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Abstract 
 

Regression models are crucial in supervised learning and data analysis. Statistical learning methods interpret models and 

quantify uncertainty, while machine learning techniques handle large-scale predictions. Data modeling serves two main purposes: 

predicting outcomes and identifying patterns or anomalies within data. This study explores the relationship between 

sociodemographic factors, including age, gender, socioeconomic status, and educational background, and academic performance 

in Calculus, Algebra, Biology, and Chemistry among first-semester students at Yachay Tech University, Ecuador (2014–2022). 

Using a quantitative, correlational methodology within the Knowledge Discovery in Databases (KDD) framework, we developed 

predictive models through logistic regression enhanced by both Lasso and Ridge regularization. Model performance was assessed 

with metrics including the confusion matrix, AUC, accuracy, sensitivity, specificity, and Cohen’s Kappa. The results show that 

Lasso consistently outperforms Ridge and baseline logistic regression, achieving accuracies of 88.12% for Calculus, 92.75% for 

Chemistry, 86.81% for Biology, and 94.49% for Linear Algebra, surpassing the baseline method by up to three percentage points. 

These models effectively forecast academic outcomes based on sociodemographic data, facilitating early identification of students 

who may benefit from targeted interventions. This approach not only improves prediction accuracy but also contributes to 

enhancing educational quality and reducing dropout rates in Ecuadorian higher education. 

 

Keywords: academic performance, regression models, lasso regularization, ridge regularization, KDD 

 

 

1. Introduction  
 

Academic performance in higher education has long 

been a subject of global interest, engaging stakeholders ranging 

from educators and administrators to policymakers and 

researchers (Honicke & Broadbent, 2016). Previous studies 

underscore the multifaceted nature of student performance, 

pointing to factors like teaching quality, learning environments, 

and institutional support (Schneider & Preckel, 2017). Various 

predictive techniques have been employed to analyze these 

factors and forecast academic outcomes. For instance, Support 

Vector  Machines  have  proven  effective  in identifying at-risk 

 
students  in  distance  learning  contexts  (Kotsiantis, Pierrakeas, 

& Pintelas, 2004), while discriminant analysis has been useful 

in classifying students based on academic achievement 

(Gutiérrez-Monsalve, Garzón, & Segura-Cardona, 2021). 

Logistic regression—often used to assess the probability of 

course completion—has likewise demonstrated robust 

predictive power in both online and traditional classrooms 

(Marbouti, Diefes-Dux, & Madhavan, 2016; Yukselturk & 

Top, 2013). 

Despite these findings, most existing research is 

rooted in contexts such as the United States, Germany, or 

Australia. Their datasets often focus on a narrower range of 

predictors (e.g., standardized tests, attendance records, or LMS 

interactions). Moreover, logistic regression approaches 

commonly do not incorporate Lasso (L1) or Ridge (L2) 

regularization, which can address multicollinearity and aid in 

feature selection. Consequently, there is a lack of evidence on 
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how these advanced methods perform when analyzing a 

broader spectrum of sociodemographic variables in emerging 

educational contexts, including Ecuador. 

In Ecuador, discussions on academic performance 

have intensified amid challenges related to access, equity, and 

quality of higher education (Senescyt, 2021). Some local 

studies do examine socioeconomic and family-related factors 

(Gutiérrez-Monsalve et al., 2021), but few apply regularized 

logistic regression to comprehensive datasets that encompass 

variables like age, gender, socioeconomic status, province of 

birth, re-enrollment data, and type of school. By integrating 

Lasso and Ridge regularization, our research not only refines 

the predictive accuracy of logistic regression but also pinpoints 

the most critical factors influencing academic success in 

Calculus, Algebra, Biology, and Chemistry at Yachay Tech 

University. This approach extends beyond prior work by 

capturing a broader set of predictors and optimizing the 

detection of at-risk students in an Ecuadorian context. 

Hence, our primary contribution lies in developing 

and validating regularized logistic regression models that 

leverage an extensive range of sociodemographic and academic 

features, offering insights into how to improve student retention 

strategies. By detailing the variable similarities and differences 

from earlier studies, we underscore the importance of 

geographically and contextually specific analyses, which can 

more effectively inform data-driven interventions in higher 

education.  

