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Abstract

This paper investigates four new estimators in simple random sampling, biased sample mean, ratio estimator, and two
linear regression estimators, using known coefficients of variation of the study variable and auxiliary variable. The properties
of the new estimators are obtained. Comparisons among the new estimators, three traditional estimators, Searls sample mean,
Koyuncu and Kadilar (KK) estimators, Sisodia and Dwivedi (SD) estimator, and Shabbir and Gupta (SG) estimator are under-
taken. The analysis shows that the two proposed linear regression estimators are more efficient than the new biased sample
mean and at least as efficient as the three traditional estimators and SD estimator. At least one of the proposed linear regression
estimators is always more efficient than the new ratio estimator and Searls sample mean. From the numerical results using two
data sets published in the literature, the proposed linear regression estimators are clearly more efficient than all seven existing
estimators.

Keywords: estimator selection criteria, linear regression estimator, bias, MSE, relative efficiency, simple random sampling

Songklanakarin J. Sci. Technol.
35 (6), 749-760, Nov. - Dec. 2013

1. Introduction

In simple random sampling where the population size
is N, and the sample size is n, Searls (1964) proposed a biased
sample mean with a smaller MSE than the traditional sample
mean y , obtained by utilizing a known coefficient of varia-
tion, yC , without the finite population correction factor

1 1n N   . However, in this paper, Searls sample mean
using the finite population correction factor is defined as
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The  bias  and  MSE  of  Searls  sample  mean,  respec-
tively, are shown to be
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It is obvious from Equation 3 that the relative efficiency
of Searls sample mean wyy with respect to the traditional
sample mean y  is equal to 2(1 ) 1yC  . Without the finite
population correction, the results in Equation 1-3 become
the same results as in the original Searls work (Searls, 1964).
However,  Searls  sample  mean  should  be  used  under  the
condition 2 1yC   to avoid a large unacceptable bias in
the estimate.

When we can find an auxiliary variable X which is
highly correlated with the study variable Y, the use of known
auxiliary information in the ratio estimator can reduce the
MSE  of  the  sample  mean.  The  traditional  combined  ratio
estimator is defined as

.r
Xy y
x

 (4)

The bias and MSE of ry , to first order of approxima-
tion, respectively, are given by Cochran (1977)
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 2Bias( ) ,r x y xy Y C C C   (5)

 2 2 2MSE( ) 2 ,r y x y xy Y C C C C    (6)

which is less than MSE( )y if 2 .x yC C   Motivated by
Searls (1964), several researchers proposed estimators using
the known coefficient of variation of the auxiliary variable,

xC , for estimating the population mean when the study vari-
able  is  highly  correlated  with  the  auxiliary  variable,  for
example,  the  Sisodia  and  Dwivedi  (SD)  ratio  estimator
(Sisodia and Dwivedi, 1981), which is defined as:
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The bias and MSE of SDy , to first order of approxi-
mation, respectively, are given by
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By  Equation  6  and  9,  the  relative  efficiency  of  SDy  with

respect to ry  is greater than unity when
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With respect to y , the relative efficiency of SDy  is greater
than unity when
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Gupta and Shabbir (2008) improved the estimation of
population mean by proposing the ratio estimator
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where and   are either constants or functions of the known
parameters of auxiliary variable, 1w  and 2w  are constants.
The bias and MSE of py , to first order of approximation,

respectively, are given by Koyuncu and Kadilar (2010) (KK
estimator)
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where  2 2 2MSE( ) (1 )lr yy Y C     (Cochran,  1977),  and
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. The values of 1w  and 2w , which minimize

MSE( )py  are given by
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It is clear from Equation 14 that MSE( )py is less than
MSE( )lry . Table 1 gives six values of and   as suggested
by Koyuncu and Kadilar (2010), where 2( )x  is the kurtosis
of the auxiliary variable.

Recently,  Shabbir  and  Gupta  (2011)  proposed  an
exponential ratio type estimator (SG estimator)

1 2( ) exp ,
(2 1)SG
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The bias and MSE of SGy , to first order of approxi-
mation, respectively. are given by
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Table 1. Some members of Koyuncu and Kadilar (KK) estimators in simple random sampling.

