‘f)— Asinhpq (ZE§)+B ' (2.17)
(B -A)o - AV=gsinh, (2V-0¢)

27(5)__ Acoshpq(ZE§)+B ' (218)

Where A, B are two nonzero real constants and satisfy B? —A?
> 0.
Case 2. When ¢ >0,

Z,(£)=o tan,, (Vo&), (2.19)

2,(£)=—o cot,, (Voé), (2.20)

Zlo(§)=—J;tanpq(Zx/gg‘)i«/;secpq(Z«/;), (2.21)

2,,(&) = o cot,, (2o ) o ese, (240é), (2.22)

zlz(é)—;[@anpq [fé}—ﬁcmpq [ffn (2.23)
2 /(A -B?)o - Ao cos,, (24o¢)

Zl3(§)_ Asin (2\/;§)+B ) (2.24)
B (A -B)o - Ao sin, (24o¢)

Zul8)=- Acoqu(zx/gg)+B ' (2.25)

where A, B are two nonzero real constants and satisfy A2 - B2
>0.
Case 2. When 6 =0,

1

le(é:):_ms

(2.26)

where g is a constant.

The different types of generalized hyperbolic
functions are defined as follows (Thadee et al., 2023), with p
and q as arbitrary constants, p >0, q >0,
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£ _get
sinhpq(f):w, (2.27)
coshpq(§)=py%w, (2.28)
pe‘ —ge* .

tanh (&)=LE "% _
A (8)= e o (2.29)
_pef+ge’ )
o0t (£) = er —ge e (2.30)
2 .
e (8)= e (2.31)

2

oo (£) = —gee” (2.32)

where {'is an independent variable.

The different types of generalized triangular functions are
defined as follows ( Thadee et al., 2023), with p and q as
arbitrary constants, p >0, q > 0,

sinpq(g):%iqeilé, (2.33)
coqu(f):@, (2.34)
tanpq(f):—i%, (2.35)
ot . (5):.% (2.36)
secpq(é):ﬁ. (2.37)
Csc"“(g):pe‘%iqe"g’ (2.38)

where {'is an independent variable.

Step 4. The balance number N may be achieved by
striking a balance between the derivative of the highest-order
and the highest nonlinear terms that exist in Equation (2.11).

Step 5. Substituting Equations (2.4) and (2.11) into
Equation (2.3), the coefficients of all terms of the same order
Zi(i=0,1,2,..) are gathered, and the coefficients are then set
to zero. We get an overdetermined system of algebraic
equations with respect to ai (i = 0, 1, 2,..., N). When all the
parameters in Equation (2.4) are substituted, the solutions to
Equation (2.1) for the traveling wave are reached.

3. Mathematical analyses of the equation and their
solutions

Next, we wish to apply the preceding methods in
Sections 2.1-2.3 to solve both the space-time fractional order
(2+1)-dimensional breaking soliton equation. We will reduce

it to an ODE using u(x, y, t) = u(¢) and the traveling wave
variable kx* ly*  ot” . The substitution of

“ T(a+D) T(as) T(as))
the transformation into equation (1.1) yields

—Kau" — 4k2lu'u” — 2k*Iu'u” + k3u® = 0. (31)

Integrating Equation (3.1) with the zero constant, we get:

—kau' — 3k (')’ + K" =0. 32)

The subsequent sections employ the planned methods to
obtain the desired solutions.

3.1 Solutions with the SE method with Bernoulli
equation

Next, we balanced the highest-order derivative
terms y” with the highest-power nonlinear terms (u’)? of
Equation (3.2). Then N = 1. We have the solution to Equation
(3.2) as follows:
u(é)=a,+az(¢), 3.3)

where z satisfies Equation (2.5). Therefore, the expressions for
u’, (u)? and y" are expressed as:

u'=a,fZ +anz’, (34)
(ur)z :a12ﬂ222+2a12/37723+a1277224, (3.5)
u"=af°Z +7a,8nZ" +12a,An°Z° +6a°Z". (3.6)

