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Abstract

The zero inflated negative binomial-Crack (ZINB-CR) distribution is a mixture of Bernoulli distribution and negative
binomial-Crack (NB-CR) distribution, which is an alternative distribution for the excessive zero counts and overdispersion.
In this paper, some properties of the ZINB-CR distribution are discussed. Statistical inference of the parameters is derived by
maximum likelihood estimation (MLE) and the method of moments (MM). Monte Carlo Simulations are used to evaluate the
performance of parameter estimation methods in term of mean squared error (MSE). An application of the distribution is
carried out on a sample of excess zero-count data. Simulation results show that the MLE method outperforms the MM
method in specific parameter values. Furthermore, the ZINB-CR provides a better fit compared to the zero inflated Poisson

(ZIP), the zero inflated negative binomial (ZINB) and the negative binomial-Crack (NB-CR) distributions.

Keywords: zero inflated negative binomial-Crack distribution, count data, overdispersion, excessive zero,

maximum likelihood estimation, method of moments

1. Introduction

In many situations, count data are characterized by
overdispersion and excess zeros. Consequently, researchers
have attempted to develop a probabilistic model that is more
flexible than the Poisson and the negative binomial (NB)
distributions. Mixed-distribution models. In particular, zero
inflated (ZI) count models, are defined as alternative models
which often have desirable properties for modeling count
data with excess zeros. The ZI count models contain a
mixture of a point mass at zero and an untruncated count
distribution, for instance, the zero inflated Poisson (ZIP) and
zero inflated negative binomial (ZINB) distributions (Neelon
etal.,2010).

* Corresponding author.
Email address: fsciwnb@ku.ac.th

The distribution of ZIP was introduced by Lambert
(1992), who applied a logit model in order to capture the
influence of covariates on the probability of excess zeros.
The ZIP can be used efficiently in the model for count data
with excess zeros only if the data are without overdispersion.
In practice, count data are often overdispersed, which will
result in severe bias in parameter estimates for the ZIP dis-
tribution, and an alternative distribution, such as the ZINB
distribution, is more appropriate (Greene, 2010; Ridout ef al.,
1998; Phang and Ong, 2006; Doyle, 2009). Later, Yip and Yau
(2005) discussed several parametric zero-inflated count dis-
tributions including ZIP, ZINB, zero inflated generalized
Poisson (ZIGP), and zero inflated double Poisson (ZIDP)
distribution to incorporate the situation of the excess zeros
for insurance claim count data, and subsequently Famoye
and Singh (2006) developed a ZIGP model with an applica-
tion to domestic violence data.
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In this work, we propose an alternative distribution
for the excessive zero counts and overdispersion, the zero
inflated negative binomial-Crack (ZINB-CR) distribution,
which is obtained by mixing Bernoulli distribution and nega-
tive binomial-Crack (NB-CR) distribution. The latter distribu-
tion is another discrete distribution for count data which is
a mixture of the NB and Crack distributions. The Crack
distribution is a mixture of inverse Gaussian (IG) and length
biased inverse Gaussian (LBIG) distributions, which has
recently been studied by Jorgensen et al. (1991), Balakrish-
nan et al. (2009) and Bowonrattanaset and Budsaba (2011).
This formulation distribution provides powerful and popular
tools for generating flexible distributions with attractive
statistical and probabilistic properties because the pdf of the
Crack distribution, f, (x;l,@,j/), is expressed by the
mixture between IG distribution and LBIG distribution as the

form: o (x:,0.7) = (1-7) fy (x:2.0)+7 1 (1:1,0)
for x>0, where 0 <y <1 is a mixing parameter, f;
(x;4,0) and f,,;(x;A,0) are the densities of the IG and
LBIG distributions, respectively. The Crack distribution
can be useful for statistical analysis in prospective studies
connected with the engineering problem of a fatigue crack
development in a metalic plate under some kind of pressure
loading,.

The NB-CR distribution represents generalization of
distribution for count data, including the negative binomial-
inverse Gaussian (NB-IG), negative binomial-Birnbaum-
Saunders (NB-BS) and negative binomial-length biased
inverse Gaussian (NB-LBIG). Saengthong and Bodhisuwan
(2013) showed that the NB-CR distribution provided a better
fit compared to the Poisson and the NB distributions.

