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In this paper, we present an analysis of the solution to a number of geophysical inverse problems
which are generally non-unique. The mathematical inverse problem that arises is commonly ill-posed in the
sense that small changes in the data lead to large changes in the solution. We conduct the inversion algorithm
to explore the conductivity for the ground structure. The algorithm uses the data in the form of magnetic
field measurements for magnetometric resistivity (MMR).  The inversion example is performed to invest-
igate the conductivity ground profile that best fits the observed data. The result is compared with the true
model and discussed to show the efficiency of the method. The model for the inversion example with the
apparent conductivity and the true conductivity are plotted to show the convergence of the algorithm.
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The recent geophysical literature includes
many works on development and application of
inversion techniques. It is a topic of widespread
active research such as the works conducted by
Backus and Gilbert (1967, 1968), Jupp and Vozoff
(1975), Yooyuanyong and Siew (1998), Yooyuan-
yong (2000), Yooyuanyong and Chumchob (2000),
Yooyuanyong and Siew (2000), Yooyuanyong et
al. (2005), and Yooyuanyong and Sripanya (2005).
The motivation for this study is to determine the
mathematical  techniques  that  may  have  applic-
ations for mapping the ground structure in different
parts of Thailand.

In this paper, an analysis of the solution to
a number of geophysical inverse problems which
are generally non-unique (see Backus and Gilbert
(1967, 1968), Jupp and Vozoff (1975), Yooyuan-
yong et al. (2005)) is presented. The mathematical
inverse problem that arises is commonly ill-posed
in the sense that small changes in the data lead to
large changes in the solution. Following the method
performed by Jupp and Vozoff (1975), we conduct
the algorithm to explore the conductivity for the
continuous ground structure. The method uses the
data in the form of magnetic field measurements
for magnetometric(MMR) survey methods. The
simplified inverse problem is to find the conduct-
ivity profile of the ground that best fit the observed
data. The synthesis data are employed to show the

robustness of the algorithm.

Analysis of the inverse problem
The p data values d

1
,d

2
,...d

p
 corresponding

to  p  sample  points,  or  instrument  reading,  are
written as the vector
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In our example, for the MMT data d
i
,i =

1,2,3,...,p are the magnetic fields at the source-
receiver spacing. The restricted earth models are
determined by q free parameters, which we write
as the vector
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In our example, the investigated parameter
is  the  conductivity  profile  of  the  ground.  The
forward  problem  generates  a  set  of  model  data
for each setting of x. This is denoted as a vector
function by
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Here,   
v
g(

v
x)  is the value predicted by the

model and corresponds to the observation   
v
d . The

inverse problem determines values of   
v
x  such that

  
v
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x)  matches    

v
d   in  some  sense,  which  in  this
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paper, is the minimum of the sum of square error
between model and data:

  
F(

v
x) = min (d

i
− g

i
)2.

i=1

p

∑

Inversion process
Iterative  method  is  a  common  tool  for

practical inversion. The iterative method success-
ively  improves  a  current  model  until  the  error
measure is small and the parameters are stable
with respect to reasonable changes in the model.
Following the method discussed by Jupp and Vozoff
(1975), we expand   

v
g(

v
x) about   

v
x  in a Taylor series

expansion
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where  J =
∂g

i
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i

   is  the  Jacobian  matrix  of  the

vector function   
v
g(

v
x),   δ

v
x  is the vector of small

change of the investigated parameters, i = 1,2,3,
...,p  and j = 1,2,3,...,q.  The remainder term   

v
R

depends on   
v
g(

v
x). If   
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g(
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x) is a linear function, then

is exactly zero and

  
v
g(

v
x + δv

x) = v
g(

v
x) + Jδv

x.

An  amount  of    δ
v
x   can  be  calculated  by

solving the linear least-squares problem

  
min

v∈− Jδv
x ,

where ∈
ρ

= d
ρ
− g

ρ
. In matrix form, we may write

  
v∈  =  Jδv

x,

and the vector of small change of the investigated
parameter can be derived by using the generalized
Gauss method as

  Jδv
x = J −1 v∈ . (1)

The    δ
v
x   will  be  used  to  improve  the    

v
x

model. The matrix J  as mention above now can

be  derived  for  our  geometric  model  which  is
layered and assumed to be a function of depth only.
The cylindrical coordinate system is used with the
positive downward to the ground.

Magnetic field due to a semi-infinite source in
a 1-dimensional ground structure

A  semi-infinite  vertical  wire  carries  an
exciting current I and terminates at the electrode
Q. The electrode Q is deliberately placed at the
interface z = z

s
 of layer s and layer s+1 where s is

a positive integer less than N-1 as shown in Figure
1. Each layer has conductivity as a function of
depth, σ

j
(z) with thickness h

j
.

Figure 1. Geometric model of the ground structure

The Maxwell's equations can be used to determine
the magnetic field intensity   

v
H  as

  ∇ ×
v
E =

v
0, (2)

and

  ∇ ×
v
H = σ

v
E, (3)

where   
v
E  is the electric field intensity,   

v
H  is the

magnetic field intensity and σ is the conductivity
of the medium. Using (2) and (3), we have

  
∇ × 1

σ
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v
H =

v
0. (4)

Electrical probe

Ground surface
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vergence of inversion process is 12 iterations that
best fit the observed data. This record is good as
same  as  the  work  done  by  Yooyuanyong  and
Sripanya (2005). However, we can see that the
speed of convergence of our algorithm is slower
than the algorithms conducted by Vozoff and Jupp
(1975) and Yooyuanyong et al. (2005). This leads
to our future works to analyze and compare the
structure of algorithms. The optimal solution for
conductivity of the ground is very close to the true
one and is shown in Figure 4.

Conclusions

In this paper, we perform both of mathema-
tical forward and inverse modeling to explore the
ground structure. The Maxwell's  equations are used

as our governing equations. The magnetic fields
computed from the forward problem are consid-
ered  to  investigate  their  relations  with  depth.
Unfortunately, the behavior of the magnetic fields
does  not  show  any  significant  in  pattern  for
identifying  the  structure  of  the  ground  as  the
curves of magnetic field smoothly decay and rarely
oscillate so we need a more complicated method
to explore the earth structure.

In the inversion example, the algorithm to
invert the conductivity of the ground is presented.
The  linearized  inverse  theory  is  employed  to
construct the matrix which is used to iteratively
obtain the conductivity profile from the starting
model. The iterative scheme employs a smooth-
ing filter which aims to reduce high frequency
oscillations and to keep the conductivity structure

Figure 3.  The graph of apparent conductivity against  r

Figure 4.  Graph of optimal solution compares with the true model
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realistic. The inversion of magnetometric resist-
ivity method has been used and performed to give
a fast speed of convergence.
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