Substituting Equations (3.4)-(3.6) into Equation (3.2), the
outcome is

—ka(a,8Z +anz®)-3K7 (a 2" + 23] pnZ® +a/n’Z* )+

3.7
K (a,°Z + 72, 2" +12a,pn°2° +6an°2") = 0. (37)

Then we set each coefficient of Z' to zero, where i = 1, 2, 3, 4
yields

2" —kopa, +k1 B8, =0, (3.8)
77 —kaona, -3k g% + 7k fna, = 0, (3.9)
7% -6kl pa? +12k°l Bn?a, =0, (3.10)
Z* —3K%5%al +6k’ln’a, = 0. (3.11)
Solving this system of algebraic equations, we obtain

a, = 2kn and o=k 4. (3.12)

By Equations (2.6), (2.7), (3.12), and
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Kx® ly* ot® the exact solutions to the
* T(a+D) T(a+) T(asD)

space-time fractional order (2+1)-dimensional breaking
soliton equation are shown for two cases with an arbitrary
constant (o.

Case 1: 5> 0,5 <0,

~ ﬂeﬁ(§+§o)
Ul(xl y,t) =8 +2k’7[1_neﬁ(f+§u) .

Where
kxll Iya wt(l

S T+ T+l T+
and (o is a constant of the integration.

(3.13)

Case 2: £< 0,5 >0,

(3.14)

£

Uy (X,y,t) =2 +2'<f{1+ e

Where
kx* ly” wt”

= + —
d INa+l) T(a+l) T(ax+))
and (o is a constant of the integration.

_ﬁeﬂ(§+§n) ]

3.2 Solutions with the SE method with Riccati
equation

From N = 1. We have the solution to Equation (3.2),
which is Equation (3.3). Here Z satisfies Equation (2.8),
therefore, the expressions for u’, (u")?, and y" are:

u'=caZz*+da,, (3.15)
(u')* =c?a?z* +2cda?z? + d%a?, (3.16)
u” =6c%a,Z* +8c°da,Z? +2cd’a,. (3.17)

Substituting Equations (3.15)-(3.17) into Equation (3.2), the
outcome is

(~kaeda, —3k’ld*a; +2k°Icd 3, )
+(—kaca, —6k’lcda; +8k°Ic’da, ) Z* (3.18)
+(-3k’Ic’af + 6kIc’a, ) 2 = 0.

Then we set each coefficient of Zi to zero, where i =0, 2, 4
yields

Z°% —keda, —3k’ld*a’ + 2k’lcd*a, =0, (3.19)
2%; —kaca, —6k’lcda’ +8k’Ic*da, =0, (3.20)
Z*:-3k’Ic’a’ +6k°Ic’a, =0. (3.21)

Solving this system of algebraic equations, we obtain
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a, =2kc and o =—4k’lcd. (3.22)

By Equations (2.9), (2.10), (3.22), and

£- kot the exact solutions of the
"T(a+1) T(a+1l) T(a+D)’

space-time fractional order (2+1)-dimensional breaking

soliton equation are shown for two cases with an arbitrary

constant (o.

Case 1: cd <0,

us (, Yit)=ao—2k«/Htanh[\/H§_7|nz(§°)}

(3.23)
y==1.
where
‘e kx“ . ly* ot and&>0.
Ia+l) T(a+1l) T(a+l)
Case 2: cd >0,
u, (X, y,t):aﬂ+2k\/atan(\/a(§+§0)). (3.24)
where
. kx* ly* at”

+ .
INa+l) T(a+l) T(a+))
and (o is a constant of the integration.

3.3 Solutions with the Riccati sub-ODE method
Using the balance between the derivative of the

highest-order and the highest nonlinear terms in Equation
(3.2), we obtain N = 1. For N = 1, Equation (2.4) has the form:

u(é)=a,+az, (3.25)

where Z satisfies Equation (2.11). Therefore, the expressions
foru’, (u)?, and y" are expressed as:

u=aoc+aZ’ (3.26)
(u) =a’c” +2a’07" +a’Z", (3.27)
u"=2a0’ +8a0Z% +6a,Z". (3.28)

Substituting Equations (3.26)-(3.28) into Equation (3.2), the
outcome is

(~kooa, -3’10 + 2k 0%a, )
+(—kowa, —6k’loa; +8Kk’loa, ) Z°
+(-3Klaf +6k°la, )Z* =0.