This paper is organized as follows: in Section 2, we
consider the characteristics, an algorithm for generating
random data and the parameter estimation of the ZINB-CR
distribution. In Sections 3 and 4, a simulation study is carried
out to evaluate the performance of parameter estimation
methods, and the usefulness of the ZINB-CR distribution
is illustrated by a real data set. Finally, conclusions are
presented in Section 5.

2. The Zero Inflated Negative Binomial-Crack Distribution
2.1 Zeroinflated count models

The probability mass function (pmf) of zero inflated
count models can be written as

[o+1-a)h(0)
g(x)= (1-w)h(x)

where @ is a zero inflation parameter (0 <® <1), and A(.)
is the pmf of the parent count model.

Now, we consider zero inflated count models cor-
responding to the Poisson and the NB distributions. For the
ZIP distribution, which is a mixing of Bernoulli distribution
and Poisson distribution, the pmfhas the form

,x=0

@
x=12,...,
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o+(1-w)exp(-1)

g(x) = a exp (—}L) A @
—x!

— o)

where 4 >0 and O<w<1.

Another mixed probability distribution related to
the ZIP distribution is the ZINB distribution. The ZINB is a
mixture of Bernoulli and NB distributions. The pmf for the
ZINB is given by

o+(l-o)p ,x=0

g(x)= (l—w)(rﬂ_ 3)

1
jp’(l—p)* =12,
where 7 >0,0< p<land O <w<1.

2.2 A new zero inflated distribution

As mentioned earlier, the ZINB distribution have been
developed to cope with zero inflated outcome data with
overdispersion. In order to provide another competition to
the ZINB distribution, a new mixed distribution is considered.
We propose the ZINB-CR distribution, which is a mixture of
Bernoulli and NB-CR distributions. We first provide a general
definition of the NB-CR distribution which will subsequently
reveal its pmf.

Definition 1:

Let X be a random variable which follows the nega-
tive binomial-Crack distribution with parameters r», A, 8 and
7, X ~NB-CR(r,4,0,7), when X has a NB distribution
with parameters 7 >0 and p =exp(—a) where a is dis-
tributed as CR with the positive parameters A,6 and y, i.e.,
X|a ~NB (r,p = exp(—a)) and a ~CR(4,0,y).

The next theorem provides a closed form for the pmf
and for the factorial moments.

Theorem 1:

If X ~NB-CR(7,1,6,y), then the pmf and the
factorial moments of order k of the distribution are given as
(4) and (5) respectively:

o (sl

; exp(l(l— l+29(r+j)))

\/1+29(r+j)

(1-r(1=1+20(r+ ). x=012.. @
and
F(r+k) k(& jexp(/l(l—wll—ZG(k—j)))
,u(’»)( )_ r(r) ]Z_(}[]j _1) \/1—29(/(—])

x=0,1,2,.., )

x(1-r(1- =20 (k- ))),
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where 7, 1,6 >0 and 0<y <1.
Proof: (see Saengthong and Bodhisuwan (2013)).

Definition 2:

Let X be a random variable of NB-CR distribution,
with pmf /(x) defined asin (4) and g(x) in(1). Then g(x)
is a pmf of ZINB-CR distribution with parameters 7, 1,0,y
and @, X ~ ZINB-CR(»,1,0,7,0).

Theorem 2:
If X ~ ZINB-CR(r, 1,0, 7,®), the pmf of the dis-
tribution is given by

exp(l(l7M))(lfy(lfx/l+20r))
o+(-w) 200 s x=0
gx)= N ex (1(1—4/1+26(r+j)))
r+x—1 x , &P
a-o " E e J20(r+))
(17 (1-y1%20(r+ 7). x=12,...,

where ,4,0 >0,0<y<land 0<w<l1.

Proof: By Definition 2, substitute (4) into (1), then the pmf
for the ZINB-CR distribution can be expressed as (6).

r=3,1=5,6=0.05v=0.5,0=0.3
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Some specified parameters of ZINB-CR distribution
and their graphs are displayed in Figure 1. From the graphs
it can be shown that the distribution has a positive skew and
tends to be flatter when wis increasing.