 

2. Materials and Methods 
 

Our approach is designed to refine predictive 

modeling techniques for academic performance, focusing on 

the identification of sociodemographic data to improve 

predictive accuracy and operational efficiency in academic 

settings. Figure 1 shows the KDD methodology employed in 

our study, which is systematically structured into several 

phases: selection and preprocessing of the dataset, feature 

selection through L1 regularization, development of logistic 

regression models with Lasso and Ridge regularization. 

 

2.1 Data and data sources 
 

This research utilizes data on the academic 

performance of first-semester students at Universidad Yachay 

Tech from 2014 to 2022, totaling 2,303 observations. The 

dataset, managed by the Academic Affairs and Student Welfare 

Departments, includes grades in four crucial subjects: Calculus 

I, Linear Algebra, Chemistry I, and Biology I. These numerical 

variables are essential for evaluating students’ academic 

success in their initial semester and form the basis of the 

predictive models developed in this study. 

In addition to academic grades, the study considers a 

range of sociodemographic factors as categorical variables, 

including age, gender, socioeconomic status, and educational 

background. These variables are detailed in Table 1, providing 

a comprehensive view of the diverse backgrounds of the 

student population. To evaluate our models’ predictive 

performances under realistic conditions, we divided the dataset 

into training and testing subsets using a 70–30 split. 

Specifically, approximately 70% of the total observations 

(1,613 students) were allocated to the training set, while the 

remaining 30% (690 students) served as the test set.  By 

adhering to this ratio, we aimed to ensure that the training set 

was sufficiently large to capture diverse student characteristics 

and academic outcomes, while the test set remained substantial 

enough to offer an unbiased assessment of each model’s 

accuracy, sensitivity, specificity, and other relevant metrics.  

The primary objective of this study is to predict 

whether a student will pass or fail a specific course based on 

their sociodemographic data, using a comparative analysis of 

logistic regression with Lasso and Ridge penalization. Initially, 

we will identify the most important variables using the Lasso 

model, known for its ability to perform variable selection by 

penalizing regression coefficients, thereby setting some to zero. 

After identifying significant variables through Lasso, both 

Lasso and Ridge models will be implemented to evaluate their 

predictive performance. By comparing the results of these 

approaches, we aim to determine which model provides 

superior predictions and is the most suitable for our dataset. 

 
 

Figure 1. Knowledge Discovery in Databases (KDD) process flow diagram 

 
Table 1. Sociodemographic and academic variables of the student population 

 

Category Features (Input variables) Target variable (Output variable) 

   

Sociodemographic factors Gender, age, ethnicity, marital status, disability, employment, 

children, country of birth, province of birth 

 

Academic background Grade point average, remedial courses, type of school  

Family situation Homeownership, father's occupation, mother's occupation  
Course enrollment Enrollment in calculus, algebra, biology, chemistry, remedial 

courses 

 

Academic program and courses Degree program, first semester courses, number of courses 
passed 

 

Academic performance  Semester results in calculus, algebra, 

biology, chemistry 
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2.2 Data analysis method 
 

2.2.1 From linear to logistic regression 
 

Linear regression is a fundamental statistical model 

that seeks to describe the relationship between a dependent 

variable, Y, and one or more independent or predictor variables, 

X (Montgomery, Peck, & Vining, 2012), 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑃𝑋𝑃 + 𝜖 (1) 

 

where: 

- 𝑌 : Dependent or response variable 

- 𝑋1, 𝑋2, … , 𝑋𝑃 : Predictor or independent 

variables 

- 𝛽0 : The intercept term 

- 𝛽1, 𝛽2, … , 𝛽p : The coefficients associated with 

each predictor variable 

- 𝜖 : The random error 

To estimate these coefficients, the least squares 

method is used. This technique aims to minimize the sum of the 

squares of the differences (residuals) between the observed 

values of Y and the values predicted by the model. 

