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Abstract

Regression models are crucial in supervised learning and data analysis. Statistical learning methods interpret models and
quantify uncertainty, while machine learning techniques handle large-scale predictions. Data modeling serves two main purposes:
predicting outcomes and identifying patterns or anomalies within data. This study explores the relationship between
sociodemographic factors, including age, gender, socioeconomic status, and educational background, and academic performance
in Calculus, Algebra, Biology, and Chemistry among first-semester students at Yachay Tech University, Ecuador (2014-2022).
Using a quantitative, correlational methodology within the Knowledge Discovery in Databases (KDD) framework, we developed
predictive models through logistic regression enhanced by both Lasso and Ridge regularization. Model performance was assessed
with metrics including the confusion matrix, AUC, accuracy, sensitivity, specificity, and Cohen’s Kappa. The results show that
Lasso consistently outperforms Ridge and baseline logistic regression, achieving accuracies of 88.12% for Calculus, 92.75% for
Chemistry, 86.81% for Biology, and 94.49% for Linear Algebra, surpassing the baseline method by up to three percentage points.
These models effectively forecast academic outcomes based on sociodemographic data, facilitating early identification of students
who may benefit from targeted interventions. This approach not only improves prediction accuracy but also contributes to
enhancing educational quality and reducing dropout rates in Ecuadorian higher education.
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1. Introduction

Academic performance in higher education has long
been a subject of global interest, engaging stakeholders ranging
from educators and administrators to policymakers and
researchers (Honicke & Broadbent, 2016). Previous studies
underscore the multifaceted nature of student performance,
pointing to factors like teaching quality, learning environments,
and institutional support (Schneider & Preckel, 2017). Various
predictive techniques have been employed to analyze these
factors and forecast academic outcomes. For instance, Support
Vector Machines have proven effective in identifying at-risk
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students in distance learning contexts (Kotsiantis, Pierrakeas,
& Pintelas, 2004), while discriminant analysis has been useful
in classifying students based on academic achievement
(Gutiérrez-Monsalve, Garzon, & Segura-Cardona, 2021).
Logistic regression—often used to assess the probability of
course completion—has likewise demonstrated robust
predictive power in both online and traditional classrooms
(Marbouti, Diefes-Dux, & Madhavan, 2016; Yukselturk &
Top, 2013).

Despite these findings, most existing research is
rooted in contexts such as the United States, Germany, or
Australia. Their datasets often focus on a narrower range of
predictors (e.g., standardized tests, attendance records, or LMS
interactions). Moreover, logistic regression approaches
commonly do not incorporate Lasso (L1) or Ridge (L2)
regularization, which can address multicollinearity and aid in
feature selection. Consequently, there is a lack of evidence on
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how these advanced methods perform when analyzing a
broader spectrum of sociodemographic variables in emerging
educational contexts, including Ecuador.

In Ecuador, discussions on academic performance
have intensified amid challenges related to access, equity, and
quality of higher education (Senescyt, 2021). Some local
studies do examine socioeconomic and family-related factors
(Gutiérrez-Monsalve et al., 2021), but few apply regularized
logistic regression to comprehensive datasets that encompass
variables like age, gender, socioeconomic status, province of
birth, re-enrollment data, and type of school. By integrating
Lasso and Ridge regularization, our research not only refines
the predictive accuracy of logistic regression but also pinpoints
the most critical factors influencing academic success in
Calculus, Algebra, Biology, and Chemistry at Yachay Tech
University. This approach extends beyond prior work by
capturing a broader set of predictors and optimizing the
detection of at-risk students in an Ecuadorian context.

Hence, our primary contribution lies in developing
and validating regularized logistic regression models that
leverage an extensive range of sociodemographic and academic
features, offering insights into how to improve student retention
strategies. By detailing the variable similarities and differences
from earlier studies, we underscore the importance of
geographically and contextually specific analyses, which can
more effectively inform data-driven interventions in higher
education.

2. Materials and Methods

Our approach is designed to refine predictive
modeling techniques for academic performance, focusing on
the identification of sociodemographic data to improve
predictive accuracy and operational efficiency in academic
settings. Figure 1 shows the KDD methodology employed in
our study, which is systematically structured into several
phases: selection and preprocessing of the dataset, feature
selection through L1 regularization, development of logistic
regression models with Lasso and Ridge regularization.