KK Estimator (0)py (1)py (2)py (3)py (4)py (5)py

 0 1 1 1 2 ( )x xC
 1  xC 2( )x xC 2 ( )x
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This paper is an attempt to extend the powerful Searls
approach to the traditional estimators using auxiliary variable
in  simple  random  sampling.  In  the  next  two  sections,  we
suggest a new biased sample mean, a new ratio estimator and
two new regression estimators in simple random sampling.
Section 4 presents the comparison among the new estimators,
the traditional estimators, and the KK estimators, ( ) ,p iy  i = 0,
1, 2,…,5 (Koyuncu and Kadilar, 2010), SD estimator and SG
estimator. The numerical results for estimators are presented
in Section 5 using two data sets from the published literature.
Finally, the last section is a summary and conclusions.

2. New ratio estimator and new biased sample mean

When the study variable Y is highly correlated with
the auxiliary variable X, a ratio estimate is commonly used for
estimating the population mean. A new ratio estimator using
coefficients of variation of Y and X, can be written as

,rwyx wy
wx
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where 2(1 ),wy yy y C    2(1 ),wx xx x C    and X  is the
population mean of the auxiliary variable. The coefficients
of variation, andy xC C , are assumed to be known. The new
ratio estimator rwyxy  in Equation 20 can be expressed in
terms of the traditional ratio estimator, ,ry  as
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The bias and MSE of rwyxy , to first degree of approxima-
tion, respectively, are given by
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From Equation 23, it can be concluded that the relative
efficiency of the new ratio estimator rwyxy  with respect to
the traditional ratio estimator, ,ry  is greater than unity if

xC < yC . When only is used in the estimation, the new ratio
estimator in Equation 20 becomes

,rwx wx
wx

Xy y
x

 
 (24)

where a new biased sample mean wxy , using the coefficient
of variation of the auxiliary variable, is defined as
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It is obvious from Equation 24 and 25 that rwxy  is
actually the traditional ratio estimator since wxy and wxx use
the same weight, 21 .xC  The bias and MSE of wxx can be
expressed in the similar form as Equation 2 and 3, respec-
tively. The bias of wxy can also be written in the similar man-
ner but the MSE of wxy , to first order of approximation, is
given by
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By Equation 3 and 26, it can be verified that the relative effi-
ciency of wxy with respect to wyy is greater than unity if

22y x xC C C  .

3. New linear regression estimators

By following the definition of the traditional linear
regression estimator (Cochran, 1977), the first new linear
regression estimator is defined as

( ).lrwyx wy wyx wxy y b X x     (27)

The  value  of wyxb  that  minimizes  the  variance  of

lrwyxy  can be shown to  be
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where y xb S S (Cochran, 1977). By substituting wyxb
from Equation 28 into Equation 27, the bias of lrwyxy  can be
written as
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The MSE of lrwyxy , to first order of approximation,
is given by
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Again, when only xC  is used in the estimation, the
new linear regression estimator in Equation 27 becomes

( ).lrwx wx wx wxy y b X x     (31)

Similarly, it can be shown that wxb b ,
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From Equation 30 and 33 it can be concluded that both new
linear regression estimators, lrwyxy  and lrwxy  are always
more efficient than the traditional regression estimator, lry .

4. Estimator comparisons

Four  new  estimators, ,wxy , ,rwyx lrwyxy y   and
,lrwxy  have been presented in the above sections. The first

part is limited to the relative efficiency comparison among
four  new  estimators.  The  selected  new  estimators  are
compared with the traditional estimators, Searls sample mean,
KK estimators, SD estimator, and SG estimator in the second
part. The relative efficiencies of ,wxy , ,rwyx lrwyxy y   and

lrwxy  with respect to  and  are shown in Table 2. The com-
parison conditions in Table 2 can be derived directly from
the MSE formulae in Section 2 and 3. The estimator wxy is
eliminated from the future comparison since the relative effi-
ciency of wxy with respect to lrwxy is always less than unity..
Lemma 1: If 2 2 2(1 ) (1 )x yC C    , then lrwxy  is more
efficient than rwyxy  unless 2 4 2 2(1 ) / (1 )x x y yC C C C     .