Theorem 3:
If X ~ ZINB-CR(r, 4,0, y,®), some basic proper-
ties are:

(a) The &” moment of X is given by

SIS W R e

Jj=0

(1= (1-1+20(r4 7)) | k=12 ™

(b) The moment generating function of X is given by

exp (11207 (17 (11207 )

M, (1)=| 0o+(-o) NI
o )i [r”_]j X[xj( W exp(ltx(1—1ll+29(r+j)))
+(1-o -

rn x )= J1+20(r+ )
r=3,1=5,6=0.05v=0.5 ©=0.5
@
o

z 4
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Figure 1. Some examples of probability mass functions of the ZINB-CR random variable with some specified values of 7, 4,60,y and w.
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x(l—y(1—4/1+20(r+j))) . @®)
(c) The mean and variance are given by

(1—y(1—5))exp(i(1‘5))_1} )

E(X)=(1—a))r 5

and

& +r)(1—;/(1—g))exp(/1(l—g))
S

_r(l—y(l—é))exp(l(l—é‘))}

Var(X)=(1-)

1)

—a)(l—a))[zrz (1—y(1—5;)exp(l(l—5)) —FZJ

5 (10)

_(o—w>r<1—y(l—cs))exp(z(l—a))Jz,

where 6 =+/1-20 and ¢ =+/1-46.

2.3 Algorithm for generating random data

The objective of this part is to generate a random vari-
able X from the ZINB-CR (7, 1,6, 7, ®) distribution using
the following step.

1) Fix the parameters A >0,0 >0 and 0 <y <1.

2) We use Acceptance-Rejection Method to generate
random numbers from Crack distribution since the functional
form of this distribution makes it difficult to generate random
numbers using direct or inversion methods.

First, we generate a random number « from
standard normal distribution, N(0,1). Next, we obtain a BS-
distributed random variate by using

2
2
b=0] Lu % ra|.
2 V4

3) By the Acceptance-Rejection Method, we use BS
distribution to generate random variable with Crack distribu-
tion. Hence, we have to calculate BS distribution from the
density function for this distribution as

. 1 0 3/2 0 12 | T ) 27]
fi20) = J%ij +(;j }exp[—z(\/;—l\/:j .

4) Calculate Crack distribution from the density
function for this distribution as

' B g3/2 ) g1/2 ) 1 [ 92_
.ﬂ?k(x5i»9»y)_9\/ﬁ|:y/l(x] +(] }’)(x] j|e p|: 2[\/; i\/:] .
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5) Generate U, from uniform distribution, U(0,1).

- Ser(x:2,0,7)
cf 4o (x;1,0)

then set ¢ = b, otherwise go to step 2.

7) Generate Y from NB(r, p =exp (—a)) distribution.

8) Generate U, from uniform distribution, U(0,1).

9) If U, < w,thenset X =0,otherwiseset X =Y.

Figure 2 show the example of the theoretical pmf of
ZINB-CR distribution and the experimental pmf from the
ZINB-CR distributed random number with »=6,4 =9,
60 =0.04,y =0.3,w = 0.3 and samples of size n = 50, 200
and 500. By looking at the pattern, we can see that the experi-
mental pmf with large n will be very close to the theoretical
pmfof ZINB-CR distribution.

6 If U, where ¢ =2max[y,(1-7)],

2.4 Parameter estimation

In this part, the estimation of parameters for ZINB-CR
(r,4,0,7,m) via the maximum likelihood estimation and
the method of moments are provided.

2.4.1 Maximum likelihood estimation (MLE)

The estimation of parameters for ZINB-CR distribu-
tion via MLE method procedure will be discussed. For con-

venience we let Z, = 1+20(r+j),j=0,1,2,...,x, then
the likelihood function of the ZINB-CR(r,1,0,y,®) can
be obtained by

n exp(A(1-Z, ))(1-y(1-Z.
L(r’lagﬁy’w)_H|:[(x,—0) w+(1—a)) p( ( /2( }/( /))]
i=l j
)y 29E0-2))(1-71-2,)
o )0)[(1 o TS J ,
o
© = theoretical pmf
experimental pmf (n=50)
< 4 experimental pmf (n=200)
S e * experimental pmf (n=500)
z2o "
3 O
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Figure 2. The theoretical probability mass function and the experi-
mental probability mass function of the ZINB-CR distri-
bution with parameters 7 = 6,4 =9,0 = 0.04,y = 0.3,
® = 0.3 and samples of size n = 50, 200 and 500.
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from which we calculate the log-likelihood function

0(r,2,0,y,0)=10ogL(r,A,0,y,0)

-y {[(%—0) log{w+(1—@)eXp(l(l_Z-f)Z)(l_y(l_Z.f))
i=1 J
+1, o) log(1—-w)+log(r+x,—1)—log(r—1)-logx,!