(3.29)

Then we set each coefficient of Z' to zero, where i = 0, 2, 4
yields
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Z°% —kooa, —3k’lo’a + 2k’lo’a, =0, (3.30)

Z%; —kwa, —6k’loa’ +8k’loa, =0, (3.31)
*; —3k*la’ +6k°la, =0. (3.32)

Solving this system of algebraic equations, we obtain

a, =2k and w=—-4K’lo. (3.33)

By Equations (2.12)-(2.26), (3.33), and

. kx” ly” ot the exact solutions of the
S T+ Tw@s) Tasl
space-time fractional order (2+1)-dimensional breaking
soliton equation are shown for three cases.
Case 1: <0,
Ug (&) =a, — 2ky—o tanh , o€, (3.34)
Ug (&) =2, —2k+/-o coth o J-c¢&, (3.35)
u, (é):aO—Zk\/—_atanhpq(zx/Eg)i 30
2kiy-o sech (2\/35), '
U (£) =8 — 2k coth , (2V-0¢ )+ .
2o csch,, (242), &30
Uy (&) =8, —kv/~o tanh , [J;_Gg]
(3.38)
—kv=o coth,, [\/;_05}
Uy (&)=
A2 + B?)o - AV=o cosh , (2V=0¢) (3.39)
Asinh , (2v-0¢)+B '
Uy (‘f) =8, —
J-(B7=A%)o + A=osinh,, (2~ 5) (3.40)
2k
Acosh (2\/ ¢)+ B
Where
_ kX(l + Iy(l B a)ta
- F(a+l) F(a+l) F(a+l)
and B?— A* >0.
Case 2: >0,
Uy, (&) =3 + 2k/or tan (Vo) (3.41)
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U (£) = 8 —2k/or oot (Vorg), (3.42)
Uy, () =8, ~ 2o tan,, (248 )+

3.43
2k\/;secpq(2\/;§), (3.43)
uls(é):ao—ZK«/Ecotpq(Z«/gg) >
iZkJEcscpq(ZJ;f), (3.44)
ule(g"):a0+k(«/;tanpq[€§J

(3.45)
_\/Ecotpq{\/zggﬁ,

+,/(A*~B?)o - Ao cos , (24/o¢
u17(§)=a0+2k[ ( Asi)n (2\/;§)+B( )J (3.46)
+./(A* —=B?)o — AJosi 2o
um(g):ao—Zk[Jr i . ) «/—smpq( «/—ff)] (347)
coqu(2£§)+8
Where
ke ly* ot
g_l"(a+l)+l"(a+l) [(a+1)
and A -B®>0.
Case 3: 0=0,
(2

Uy (&) =2 [§+gj (3.48)
Where
. Xl

(a +1) T(a+l)

4. Discussion and Results

The analytical solutions of the space-time fractional
order (2+1)-dimensional breaking soliton equation of the three
methods are in the form of exponentials, trigonometric
functions, and hyperbolic functions. We substitute the
parameters shown in Table 1, Table 2, and Table 3. The graph
effects of Equations (3.13) and (3.14) by the SE method with
Bernoulli, which portrays the wave behaviors as kink waves,
are presented in Table 1. Table 2 shows the resulting graph
effects of the SE method with Riccati in Equations (3.23),
which present the wave behaviors as kink waves, and
Equations (3.24), which present the wave behaviors as
periodic waves. Table 3 by using the Riccati sub-equation
method, Equations (3.34), (3.40), and (3.48), which show the
wave behaviors as kink waves.

The graphs of Equations (3.35)-(3.39) and (3.41)-
(3.47) exhibit periodicity.
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Table 1.  Parameters values of Equations (3.13) and (3.14)

Equations Parameters Figure Wave effects
(3.13) a,=0a=-2k=11=1 g=+2,n=-1, 1 kink
w=2,a=05,¢ =0,1<x,y<30,t=50,100
(3.14) a,=0a,=2k=11=1 f=—2,7=1 - kink

w=2,a=05 & =0,1<xy<30,t=50,100

Table 2.  Parameters values of Equations (3.23) and (3.24)