Otherwise, lrwxy  is more efficient than rwyxy  providing that
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and as efficient as rwyxy  providing that  takes on a particu-
lar value such as
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Lemma 2: If 2(1 )x x yC C C  , then lrwyxy  is more efficient

than rwyxy  for 0 | | 1  ; otherwise, lrwyxy  is as efficient
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The proofs of Lemma 1 and 2 are shown in Appendix.
From  Lemma  2,  it  can  be  concluded  that  the  relative
efficiency  of  the  linear  regression  estimator lrwyxy  with

Table 2. Relative efficiency comparisons among the proposed estimators: .
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respect to the ratio estimator rwyxy  is not less than unity..
Therefore, in this study, only two new estimators, lrwyxy  and

lrwxy , are proposed. However, since these two proposed es-
timators have been shown to be biased, lrwyxy  and lrwxy ,
should be used under 2 1Cy   and 2 1Cx   respectively to
avoid the unacceptable large bias.

Next, the two proposed estimators, lrwyxy  and lrwxy ,
are compared with seven existing estimators consisting of three
traditional estimators, , , ,r lry y y  Searls sample mean wyy ,
KK estimators ( )py i , SD estimator ,SDy  and SG estimator

SGy . It can be concluded from Table 3 that the proposed
linear regression estimators, lrwyxy  and lrwxy  are always

more efficient than the traditional estimators, y  and lry .
Again, as shown in Table 3, lrwyxy  is always more efficient
than Searls sample mean, wyy .
Lemma 3: If 2(1 )x x yC C C  , then lrwyxy  is more efficient
than ry  for 0 | | 1  ; otherwise, lrwyxy  is as efficient as
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x
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Table 3. Relative efficiencies of proposed estimators with respect to existing estimators.
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Lemma 10: If 2 2 2 2 264(1 ) (2 )x y x xC N C C C    , then lrwxy
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The proofs of Lemma 3-10 are shown in Appendix.
The above analysis shows that the relative efficiencies of the
two proposed linear regression estimators, lrwxy  and lrwyxy
with respect to three traditional estimators, , ,r lry y y and SD
estimator SDy , respectively, are not less than unity. The
proposed linear regression estimator lrwyxy  is more efficient
than Searls sample mean wyy  but lrwxy  is more efficient
than wyy  if y xC C . Lemma 5, 6, 9 and 10 give the condi-
tions that the two proposed linear regression estimators,

lrwxy and lrwyxy , are more efficient than KK estimators
( )py i  and SG estimator SGy .

5. Numerical examples

For comparison of estimators, consider two data sets
from published literature. Example 1 (see Gupta and Shabbir,
2008): The study variable Y is the level of apple production
(in 1000 tons) and the auxiliary variable X is the number of
apple trees in 104 villages in the East Anatolia Region in
1999. The required data are summarized as follows:

N = 104, n = 20, Y = 6.254, X = 13931.683, yC = 1.866,

xC = 1.653, 2( ) 17.516,x   = 0.865.

In Example 1, ,x yC C 2 0.1406 1,yC    and 2
yC 

0.1406 1, . From Table 3, it can be concluded that lrwxy
and lrwyxy  are always more efficient than y  and that lrwyxy
is always more efficient than wyy . Since the conditions in the
first if parts of Lemma 7, 8, 9, and 10 are obviously satisfied,

lrwxy  and lrwyxy  are more efficient than SDy  and SGy .
Similarly, lrwyxy  and ylrwx  are more efficient than ry  by
Lemma 3 and 4, and lrwyxy  is more efficient than ( )py i ,

0,1, ,5i   , by Lemma 5. Since 2 2 2(1 ) (1 )x yC C    in
this example is greater than unity, it can be concluded from
Table 3 that lrwxy  is more efficient than wyy . The values of
 and the RHS of the condition in Lemma 6 summarized in
Table 4 lead to the conclusion that the condition in the first
part of Lemma 6 is satisfied for all values of  in this example.
Therefore, lrwxy  is more efficient than ( )py i 0,1, ,5i   , by
Lemma 6. In summary, lrwyxy  and ylrwx  are more efficient
than three traditional estimators, Searls sample mean, KK
estimators, SD estimator, and SG estimator. In Example 1,

lrwyxy  is more efficient than lrwxy  since y xC C . In other
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 Table 4. The values of  and the RHS of the condition in Lemma 6.