Residual: The residual for a particular observation, i, 

is the difference between the observed value 𝑦𝑖  and the 

predicted value 𝑦̂𝑖: 

 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖    (2) 

 

Cost Function: The cost function, J(β), is the sum of 

the squares of the residuals: 

 

𝐽(𝛽) = ∑  𝑁
𝑖=1 𝑒𝑖

2 = ∑  𝑁
𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2                    (3) 

 

The objective is to find the coefficients 𝛽0, 𝛽1 , … , 𝛽𝑝 

that minimize this cost function.  

 

2.2.2 Matrix form 
 

To generalize the above equation, we rewrite the 

regression model in matrix form: 

 

𝑌 = 𝑋𝛽 + 𝜖                                   (4) 

 

where: 

− 𝑌 : It is response vector. 

− 𝑋 : It is the design matrix, which contains the 

observations of the predictor variables. It has an 

additional column of ones for the intercept term 

− 𝛽 : It is the vector of unknown coefficients. 

− 𝜖 : It is the vector of errors. 

o The cost function, which is the sum of the 

squares of the residuals, is defined as: 

 

 𝐽(𝛽) = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)   (5) 

 

To minimize 𝐽(𝛽)  with respect to 𝛽 , we take the 

derivative of 𝐽(𝛽)with respect to 𝛽 and set it equal to zero: 

 
∂𝐽(𝛽)

∂𝛽
= 0 

This leads to the normal equations: 

 

𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑌                                             (6) 
 

To solve for 𝛽, we simply multiply both sides by the 

inverse of 𝑋𝑇𝑋  (assuming that 𝑋𝑇𝑋  is nonsingular and 

therefore invertible): 
 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌                                        (7) 
 

This is the least squares estimator of the coefficients. 

To transition from linear regression to logistic 

regression, we need to consider the logistic function, which can 

map any input to a value between 0 and 1. This allows us to 

model binary outcomes or probabilities. In the academic 

context, the binomial distribution is used to model the number 

of students who pass (succeed) in a group of 𝑛 students, where 

the probability of passing for each student is 𝑝 . When 

predicting whether a specific student passes or fails, we are 

interested in the case where 𝑛 = 1 . The probability mass 

function for a random variable 𝑌, which indicates whether a 

student passes (1) or fails (0), is: 

 

𝑃(𝑌 = 𝑦) = 𝑝𝑦(1 − 𝑝)1−𝑦                                  (8) 

 

To model the probability 𝑝 of a student passing based 

on predictor variables, such as sociodemographic variables, we 

require a function that relates these variables to the probability 

of passing. This function should transform the range of linear 

combinations of these variables, which is (−∞, ∞), to the range 

of probability, which is (0,1).  

Therefore, the logistic regression model posits that 

the conditional probability of a successful event, denoted by 𝑝, 

is given by: 
 

𝑝 = 𝑃( 𝑦 = 1 ∣∣ 𝑥 ) =
𝑒𝑋𝛽

1+𝑒𝑋𝛽                                  (9) 

 

This probability represents the likelihood of the 

outcome y=1 given the predictors X. To relate this probability 

to a linear combination of the predictors, we use the logit link 

function, defined as: 

 

𝑔(𝑝) = log (
𝑝

1−𝑝
)                                    (10) 

 
The logit function transforms the odds, defined as the 

ratio of success (𝑝) to failure (1−𝑝), into a linear relationship 

with the predictors: 

 

log (
𝑝

1−𝑝
) = 𝑋𝛽                                  (11) 

 

The inverse of the logit function maps the linear 

combination of predictors back to the probability of success: 

 

𝑝 =
𝑒𝑋𝛽

1+𝑒𝑋𝛽                                           (12) 

 
Unlike linear regression, where we can use the 

normal equations to obtain a closed-form solution for the 

coefficients, in logistic regression, the coefficients are 

estimated by maximizing the likelihood function. The 
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likelihood function indicates how well the model fits the 

observed data of students who passed and failed. For a set of 𝑛 

students, the likelihood function 𝐿  is: 

 

𝐿(𝛽) = ∏  𝑛
𝑖=1 𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)1−𝑦𝑖            (13) 

 

Where, 𝑦𝑖  indicates whether student 𝑖 passed (1) or 

failed (0), and 𝑝𝑖  is the probability predicted by the model that 

student 𝑖  passes. In practice, it is more common to work with 

the logarithm of the likelihood function, called log-likelihood, 

because it converts the product into a sum and simplifies 

calculations: 

 

log 𝐿(𝛽) = ∑  𝑛
𝑖=1 [𝑦𝑖log (𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)]         (14) 

 

The goal is to find the coefficients β that maximize 

this log-likelihood. This is typically done using iterative 

numerical methods, such as the Newton-Raphson algorithm.  