2.1 Data and data sources

This research utilizes data on the academic
performance of first-semester students at Universidad Yachay
Tech from 2014 to 2022, totaling 2,303 observations. The
dataset, managed by the Academic Affairs and Student Welfare
Departments, includes grades in four crucial subjects: Calculus
I, Linear Algebra, Chemistry I, and Biology I. These numerical
variables are essential for evaluating students’ academic
success in their initial semester and form the basis of the
predictive models developed in this study.

In addition to academic grades, the study considers a
range of sociodemographic factors as categorical variables,
including age, gender, socioeconomic status, and educational
background. These variables are detailed in Table 1, providing
a comprehensive view of the diverse backgrounds of the
student population. To evaluate our models’ predictive
performances under realistic conditions, we divided the dataset
into training and testing subsets using a 70-30 split.
Specifically, approximately 70% of the total observations
(1,613 students) were allocated to the training set, while the
remaining 30% (690 students) served as the test set. By
adhering to this ratio, we aimed to ensure that the training set
was sufficiently large to capture diverse student characteristics
and academic outcomes, while the test set remained substantial
enough to offer an unbiased assessment of each model’s
accuracy, sensitivity, specificity, and other relevant metrics.

The primary objective of this study is to predict
whether a student will pass or fail a specific course based on
their sociodemographic data, using a comparative analysis of
logistic regression with Lasso and Ridge penalization. Initially,
we will identify the most important variables using the Lasso
model, known for its ability to perform variable selection by
penalizing regression coefficients, thereby setting some to zero.
After identifying significant variables through Lasso, both
Lasso and Ridge models will be implemented to evaluate their
predictive performance. By comparing the results of these
approaches, we aim to determine which model provides
superior predictions and is the most suitable for our dataset.

SELECTION PREPROCESSING TRASNFORMATION MODEL EVALUATION AND INTERPRETATION
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Figure 1. Knowledge Discovery in Databases (KDD) process flow diagram

Table 1.

Sociodemographic and academic variables of the student population

Category

Features (Input variables)

Target variable (Output variable)

Sociodemographic factors

Gender, age, ethnicity, marital status, disability, employment,

children, country of birth, province of birth

Academic background
Family situation
Course enrollment
courses
Academic program and courses
passed
Academic performance

Grade point average, remedial courses, type of school
Homeownership, father's occupation, mother's occupation
Enroliment in calculus, algebra, biology, chemistry, remedial

Degree program, first semester courses, number of courses

Semester results in calculus, algebra,
biology, chemistry
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2.2 Data analysis method
2.2.1 From linear to logistic regression

Linear regression is a fundamental statistical model
that seeks to describe the relationship between a dependent
variable, Y, and one or more independent or predictor variables,
X (Montgomery, Peck, & Vining, 2012),

Y =B+ piXs + PoXy + -+ BpXp + € 1)

where:
- Y : Dependent or response variable
- Xi,X,, ..., Xp : Predictor or independent
variables
- B : The intercept term
- B, B2 -, By : The coefficients associated with
each predictor variable
- €:Therandom error
To estimate these coefficients, the least squares
method is used. This technique aims to minimize the sum of the
squares of the differences (residuals) between the observed
values of Y and the values predicted by the model.
Residual: The residual for a particular observation, i,
is the difference between the observed value y; and the
predicted value y;:

e =y — P 2

Cost Function: The cost function, J(B), is the sum of
the squares of the residuals:

JB) =%, ef =X, (i — 9?2 3

The objective is to find the coefficients By, By, ..., Bp
that minimize this cost function.

2.2.2 Matrix form

To generalize the above equation, we rewrite the
regression model in matrix form:

Y=XB+e ()

where:

— Y :Itisresponse vector.
X : It is the design matrix, which contains the
observations of the predictor variables. It has an
additional column of ones for the intercept term
B : Itis the vector of unknown coefficients.
€ : It is the vector of errors.

o  The cost function, which is the sum of the

squares of the residuals, is defined as:

JB) = (¥ —=Xp)YT (Y — XPB) ®)

To minimize J(B) with respect to B, we take the
derivative of J(B)with respect to 5 and set it equal to zero:

a/(B) _
o "

This leads to the normal equations:
XTXp = X"y (6)

To solve for B, we simply multiply both sides by the
inverse of XTX (assuming that XTX is nonsingular and
therefore invertible):

B =XTX)"1xTYy )

This is the least squares estimator of the coefficients.