+1ogi[xfj(—l)j exp(i(l_z’))(1_y(1_z’))ﬂ.

Z.

J

It can be verified that the first partial derivatives
f(r,l,@, y,a)) with respectto 7, 4,60,y and @ are given

by the following differential equations:

0
gﬁ(r,/l,e,y,a))

o-of SO ort )]

i[x’j(_l)/a[eXp(i(l—Z/))(l—}’(l—Z/))]
=\ or Z,
Hias (W (r+x) =y () — o2 s
;[’;j(_l)/ p(i(l Z/)Z)/(l }/(1 Z/))
r(k
where v (k) = (%) is the digamma function.

iE(r,l,@,y,a))

oA

[ [o-ofembtedlrt-zii-z)
-2 T-0) o+(l-0 exp(/l(l—Zj))(l—y(l_Zj))

! o(j] ! (l_y(zlj_zj))(I‘Zj)exp(/l(l—zj))

%K(r,l,e,y,a))

M{rexpwz,))[y(W(lz,))(u,ﬂ)]]

VA Z.
J J

Z exp(A(1-2,))(1-7(1-2,))

o+(1-w)

I(x,>0) - B o _, R
Sy p“ﬁ, Diros-2)
—K(r,xl,@,y,a))
' (l—w){exp(’i(l‘zzf))(zf _1)}
=M, ’
| " i=0) a)+(1_a))exp(l(l—Z}.))(l—}/(l—Z!))
Z,
) >“‘(exp(l(l._z’))u—zﬂ
+1(x,>0) X‘ . o _‘ )
e
and
if(r,/l,@,)/,a))
l[exp(i(lzi)z)(ly(lzl))]
:i I 71 T *1(90)(]%),
p exp(2(1-2,))(1-7(1-2,)) ®

o+(1-o) Z,
With the above equating to zero, the five derivative equations
cannot be solved analytically, and therefore need to rely on
Newton-Raphson technique: a simple iterative numerical
method to approximate MLE. The MLE solution of 7, 1,6, y
and @ can be obtained by solving the resulting equations
simultaneously using n/m function in the R program (R Core
Team, 2012).
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2.4.2 Method of moments (MM)

For the method of moments estimation, the parameters
can be obtained by equating the sample and population
moments. Because we have five parameters, we need the first
five moments of the ZINB-CR distribution, which are given
by

E(X):(1_w)r[(l—y(1—6))exp(/1(1—5)) _1}

o

£(a)-1-o (M)

9

1)

_(2r2 +r)(1—y(1—5))exp(;t(l—5))+r2]’

3 )17 (1) exp(2(1-9)

£()-0-0] !

(3 +6r2 +3r)(1-7 (1-¢))exp(A(1-¢))
S

(3r3+3r2 +r)(1—y(1—5))exp(/l(l—5)) —r3]

o

+

) (rt+6r #1107 +6r)(1-y (1-x))exp (A (1-x))

E(x*)=(1-0 -

(4 +187° +267> +127) (1= 7 (1= 9) Jexp(A(1-9))
9

(6r4+18r3 +197° +7r)(1—7/(1—g))exp(ﬂ,(l—g))
S

+

_(4r4 +67r° +4r? +r)(1—;/(1—5))exp(l(l—5)) L
5 ,
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(7 +107* +35" +50r +24r)(1-y (1-v) Jexp(A(1-v))

L

E(x*)=(1-0)

(5r° +40r* +1157> +140r” + 607 ) (1- 7 (1- ) Jexp(A (1))

K

(10r5 +60r* +1357° +13517 + 50r)(1 —y7(1-9))exp(2(1-9))
9

+

(10° +40r* + 657 +50r +157) (1= y (1-¢) )exp(A(1-¢))
¢

(5r5+10r4+10r3 +577 +r)(1—y(1—5))exp(l(l—5)) s
+ -r

5 >

where 5=\/1729,g=\/1749,3=\/1769,K=\/1789 and
v=+1-1006.