Equations Parameters Figure Wave effects
(3.23) a,=0,8=-1Lk=11=1c=-05d=1y=-1 - kink
w=2,a=05,¢ =10,1<x,y <30, t =50, 100
(3.24) 3,=0,8=Lk=L1=-1c=05d=1y=-1 2 periodic

w=2,a=05 & =0,1<xy<30,t=50,100

Table 3. Parameters values of Equations (3.34)-(3.35) and (3.37)-(3.48)

Equations Parameters Figure Wave effects
(3.34) a,=0a =2k=11=1 c=-0.15, - kink
®=0.6,a=05,1<x,y<30,t=50,100
(3.35) a,=0,a =2,k=11=1 o=-0.15, - periodic
®=06,a=05,1<x,y<30,t=50,100
(3.37) a,=0,a=2k=11=1 0=-0.15, 3 periodic
w=0.6,a=05,1<x,y <30, t=50,100
(3.38) a,=0,a=2k=11=1 c=-0.15, - periodic
©=06,a=05,1<x,y<30,t=50,100
(3.39) a,=0,8=2k=11=1 0=-0.15A=1, 4 periodic
®=0.6,B=2, a=051<x,y<30, t=50,100
(3.40) a,=0,8 =2,k=11=1 0c=-0.15A=1, - kink
©=06,B=2,a=05,1<x,y<30,t=50,100
(341) a,=0a =2k=11=1 5=0.15, - periodic
©=-06,a=05,1<x,y<30,t=50,100
(3.42) a,=0,a=2k=11=1 6=0.15, 5 periodic
©=-0.6,a=05,1<x,y<30, t =50, 100
(3.43) a,=0,a =2,k=11=1 0 =0.15, - periodic
w=-0.6,a=051<x,y<30, t=50,100
(3.44) a,=0a=2k=11=1 ¢=0.15, - periodic
w=-0.6,a=05,1<x,y<30, t=50,100
(3.45) a,=0,a4 =2,k=11=1 c=0.15, - periodic
@=-0.6,0=05,1<x,y<30,t=50,100
(3.46) a,=0,8=2k=11=10=015 A=2, - periodic
®=-06,B=1 a=05,1<x,y<30,t=50,100
(3.47) 3,=0,8=2k=11=10=0.15 A=2, 6 periodic
©=-06,B=1 a=051<x,y<30,t=50,100
(3.48) a,=0,a=2k=11=106=0,g=10, - kink

o=0,a=05,1<x,y <30, t=50,100
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Figure 1. The kink effect in 3D, contour, and 2D plot for t=50, 100 in Figure 2. The periodic effect in 3D, contour, and 2D plot for t=50, 100
equation (3.13) in equation (3.24)
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Figure 3. The periodic effect in 3D, contour, and 2D plot for t=50, 100
in equation (3.37)
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Figure 5. The periodic effect in 3D, contour, and 2D plot for t=50, 100
in equation (3.42)

Figure 4. The periodic effect in 3D, contour, and 2D plot for t=50, 100
in equation (3.39)
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Figure 6. The kink effect in 3D, contour, and 2D plot for t=50, 100 in
equation (3.47)
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5. Conclusions

In this work, we determined the traveling wave
solution for the space-time fractional order (2+1)-dimensional
breaking soliton equation using the SE method with Bernoulli,
the SE method with the Riccati equation, and the Riccati sub-
equation method. Nineteen distinct solutions are produced by
the results: two using the SE method with Bernoulli equation,
two using the SE method with Riccati equation, and fifteen
using the Riccati sub-equation method. Consequently, we
came up with a lot of different kinds of exact traveling wave
solutions for the model, exponentials, trigonometric functions,
and hyperbolic functions.

The SE method with Bernoulli, the SE method with
Riccati equation, and the Riccati sub-equation method are
straightforward to comprehend and can be applied to other
nonlinear fractional differential equations (FDESs). This study
shows that the suggested method is suitable and effective for
accurately solving the breaking soliton equation in space-time
fractional order (2+1) dimensions. Three approaches proved to
be dependable and effective in providing accurate solutions
for solitary waves.

We also presented 3D, 2D, and contour plots for a
few of the space-time fractional order (2+1)-dimensional
breaking soliton equation solutions, which we demonstrated in
Figures 1-6, where all graphs are kink and periodic waves.
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