To transition from linear regression to logistic
regression, we need to consider the logistic function, which can
map any input to a value between 0 and 1. This allows us to
model binary outcomes or probabilities. In the academic
context, the binomial distribution is used to model the number
of students who pass (succeed) in a group of n students, where
the probability of passing for each student is p. When
predicting whether a specific student passes or fails, we are
interested in the case where n = 1. The probability mass
function for a random variable Y, which indicates whether a
student passes (1) or fails (0), is:

P(Y =y)=p’(1-p)*™? ®

To model the probability p of a student passing based
on predictor variables, such as sociodemographic variables, we
require a function that relates these variables to the probability
of passing. This function should transform the range of linear
combinations of these variables, which is (—, «), to the range
of probability, which is (0,1).

Therefore, the logistic regression model posits that
the conditional probability of a successful event, denoted by p,
is given by:

eXB

P=P(}’=1|X)=m ©

This probability represents the likelihood of the
outcome y=1 given the predictors X. To relate this probability
to a linear combination of the predictors, we use the logit link
function, defined as:

9 =log () (10)

The logit function transforms the odds, defined as the
ratio of success (p) to failure (1-p), into a linear relationship
with the predictors:

log (1) = X8 (11)

The inverse of the logit function maps the linear
combination of predictors back to the probability of success:

eXB
P =% (12)

Unlike linear regression, where we can use the
normal equations to obtain a closed-form solution for the
coefficients, in logistic regression, the coefficients are
estimated by maximizing the likelihood function. The
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likelihood function indicates how well the model fits the
observed data of students who passed and failed. For a set of n
students, the likelihood function L is:

L(B) =iy p}" (1 —p)* (13)

Where, y; indicates whether student i passed (1) or
failed (0), and p; is the probability predicted by the model that
student i passes. In practice, it is more common to work with
the logarithm of the likelihood function, called log-likelihood,
because it converts the product into a sum and simplifies
calculations:

log L(B) =

The goal is to find the coefficients 3 that maximize
this log-likelihood. This is typically done using iterative
numerical methods, such as the Newton-Raphson algorithm.

Regularized regression is a statistical technique that
extends linear or logistic regression by adding penalty terms to
the cost function, controlling model complexity and preventing
overfitting. This method is particularly useful when analyzing
academic performance data involving numerous predictor
variables, such as test scores, attendance, socioeconomic
factors, and study habits, some of which may be redundant or
collinear. Techniques like Lasso and Ridge regularized logistic
regression specifically address these issues by selecting
relevant predictors and reducing multicollinearity, thus
improving predictive accuracy on new data (Hastie, Tibshirani,
& Friedman, 2009).

Lasso regularized regression (Least Absolute
Shrinkage and Selection Operator) is a linear regression
technique that incorporates an L1-norm-based penalty term to
control model complexity and perform variable selection. This
technique is particularly useful when working with high-
dimensional datasets or highly correlated variables, as it helps
select the most relevant variables and improve model
interpretability (Tibshirani, 1996).

%1 [yilog(p) + (1 — y)log(1 — p;)] (14)

ming, g {_%Z?’:ﬂ’i(ﬁo +BTx) — (1 —y)log(1 +
exp(Bo + B7x)) + 211 B 111},

where N is the total number of instances in training set, y; is the
real class of the instance i, x; is the instance feature vector i, A
is the regularization parameter, which controls the trade-off
between fitting the data and keeping the coefficients small, 3,
and B are the model coefficients, and || 8 |l; is the L1 norm of
the coefficients, which is the sum of the absolute values of the
coefficients.

Our study applied L1 regularization to identify and
rank the most critical features affecting academic performance
in subjects such as Calculus I, Chemistry I, Biology I, and
Linear Algebra. Table 2 highlights the features with the greatest
impact on model performance, revealing important insights for
understanding academic outcomes at Yachay Tech University
based on sociodemographic variables. Additionally, Ridge
regression is noted for its usefulness across diverse fields-such
as social, economic, biological, and health sciences-in
analyzing relationships between variables in cases of
multicollinearity.