Regularized regression is a statistical technique that 

extends linear or logistic regression by adding penalty terms to 

the cost function, controlling model complexity and preventing 

overfitting. This method is particularly useful when analyzing 

academic performance data involving numerous predictor 

variables, such as test scores, attendance, socioeconomic 

factors, and study habits, some of which may be redundant or 

collinear. Techniques like Lasso and Ridge regularized logistic 

regression specifically address these issues by selecting 

relevant predictors and reducing multicollinearity, thus 

improving predictive accuracy on new data (Hastie, Tibshirani, 

& Friedman, 2009). 

Lasso regularized regression (Least Absolute 

Shrinkage and Selection Operator) is a linear regression 

technique that incorporates an L1-norm-based penalty term to 

control model complexity and perform variable selection. This 

technique is particularly useful when working with high-

dimensional datasets or highly correlated variables, as it helps 

select the most relevant variables and improve model 

interpretability (Tibshirani, 1996).  

 

min𝛽0,𝛽   {−
1

𝑁
∑𝑖=1

𝑁  𝑦𝑖(𝛽0 + 𝛽𝑇𝑥𝑖) − (1 − 𝑦𝑖)log (1 +

exp (𝛽0 + 𝛽𝑇𝑥𝑖)) + 𝜆 ∥ 𝛽 ∥1}, 

 

where N is the total number of instances in training set, 𝑦𝑖 is the 

real class of the instance 𝑖, 𝑥𝑖 is the instance feature vector 𝑖, 𝜆 

is the regularization parameter, which controls the trade-off 

between fitting the data and keeping the coefficients small, 𝛽0 

and 𝛽 are the model coefficients, and ∥ 𝛽 ∥1 is the L1 norm of 

the coefficients, which is the sum of the absolute values of the 

coefficients. 

Our study applied L1 regularization to identify and 

rank the most critical features affecting academic performance 

in subjects such as Calculus I, Chemistry I, Biology I, and 

Linear Algebra. Table 2 highlights the features with the greatest 

impact on model performance, revealing important insights for 

understanding academic outcomes at Yachay Tech University 

based on sociodemographic variables. Additionally, Ridge 

regression is noted for its usefulness across diverse fields-such 

as social, economic, biological, and health sciences-in 

analyzing relationships between variables in cases of 

multicollinearity.  

Table 2. Most important features identified by L1 regularization for 
each subject 

 

Subject Most important features 

  

Calculus I Enrolled courses (4), Children (Yes), Ethnicity 

(Unregistered), Grade score, Employment (Yes) 
Chemistry I Linear algebra (Pass), Third enrollment in chemistry I, 

Third enrollment in linear algebra, Second enrollment 

in chemistry I, degree in petrochemical engineering 
Linear 

algebra 

Chemistry I (Pass), Third enrollment in linear algebra, 

Third enrollment in chemistry I, Second enrollment in 

linear algebra, Second enrollment in chemistry I 
Biology I Calculus I (Pass), Chemistry I (Pass), Ethnicity 

(Mulatto), Province of residence (Sucumbíos), 
Employment (Yes) 

  

 

min𝛽0,𝛽   {−
1

𝑁
∑𝑖=1

𝑁  𝑦𝑖(𝛽0 + 𝛽𝑇𝑥𝑖)

− (1 − 𝑦𝑖)log (1 + exp (𝛽0 + 𝛽𝑇𝑥𝑖)) + 𝜆

∥ 𝛽 ∥2
2}, 

 

where N is the total number of instances in training set, 𝑦𝑖 is the 

real class of the instance 𝑖, 𝑥𝑖  is the instance feature vector 𝑖, λ 

is the regularization parameter, which controls the trade-off 

between fitting the data and keeping the coefficients small, 

𝛽0 and β are the model coefficients, and ∥ 𝛽 ∥2
2 is the squared 

𝐿2 norm of the coefficients, which is the sum of the squares of 

the coefficients. 