KK Estimator (0)py (1)py (2)py (3)py (4)py (5)py

Ex. 1   1.0000 0.9999 0.9999 0.9987 1.0000 0.9992

2 2 2(1 )(2 )x x xC C C    2.2650 2.2650 2.2650 2.2653 2.2650 2.2652

Ex.2   1.0000 0.9999 0.9998 0.9984 1.0000 0.9991

2 2 2(1 )(2 )x x xC C C    2.6264 2.6264 2.6264 2.6264 2.6264 2.6264

Table 5.  Relative efficiencies of estimators with respect to ry  and their relative absolute biases.

Example 1 Example 2
Estimator

MSE Relative Relative MSE Relative Relative
Efficiency, % Abs. Bias,% Efficiency, % Abs. Bias,%

lrwyxy 1.0644 130.32 2.88 218.8165 122.32 0.05

lrwxy 1.1232 123.50 0.23 217.8082 122.88 0.18
rwyxy 1.3145 105.53 2.40 268.8905 99.54 0.42

ry 1.3871 100.00 0.26 267.6515 100.00 0.19

lry 1.3847 100.17 0.00 224.6335 119.15 0.00

(0)py 1.3374 103.72 3.42 224.3689 119.29 0.12
(1)py 1.3317 104.16 3.40 224.3647 119.29 0.12

(2)py 1.3317 104.16 3.40 224.3647 119.29 0.12
(3)py 1.3318 104.16 3.40 224.3647 119.29 0.12

(4)py 1.3317 104.16 3.40 224.3647 119.29 0.12

(5)py 1.3318 104.16 3.40 224.3647 119.29 0.12

SDy 1.3871 100.00 0.26 267.5353 100.04 0.19

SGy 1.3374 103.72 3.47 224.3689 119.29 0.12

words, lrwyxy  is the most efficient estimator among the com-
pared estimators.

Example 2 (see Koyuncu and Kadilar, 2009): The study
variable Y is the number of teachers and the auxiliary variable
X is the number of students in primary and secondary schools
in 923 districts of Turkey in 2007. The population statistics are
given by

N = 923, n = 180, Y = 436.4345, X = 11440.4984,
yC = 1.7183, xC = 1.8645,

2 ( ) 18.7208,x   = 0.9543.

In  Example  2,  x yC C , 2 0.0132 1,yC     and
2 0.0155 1.xC    By the similar reasoning as in Example 1,

lrwyxy  and ylrwx  are more efficient than the three traditional

estimators, Searls sample mean, KK estimators, SD estimator,
and SG estimator. But in Example 2, lrwxy  is the most efficient
estimator among compared estimators since y xC C .

The MSEs, relative efficiencies, and relative absolute
biases of estimators with respect to the traditional ratio esti-
mator ry  of Example 1  and 2 are summarized in Table 5. The
numerical results are consistent with the above analysis. The
relative efficiency of lrwyxy  in Example 1 is highest equal to
130.32% and the relative efficiency of lrwxy in Example 2 is
highest equal to 122.88%. The relative efficiencies of both
proposed linear regression estimators are clearly higher than
the traditional estimators, Searls sample mean, KK, SD, and
SG estimators. In both examples, the relative absolute bias of

lrwxy  is in the order as the traditional ratio estimator..
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6. Summary and Conclusions