Table 2. Most important features identified by L1 regularization for
each subject
Subject Most important features

Calculus | Enrolled courses (4), Children (Yes), Ethnicity
(Unregistered), Grade score, Employment (Yes)

Chemistry | Linear algebra (Pass), Third enrollment in chemistry I,
Third enrollment in linear algebra, Second enrollment
in chemistry I, degree in petrochemical engineering

Linear Chemistry | (Pass), Third enrollment in linear algebra,

algebra Third enrollment in chemistry I, Second enrollment in
linear algebra, Second enrollment in chemistry |

Biology |  Calculus I (Pass), Chemistry | (Pass), Ethnicity

(Mulatto), Province of residence (Sucumbios),
Employment (Yes)

1
ming, g {_Nzyﬂ}’i(ﬂo +B7x)
— (1 —y)log(1 + exp(By + BTx;)) + A
g ||%}.

where N is the total number of instances in training set, y; is the
real class of the instance i, x; is the instance feature vector i, A
is the regularization parameter, which controls the trade-off
between fitting the data and keeping the coefficients small,
Bo and P are the model coefficients, and || 5 1I3 is the squared
L2 norm of the coefficients, which is the sum of the squares of
the coefficients.

The idea behind Ridge is to prevent overfitting and
handle multicollinearity, which occurs when the predictor
variables are highly correlated. By penalizing the coefficients,
Ridge ensures that no individual predictor variable has too
much influence, which can be beneficial when the variables are
collinear.

2.2.3Machine learning performance metrics

To rigorously assess the performance of our
regularized logistic regression model in predicting academic
performance on sociodemographic data, we employed a range
of established machine learning metrics. Each metric provides
distinct insights into the model’s predictive abilities, ensuring a
comprehensive evaluation.

- Accuracy: Defined as the proportion of true
results (both true positives and true negatives)
among the total number of cases examined. It
is calculated using the formula:

TP+TN

" TP + FP + TN + FN

- TP (True Positives): Number of instances
correctly predicted as the positive class (e.g.,
“pass” when the student actually passes).

- TN (True Negatives): Number of instances
correctly predicted as the negative class (e.g.,
“fail” when the student actually fails).

- FP (False Positives): Number of instances
incorrectly predicted as positive (predicted
“pass” but the student fails).

Acc
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- FN (False Negatives): Number of instances
incorrectly predicted as negative (predicted
“fail” but the student actually passes).

- Accuracy indicates the overall proportion of
correct predictions the model makes. For
additional details on this metric, see Powers
(2011).

- Precision: Also known as the positive
predictive value, precision measures the ratio
of true positive predictions to the total positive
predictions made. It is defined as:

TP

" TP+FP

High precision indicates a low rate of false positive

predictions, crucial for medical diagnostics where falsely

identifying a condition can led to unnecessary interventions.

Refer to Powers (2011) for more insights.

- F1-Score: The F1-score is the harmonic mean
of precision and recall, providing a balance
between the two metrics. It is particularly
useful when the class distribution is uneven.
The formula is:

Pre

Fl—5 _ ><Pre X Recall
core = Pre + Recall

where recall (or sensitivity) is the ratio of true positive
predictions to the actual positives in the dataset. See Powers
(2011).

- AUC (Area Under the ROC Curve): AUC
measures the entire two-dimensional area
underneath the entire ROC (Receiver
Operating Characteristic) curve. It provides an
aggregate measure of performance across all
possible classification thresholds. The AUC
ranges from 0 to 1, where a model whose
predictions are 100 % wrong has an AUC of
0.0, and a model whose predictions are 100%
correct has an AUC of 1.0. For further reading,
see Fawcett (2006).

- Cohen’s Kappa: This metric measures the
agreement between two raters who each
classify items into mutually exclusive
categories. To model evaluation, it compares
the observed agreement with what might be
expected by chance, according to:

5 Po—Pe
Cohen’s Kappa = FE—
where p, is the observed agreement, and p, is the expected
agreement under independence. Cohen’s Kappa is particularly
useful in situations where accuracy may be misleading due to
imbalanced class distributions.

These metrics collectively enable a comprehensive
evaluation of our model, providing insights into its strengths
and areas for improvement in predicting the academic
performance on sociodemographic data. For the theoretical
background, see Cohen (1960).