The idea behind Ridge is to prevent overfitting and 

handle multicollinearity, which occurs when the predictor 

variables are highly correlated. By penalizing the coefficients, 

Ridge ensures that no individual predictor variable has too 

much influence, which can be beneficial when the variables are 

collinear. 

 

2.2.3 Machine learning performance metrics 
 

To rigorously assess the performance of our 

regularized logistic regression model in predicting academic 

performance on sociodemographic data, we employed a range 

of established machine learning metrics. Each metric provides 

distinct insights into the model’s predictive abilities, ensuring a 

comprehensive evaluation. 

- Accuracy: Defined as the proportion of true 

results (both true positives and true negatives) 

among the total number of cases examined. It 

is calculated using the formula: 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 

- TP (True Positives): Number of instances 

correctly predicted as the positive class (e.g., 

“pass” when the student actually passes). 

- TN (True Negatives): Number of instances 

correctly predicted as the negative class (e.g., 

“fail” when the student actually fails). 

- FP (False Positives): Number of instances 

incorrectly predicted as positive (predicted 

“pass” but the student fails). 
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- FN (False Negatives): Number of instances 

incorrectly predicted as negative (predicted 

“fail” but the student actually passes). 

- Accuracy indicates the overall proportion of 

correct predictions the model makes. For 

additional details on this metric, see Powers 

(2011). 

- Precision:  Also known as the positive 

predictive value, precision measures the ratio 

of true positive predictions to the total positive 

predictions made. It is defined as: 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

High precision indicates a low rate of false positive 

predictions, crucial for medical diagnostics where falsely 

identifying a condition can led to unnecessary interventions. 

Refer to Powers (2011) for more insights. 

- F1-Score: The F1-score is the harmonic mean 

of precision and recall, providing a balance 

between the two metrics. It is particularly 

useful when the class distribution is uneven. 

The formula is: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

where recall (or sensitivity) is the ratio of true positive 

predictions to the actual positives in the dataset. See Powers 

(2011). 

- AUC (Area Under the ROC Curve): AUC 

measures the entire two-dimensional area 

underneath the entire ROC (Receiver 

Operating Characteristic) curve. It provides an 

aggregate measure of performance across all 

possible classification thresholds. The AUC 

ranges from 0 to 1, where a model whose 

predictions are 100 % wrong has an AUC of 

0.0, and a model whose predictions are 100% 

correct has an AUC of 1.0. For further reading, 

see Fawcett (2006). 

- Cohen’s Kappa: This metric measures the 

agreement between two raters who each 

classify items into mutually exclusive 

categories. To model evaluation, it compares 

the observed agreement with what might be 

expected by chance, according to: 

Cohen’s Kappa =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
 

 

where 𝑝𝑜  is the observed agreement, and 𝑝𝑒   is the expected 

agreement under independence. Cohen’s Kappa is particularly 

useful in situations where accuracy may be misleading due to 

imbalanced class distributions. 

These metrics collectively enable a comprehensive 

evaluation of our model, providing insights into its strengths 

and areas for improvement in predicting the academic 

performance on sociodemographic data. For the theoretical 

background, see Cohen (1960). 

 

3. Results and Discussion 
 

3.1 Exploratory data analysis 
 

Our exploratory data analysis involved examining a 

dataset of 2,303 first-semester students from Yachay Tech 

University, covering academic periods from 2014 to 2022. The 

dataset includes 25 attributes related to courses such as 

Calculus, Linear Algebra, Chemistry, and Biology, with 

students representing various Ecuadorian provinces. Figure 2 

displays pass and fail rates per subject and includes a 

choropleth map indicating the geographical distribution of pass 

percentages. 
 