In this paper, the powerful concept of Searls biased
sample mean has been extended to cover the sample mean,
the ratio, and linear regression estimators in simple random
sampling. Four new estimators using the coefficient of varia-
tion of the auxiliary variable, ,wxy  ,rwyxy  lrwyxy  and lrwxy ,
have been investigated and their properties are also obtained.
The selection criteria based on relative efficiency among
these new estimators, , , ,r lry y y ( )py i , i = 0,1,…,5, ,SDy
and SGy  are shown in Table 2 to 3 and Lemma 1 to 10. In the
relative efficiency comparisons, it is found that the new
linear regression estimator lrwxy  is more efficient than the
new sample mean wxy . The relative efficiency of lrwyxy  with
respect to the new ratio estimator rwyxy  is not less than unity..
The linear regression estimator lrwyxy  is more efficient than
another linear regression estimator lrwxy  if C Cy x . This
leads us to propose only two new linear regression estima-
tors. The relative efficiencies of the two proposed linear
regression estimators with respect to the three traditional
estimators, y , ry and lry , and SD estimator SDy , respec-
tively, are shown to be at least equal to unity. The proposed
linear regression estimator lrwyxy  is always more efficient
than Searls sample mean wyy  but another linear regression
estimator lrwxy  is more  efficient  than  Searls  sample  mean

wyy  if 2 2 2 21 (1 ) (1 )x yC C      or Y and X are suffi-
ciently high correlated. The estimator selection criteria among
the proposed estimators, KK estimators ( )py i  and SG
estimator SGy  are given in Lemma 5, 6, 9, and 10.

In two published data sets, the relative efficiencies of
lrwyxy  and lrwxy  are clearly higher than those of other esti-

mators as shown in Table5. The relative biases of lrwyxy  and
lrwxy  are 2.88% and 0.23% in Example1 and 0.05% and

0.18% in Example 2, respectively. There is not much differ-
ence between all KK estimators and SG estimator as shown
in Table 5.
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Appendix

Proof of Lemma 1:

From Table 2, lrwxy  is at least as efficient as rwyxy  if

2
2 4 2 4 2 2 4

2 2 2 2 2 2 2
(1 ) (1 ) (1 )1 1 .
(1 ) (1 ) (1 )

x x x x x

y y y y y

C C C C C
C C C C C

  


  

               
            

(A-1)

Consider the first case where 2 2 2(1 ) (1 )x yC C    . Under this condition, if 2 2 2(1 ) (1 )x x y yC C C C    , then

the RHS in Equation A-1 is negative. It can be concluded that lrwxy  is more efficient than rwyxy  for 0 | | 1  . If
2 2 2(1 ) (1 )x x y yC C C C    ,  then the RHS is equal to zero. From Equation A-1, lrwxy  is more  efficient than rwyxy  unless
2 2 2(1 ) (1 )x yC C     . When 2 2 2(1 ) (1 )x yC C     , lrwxy  is as  efficient as rwyxy . If  2 2 2(1 ) (1 )x x y yC C C C    ,

it is obvious that 2 4 2 2(1 ) (1 )x x y yC C C C    .

When 2 4 2 2(1 ) (1 )x x y yC C C C    , the minimum of the LHS in Equation A-1 for 0 | | 1   occurs at 1   and

is equal to

min

2
2 4

1 2 2
(1 )

1
(1 )

x x

y y

C CLHS
C C





   
  

.

Consider the difference between 
min1LHS  and the RHS in Equation A-1:

min

22 4 2 2 4 2 4

1 2 2 2 2 2 2 2
(1 ) (1 ) (1 )

1 1 1 0.
(1 ) (1 ) (1 )

x x x x x

yy y y y

C C C C C
LHS

CC C C C
  

  

                           

Therefore, if 2 2 2(1 ) (1 )x x y yC C C C    , it can be concluded that in Equation A-1, the LHS is greater than the
RHS for 0 | | 1  . In other words, if 2 2 2(1 ) (1 ),x x y yC C C C    lrwxy  is more efficient than rwyxy  for 0 | | 1  . Next
consider the case where 2 2 2(1 ) (1 )x yC C    .  Under this condition, the RHS in Equation A-1 is equal to zero. From
Equation A-1, it can be concluded that lrwxy  is more efficient than rwyxy  unless x yC C  . When x yC C  , lrwxy  is as
efficient as rwyxy . The final case is 2 2 2(1 ) (1 )x yC C    . Under this condition, it follows immediately that 22y x xC C C  .
In other words, if 2 2 2(1 ) (1 )x yC C    , it implies that 2 2 2(1 ) (1 )x x y yC C C C     and 2 4 2 2(1 ) (1 )x x y yC C C C    .
Therefore, from Equation A-1, lrwxy  is more efficient than rwyxy  if the inequality of Equation A-1 is a strictly inequality and
is as efficient as rwyxy  if  takes on a particular value such that the inequality (A-1) becomes an equality. In summary, if