3. Results and Discussion

3.1 Exploratory data analysis

Our exploratory data analysis involved examining a
dataset of 2,303 first-semester students from Yachay Tech

University, covering academic periods from 2014 to 2022. The
dataset includes 25 attributes related to courses such as
Calculus, Linear Algebra, Chemistry, and Biology, with
students representing various Ecuadorian provinces. Figure 2
displays pass and fail rates per subject and includes a
choropleth map indicating the geographical distribution of pass
percentages.

o™

55

Figure 2. Heat map of academic performance by province in Ecuador
3.2 Predictive analysis using lasso and ridge models

In our study, we applied L1 regularization (Lasso) to
identify and rank the most influential features affecting
academic performance in Calculus I, Chemistry I, Biology I,
and Linear Algebra. For Calculus I, Table 3 indicates that both
Lasso and Ridge logistic regression models performed strongly,
with Lasso achieving slightly higher accuracy (0.8927 training,
0.8812 test) compared to Ridge (0.8739 test). Regarding
sensitivity—the ability to correctly identify students at risk of
failing—Lasso also outperformed Ridge (0.7564 vs. 0.7047 in
testing). However, Ridge regression had a marginal edge in
specificity, correctly classifying a slightly greater proportion of
students who passed. The confusion matrices (Figure 3) show
Lasso correctly identifying more failing students, which might
be valuable for targeted interventions. The small differences
observed suggest both models provide robust predictions,
though institutional goals may favor one over the other based
on sensitivity or specificity preferences. Additional
considerations for Calculus I highlight the importance of strong
algebraic skills and pre-calculus foundations, where Lasso’s
ability to isolate key predictors (like prior math background and
sociodemographic variables) may be particularly beneficial.

In Chemistry 1, both Lasso and Ridge logistic
regression demonstrated effective classification (Table 4).
Lasso achieved slightly higher test accuracy (0.9275) and
sensitivity (0.7976) compared to Ridge (0.9246 accuracy,
0.7738 sensitivity). Ridge exhibited slightly greater specificity
(0.9732 vs. Lasso’s 0.9693). The confusion matrices (Figure 4)
reveal similar overall capabilities, though Lasso again showed
a slight advantage in identifying at-risk students. Chemistry’s
reliance on theoretical knowledge and practical lab skills
suggests that sociodemographic factors and re-enrollment
history may be influential predictors, with Lasso effectively
eliminating weaker variables and Ridge managing correlated
features effectively.

For Biology (Table 5), both models maintained high
specificity but had lower sensitivity compared to other subjects.
Lasso outperformed Ridge in sensitivity (0.7976 vs. 0.7738),
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while Ridge was marginally more specific (0.9665 vs. 0.9594).
The slightly lower sensitivity across both models indicates
challenges in accurately identifying at-risk students, possibly
due to Biology’s broad content and reliance on memorization
and extensive reading. Nonetheless, Lasso may offer
advantages in highlighting key predictors, supporting targeted
academic interventions like additional lab or reading support.

Confusion Matri - Ridge Model
Confusion Marrix - Lusso Model PR A= EIH

Actaal

Approved

Predicted

Figure 3. Confusion matrix: Lasso and Ridge models - Academic
performance prediction (Calculus I)

Confusion Matix - Lisso Mode] Conlirtsounric=Ridge Model

Appro
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Predicted Predicted

Figure 4. Confusion Matrix: Lasso and Ridge models - Academic
performance prediction (Chemistry)

Table 3.
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For Linear Algebra (Table 6), both models displayed
similar performance, with Lasso being slightly better at
identifying failing students and Ridge being slightly better at
correctly classifying passers. The abstract nature of Linear
Algebra, reliant on algebraic reasoning, likely results in fewer
critical predictors, explaining the similarity in performance
between models. The choice between Lasso and Ridge here
would depend largely on the institution’s priorities regarding
sensitivity and specificity.

Overall, comprehensively evaluating both models
and considering their metrics and influential variables, the
Lasso model generally appears preferable for future predictions
due to its higher sensitivity and capability to identify at-risk
students. However, the choice between Lasso and Ridge
ultimately depends on institutional priorities at Yachay Tech
University: Lasso is ideal for maximizing the detection of
students needing intervention, while Ridge better minimizes
false positives.