 
 

Figure 2. Heat map of academic performance by province in Ecuador 

 

3.2 Predictive analysis using lasso and ridge models 
 

In our study, we applied L1 regularization (Lasso) to 

identify and rank the most influential features affecting 

academic performance in Calculus I, Chemistry I, Biology I, 

and Linear Algebra. For Calculus I, Table 3 indicates that both 

Lasso and Ridge logistic regression models performed strongly, 

with Lasso achieving slightly higher accuracy (0.8927 training, 

0.8812 test) compared to Ridge (0.8739 test). Regarding 

sensitivity—the ability to correctly identify students at risk of 

failing—Lasso also outperformed Ridge (0.7564 vs. 0.7047 in 

testing). However, Ridge regression had a marginal edge in 

specificity, correctly classifying a slightly greater proportion of 

students who passed. The confusion matrices (Figure 3) show 

Lasso correctly identifying more failing students, which might 

be valuable for targeted interventions. The small differences 

observed suggest both models provide robust predictions, 

though institutional goals may favor one over the other based 

on sensitivity or specificity preferences. Additional 

considerations for Calculus I highlight the importance of strong 

algebraic skills and pre-calculus foundations, where Lasso’s 

ability to isolate key predictors (like prior math background and 

sociodemographic variables) may be particularly beneficial. 

In Chemistry I, both Lasso and Ridge logistic 

regression demonstrated effective classification (Table 4). 

Lasso achieved slightly higher test accuracy (0.9275) and 

sensitivity (0.7976) compared to Ridge (0.9246 accuracy, 

0.7738 sensitivity). Ridge exhibited slightly greater specificity 

(0.9732 vs. Lasso’s 0.9693). The confusion matrices (Figure 4) 

reveal similar overall capabilities, though Lasso again showed 

a slight advantage in identifying at-risk students. Chemistry’s 

reliance on theoretical knowledge and practical lab skills 

suggests that sociodemographic factors and re-enrollment 

history may be influential predictors, with Lasso effectively 

eliminating weaker variables and Ridge managing correlated 

features effectively. 

For Biology (Table 5), both models maintained high 

specificity but had lower sensitivity compared to other subjects. 

Lasso  outperformed  Ridge  in  sensitivity  (0.7976 vs. 0.7738), 
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while Ridge was marginally more specific (0.9665 vs. 0.9594). 

The slightly lower sensitivity across both models indicates 

challenges in accurately identifying at-risk students, possibly 

due to Biology’s broad content and reliance on memorization 

and extensive reading. Nonetheless, Lasso may offer 

advantages in highlighting key predictors, supporting targeted 

academic interventions like additional lab or reading support. 
 

 
 

Figure 3. Confusion matrix: Lasso and Ridge models - Academic 

performance prediction (Calculus I) 
 

 
 

Figure 4. Confusion Matrix: Lasso and Ridge models - Academic 

performance prediction (Chemistry) 

For Linear Algebra (Table 6), both models displayed 

similar performance, with Lasso being slightly better at 

identifying failing students and Ridge being slightly better at 

correctly classifying passers. The abstract nature of Linear 

Algebra, reliant on algebraic reasoning, likely results in fewer 

critical predictors, explaining the similarity in performance 

between models. The choice between Lasso and Ridge here 

would depend largely on the institution’s priorities regarding 

sensitivity and specificity. 

Overall, comprehensively evaluating both models 

and considering their metrics and influential variables, the 

Lasso model generally appears preferable for future predictions 

due to its higher sensitivity and capability to identify at-risk 

students. However, the choice between Lasso and Ridge 

ultimately depends on institutional priorities at Yachay Tech 

University: Lasso is ideal for maximizing the detection of 

students needing intervention, while Ridge better minimizes 

false positives. 
 