2 2 2(1 ) (1 )x yC C    , then lrwxy  is more efficient than rwyxy  unless 2 4 2 2(1 ) / (1 )x x y yC C C C     . Otherwise, lrwxy  is
more efficient than rwyxy  provided that Equation A-1 is a strictly inequality and as efficient as rwyxy  provided that   takes
on a particular value such that the inequality of Equation A-1 becomes an equality.

Proof of Lemma 2:

From Table 2, the condition that lrwyxy  is at least as efficient as rwyxy   can be written as

2 2
2 2 2 2 2 2

2(1 ) (1 ) 1 (1 ) 1x x
x x x

y y

C CC C C
C C

   
  

                  
 . (A-2)
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The inequality of Equation A-2 is the same as the inequality of Equation A-1 if the term 2(1 )xC  is replaced by the

term 
2 2

2
(1 )
(1 )

x

y

C
C







 . The proof of Lemma 2 is much simpler than the proof of Lemma 1 since 2(1 )xC  is only greater than

zero. It can be shown in the similar manner as in the first part of the proof of Lemma 1 that if 2(1 )x x yC C C  , lrwyxy  is

more efficient than rwyxy  for 0 | | 1  ; otherwise, lrwyxy  is as efficient as rwyxy when 2 2(1 ) .x
x

y

C C
C

  

Proof of Lemma 3:
From Table 3, lrwxy  is more efficient than ry  if

2 2
2 2 2 2 2 2

2(1 ) (1 ) 1 (1 ) 1 .x x
x x x

y y

C CC C C
C C

   
  

                  
(A-3)

Since the inequality of Equation A-3 is exactly the same as the inequality of Equation A-2, the conclusion is the same
as Lemma 2.

Proof of Lemma 4:
From Table 3, lrwyxy  is more efficient than ry if

2 2
2 2 2 2 2 2

2(1 ) (1 ) 1 (1 ) 1 .x x
y y y

y y

C CC C C
C C

   
  

                  
(A-4)

The inequality of Equation A-4 is in the same form as the inequality of Equation A-2 if the term 21 yC  is replaced

by 21 xC . Therefore, it can be concluded that if 2(1 )
y

x
y

C
C

C



, lrwyxy  is more efficient than ry  for 0 | | 1  ; otherwise,

lrwyxy  is as ry when 2 2(1 ) .x
y

y

C C
C

  

Proof of Lemma 5:

From Table 3, lrwyxy  is at least as efficient as ( )py i  if

2 2 2 21 (1 )(2 )x yC C       . (A-5)

If  
2

2 2
2

1

2
y

x
y

C
C

C


 







, it can be shown that the RHS in Equation A-5 is less than or equal to zero. Therefore, it can be

concluded that if 
2

2 2
2

1

2
y

x
y

C
C

C


 







, lrwyxy  is more  efficient than KK estimators ( )py i , 0,1, ,5i   , for 0 | | 1  .

Otherwise, lrwyxy  is more efficient than KK estimators when 2 2 2 21 (1 )(2 ),x yC C        and as efficient as KK esti-

mators when 2 2 2 21 (1 )(2 )x yC C       .

Proof of Lemma 6:

From Table 3, the condition that lrwxy  is at least as efficient as ( )py i  is

2
2 2 2 2

21 (1 )(2 )x
x x

y

C C C
C

       . (A-6)
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If 2 2 2(1 )(2 )y x x xC C C C     , the RHS in Equation A-6 is either negative or zero. Therefore, lrwxy  is more

efficient than KK estimators ( )py i , 0,1, ,5i   , for 0 | | 1  . Otherwise, lrwxy  is more efficient than KK estimators

when the inequality of Equation A-6 is a strictly inequality and as efficient as KK estimators when the inequality of Equation
A-6 becomes an equality.