S T Fassiiini Confusion Matrix - Ridge Modcl
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Figure 5. Confusion Matrix: Lasso and Ridge models - Academic
performance prediction (Biology)

Comparative analysis of metrics between Lasso and Ridge models — Calculus |

Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing)
Accuracy 0.8927 0.8812 0.8872 0.8739
Sensitivity 0.7417 0.7565 0.7108 0.7047
Specificity 0.9517 0.9296 0.9560 0.9396
Kappa 0.7231 0.6994 0.7048 0.6731
AUC (Area under the curve) 0.941 0.937 0.942 0.935
Table 4. Comparative analysis of metrics between Lasso and Ridge models — Chemistry |
Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing)
Accuracy 0.9374 0.9275 0.9306 0.9246
Sensitivity 0.8147 0.7976 0.7843 0.7738
Specificity 0.9770 0.9693 0.9779 0.9732
Kappa 0.8236 0.7959 0.8021 0.785
AUC (Area under the curve) 0.978 0.952 0.979 0.951

Table 5. Comparative analysis of metrics between Lasso and Ridge models — Biology |
Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing)
Accuracy 0.8785 0.8681 0.8795 0.8623
Sensitivity 0.4586 0.4471 0.4276 0.3821
Specificity 0.9705 0.9594 0.9777 0.9665
Kappa 0.8102 0.7746 0.7957 0.7259
AUC (Area under the curve) 0.872 0.849 0.873 0.835
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Table 6. Comparative analysis of metrics between Lasso and Ridge models — Linear Algebra
Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing)
Accuracy 0.933 0.9449 0.9361 0.9333
Sensitivity 0.8701 0.9078 0.8187 0.8156
Specificity 0.9493 0.9545 0.9665 0.9636
Kappa 0.7997 0.8358 0.8004 0.7917
AUC (Area under the curve) 0.972 0.9699 0.973 0.9672

Confusion Matrix - Ridgs Model
Confusion Matri - Lasso Model o nAES

Failed
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Figure 6. Confusion Matrix: Lasso and Ridge models - Academic
performance prediction (Linear Algebra)

4. Conclusions

Our study demonstrates the efficacy of logistic
regression models enhanced with Lasso and Ridge
regularization in predicting academic performance based on
sociodemographic data from Yachay Tech University. By
examining four core first-semester courses; Calculus,
Chemistry, Biology, and Linear Algebra, our results confirm
that Lasso typically outperforms Ridge in correctly identifying
students who are likely to fail (i.e., higher sensitivity), without
sacrificing specificity. In particular, Lasso achieved test
accuracies of 88.12% in Calculus, 92.75% in Chemistry,
86.81% in Biology, and 94.49% in Linear Algebra, surpassing
unpenalized logistic regression by up to three percentage points
(Tables 3-6). The confusion matrices (Figures 3-6) further
illustrate that Lasso provides a more reliable detection of at-risk
students, a critical consideration for institutions looking to
intervene early.

These performance differences emphasize not only
the predictive capabilities of our models but also their
immediate potential to inform decisions aimed at improving
educational outcomes. By enabling the early identification of
students who might benefit from remedial measures, the Lasso-
based approach may contribute to reducing dropout rates in a
tangible way. This is especially pertinent in courses where
conceptual difficulty or lab-based requirements can exacerbate
learning challenges, as in Chemistry and Biology, and where
sociodemographic indicators, such as re-enrollment history,
high-school background, and socioeconomic status, often
reveal meaningful patterns that help guide interventions.

Although our dataset stems from Yachay Tech
University, these findings have broader implications for other
higher education contexts. The flexibility of regularized logistic
regression makes it suitable for diverse datasets, provided that
the relevant sociodemographic and academic information is
collected consistently. Future research might extend this work
by integrating additional attributes, such as attendance records,
psychoeducational variables, or real-time learning analytics, or

by exploring advanced ensemble methods that build upon the
strengths of Lasso and Ridge.

In conclusion, our study validates the potential of
Lasso and Ridge regularization in improving the predictive
power of logistic regression for academic outcomes,
particularly when harnessing sociodemographic and academic
data. By offering both robust performance and enhanced
interpretability, these models represent a valuable tool for
educational institutions seeking to elevate academic quality and
reduce student dropout rates through data-driven interventions.
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