 
 

Figure 5.  Confusion Matrix: Lasso and Ridge models - Academic 

performance prediction (Biology) 

Table 3. Comparative analysis of metrics between Lasso and Ridge models – Calculus I 
 

Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing) 

     

Accuracy 0.8927 0.8812 0.8872 0.8739 
Sensitivity 0.7417 0.7565 0.7108 0.7047 

Specificity 0.9517 0.9296 0.9560 0.9396 

Kappa 0.7231 0.6994 0.7048 0.6731 
AUC (Area under the curve) 0.941 0.937 0.942 0.935 

     

 

Table 4. Comparative analysis of metrics between Lasso and Ridge models – Chemistry I 

 

Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing) 

     

Accuracy 0.9374 0.9275 0.9306 0.9246 

Sensitivity 0.8147 0.7976 0.7843 0.7738 
Specificity 0.9770 0.9693 0.9779 0.9732 

Kappa 0.8236 0.7959 0.8021 0.785 

AUC (Area under the curve) 0.978 0.952 0.979 0.951 
     

 
Table 5. Comparative analysis of metrics between Lasso and Ridge models – Biology I 

 

Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing) 

     

Accuracy 0.8785 0.8681 0.8795 0.8623 

Sensitivity 0.4586 0.4471 0.4276 0.3821 

Specificity 0.9705 0.9594 0.9777 0.9665 
Kappa 0.8102 0.7746 0.7957 0.7259 

AUC (Area under the curve) 0.872 0.849 0.873 0.835 
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Table 6. Comparative analysis of metrics between Lasso and Ridge models – Linear Algebra 
 

Metric Lasso (Training) Lasso (Testing) Ridge (Training) Ridge (Testing) 

     

Accuracy 0.933 0.9449 0.9361 0.9333 
Sensitivity 0.8701 0.9078 0.8187 0.8156 

Specificity 0.9493 0.9545 0.9665 0.9636 

Kappa 0.7997 0.8358 0.8004 0.7917 
AUC (Area under the curve) 0.972 0.9699 0.973 0.9672 

     

 

 
 
Figure 6.  Confusion Matrix: Lasso and Ridge models - Academic 

performance prediction (Linear Algebra) 
 

4. Conclusions 
 

Our study demonstrates the efficacy of logistic 

regression models enhanced with Lasso and Ridge 

regularization in predicting academic performance based on 

sociodemographic data from Yachay Tech University. By 

examining four core first-semester courses; Calculus, 

Chemistry, Biology, and Linear Algebra, our results confirm 

that Lasso typically outperforms Ridge in correctly identifying 

students who are likely to fail (i.e., higher sensitivity), without 

sacrificing specificity. In particular, Lasso achieved test 

accuracies of 88.12% in Calculus, 92.75% in Chemistry, 

86.81% in Biology, and 94.49% in Linear Algebra, surpassing 

unpenalized logistic regression by up to three percentage points 

(Tables 3–6). The confusion matrices (Figures 3–6) further 

illustrate that Lasso provides a more reliable detection of at-risk 

students, a critical consideration for institutions looking to 

intervene early. 

These performance differences emphasize not only 

the predictive capabilities of our models but also their 

immediate potential to inform decisions aimed at improving 

educational outcomes. By enabling the early identification of 

students who might benefit from remedial measures, the Lasso-

based approach may contribute to reducing dropout rates in a 

tangible way. This is especially pertinent in courses where 

conceptual difficulty or lab-based requirements can exacerbate 

learning challenges, as in Chemistry and Biology, and where 

sociodemographic indicators, such as re-enrollment history, 

high-school background, and socioeconomic status, often 

reveal meaningful patterns that help guide interventions. 

Although our dataset stems from Yachay Tech 

University, these findings have broader implications for other 

higher education contexts. The flexibility of regularized logistic 

regression makes it suitable for diverse datasets, provided that 

the relevant sociodemographic and academic information is 

collected consistently. Future research might extend this work 

by integrating additional attributes, such as attendance records, 

psychoeducational variables, or real-time learning analytics, or 

by exploring advanced ensemble methods that build upon the 

strengths of Lasso and Ridge. 

In conclusion, our study validates the potential of 

Lasso and Ridge regularization in improving the predictive 

power of logistic regression for academic outcomes, 

particularly when harnessing sociodemographic and academic 

data. By offering both robust performance and enhanced 

interpretability, these models represent a valuable tool for 

educational institutions seeking to elevate academic quality and 

reduce student dropout rates through data-driven interventions. 
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