Proof of Lemma 7:
From Table 3, the condition that lrwxy  is at least as efficient as SDy  is

2 22
2 2 2 2 2 2

2(1 ) (1 ) 1 (1 ) 1 .x x
x x x

y x xy

C CX XC C C
C X C X CC

   
                         

 (A-7)

The inequality of Equation A-7 is exactly the same as the inequality of Equation A-2 if the term x
x

XC
X C

 
  

 is

replaced by the term xC . It can be shown in the similar manner that if 2(1 )x x y
x

XC C C
X C


 

   
 lrwxy  is more efficient

than SDy  for 0 | | 1  ; otherwise, lrwxy  is as efficient as SDy  when 2 2(1 ) .x
x

y x

C X C
C X C

 
 

   

Proof of Lemma 8:
Again, from Table 3, the condition that lrwyxy  is at least as efficient as SDy is

2 22
2 2 2 2 2 2

2(1 ) (1 ) 1 (1 ) 1 .x x
y y y

y x xy

C CX XC C C
C X C X CC

   
                         

(A-8)

The inequality of Equation A-8 is in the same form as the inequality of Equation A-7 if the term 21 yC  is replaced

by 21 xC . Therefore, it can be concluded that if  2(1 )
y

x
x y

CXC
X C C

 
   

, lrwyxy  is more efficient than SDy  for

0 | | 1  ; otherwise, lrwyxy  is as efficient as SDy  when 2 2(1 ) .x
y

y x

C X C
C X C

 
 

   

Proof of Lemma 9:

From Table 3, the condition that lrwyxy  is at least as efficient as SGy  is

2 2 4 2 22
2 2 2

2 2 4 4
(1 ) (1 )

(1 ) 1 .
4(1 ) 64 (1 )

y x yx
y

y y

C C CCC
C N C N

 
  

  
     
   

 (A-9)

If 
2

2 1

1
y

x
y

C N
C

C





, the terms, 

2 2 2

2 2
(1 )

4 (1 )
x y

y

C C

C N




 and 

2 2 2

2 4
(1 )

64 (1 )
x y

y

C C

C N




 can be approximately equal to zero for large N.
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Under such condition and large N, it can be concluded that the LHS in Equation A-9 is greater than zero for 0 | | 1  .

Therefore, lrwyxy  in a large population is more efficient than SGy  for 0 | | 1   if 2
2 1

1
y

x
y

C N
C

C





.

Proof of Lemma 10:
From Table 3, lrwxy  is at least as efficient as SGy  if

2 2 2 4 2 2
2 2 2

2 2 4 4
(1 ) (1 )(1 ) (2 ) 1
4(1 ) 64 (1 )

x x x x
x

y y

C C C CC
C N C N

 
  

          
     

.                   (A-10)

When N is large, the term 2 2 2(1 ) 4(1 )xC N   is insignificant when compared with 2. Under this condition,
the LHS in Equation A-10 can be approximately reduced to

2
2 2 2

2(1 ) (2 ) 1x
x

y

C C
C

  
 
    
  

,                                   (A–11)

which is greater than zero for 0 | | 1   if 2 2 2(2 )y x xC C C  . When N is large, the RHS in Equation A-10 is approximately

equal to zero if 8 (1 )x yC C N  . Therefore, if 2 2 2 2 264(1 ) (2 )x y x xC N C C C    , then lrwxy  in a large population is

more efficient than SGy  for 0 | | 1  . When 2 2 2(2 )y x xC C C  , the condition 2 2 264(1 )y xC C N   is also satisfied for

large N. Therefore, if 2 2 2(2 )y x xC C C  , lrwxy  in a large population is more efficient than SGy  when 
2 2

2
2

(2 )1 x x

y

C C
C





  ,

and as efficient as SG estimator SGy  when 
2 2

2
2

(2 )1 x x

y

C C
C





  .