The i moment for the sample, m, , is equated as

1 n i
m, = _Z,-:l X, . Then, the method of moments estimator
n=—’= -

is derived by solving equation m, = E(X), m, = E(X?),
my,=E(X"), m,=E(X") and m, = E(X"), using gmm
function in the R program (Chausse, 2010).

3. Simulation Study

This section presents the performance of parameter
estimation methods both MLE and MM with some specified
values of parameter using simulated data. Using the above
algorithm to generate random samples from the ZINB-CR
distribution, the simulations were performed to compare the
true value of the parameters of the ZINB-CR (7, 4,0, 7, ®)
distribution and their estimates using MLE and MM method.
The true parameter values are fixed in all 9 cases, which are
shown parameters, mean, variance and the index of disper-
sion in Table 1. All cases of simulation study were then
generated from this ZINB-CR distribution with samples of
size n = 50, 100, 200 and 500 respectively. We used the R

Table 1. All cases simulation study for estimated parameters of ZINB-CR distribution

Case r A 0 y ® Mean  Variance  Indexof
Dispersion
1 3 5 005 05 03  0.6877 1.3944 2.0276
2 3 5 005 05 05 04912 1.0925 2.2241
3 3 5 005 05 07 02947 0.7134 24208
4 6 9 004 03 03  2.0461 6.1134 2.9878
5 6 9 004 03 05 14615 52211 3.5724
6 6 9 004 03 07  0.8769 3.6453 4.1570
7 8 8 006 01 03 41358 213721 5.1676
8 8 8 006 01 05 29541 18.7565 6.3493
9 8 8 006 01 07 17725 133484 7.5308
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program to generate each sample of a fixed size and repeated
this for 500 trials. The bias is defined as the difference
between the estimated and true parameter values. The sample

averages of the estimated parameter (), bias (Bias(d)),

variance (Var(é )), and mean squared error (MSE(é )) are

500 ~
calculated by the following measures: § =—>"¢ , Bias(6)

1
500

J. Sci. Technol. 37 (6), 701-711, 2015 707

=0-0, Var(@T):

500 — — —
6,-6)" and MSE(0) = Var(9
s00_ 129 (©)=Var(9)

+Bias*(0)-

The results from our simulations are summarised in
Tables 2-4, which contain the sample averages of the esti-
mated parameters and MSE for each of the ML and MM

Table2. The average estimates and the corresponding MSE in parentheses for the ZINB-CR distribution

(True parameters: r=3, A=5, 6=0.05, y

=0.5and ©=0.3,0.5,0.7)

MLE Method of Moments
n Parameter »
w=0.3 w=0.5 w=0.7 w=03 w=0.5 w=0.7
50 r 20.8026 24.8667 35.0068 32.5242 39.5194 56.2362
(693.5831) (996.5406)  (1931.1911)  (1885.4068) (2774.9833) (5364.6542)
A 30.046 34.6136 41.7421 46.9392 532187 63.3303
(1192.0561)  (1609.5616)  (2535.0841) (3128.4993) (4073.1336) (6104.8559)
0 0.0144 0.0142 0.0104 0.0057 0.0053 0.0037
(0.0018) (0.0019) (0.0020) (0.0020) (0.0021) (0.0022)
y 0.1079 0.0875 0.0560 0.7174 0.7162 0.6468
(0.2036) (0.2135) (0.2211) (0.1957) (0.1888) (0.1631)
0] 0.3826 0.5207 0.6982 0.1493 0.2249 0.3997
(0.0331) (0.0310) (0.0269) (0.0557) (0.1213) (0.1501)
100 r 13.4802 154109 19.7970 20.9434 24.4301 32.0074
(274.0356) (416.6340) (689.4874) (730.9701)  (1169.5845)  (1976.0065)
A 19.5111 22.6923 25.7423 314251 35.5302 39.3452
(498.2003) (727.9759) (973.0517)  (1427.4538) (1931.8167) (2412.1643)
0 0.0224 0.0226 0.0210 0.0097 0.0091 0.0080
(0.0015) (0.0017) (0.0017) (0.0018) (0.0018) (0.0019)
y 0.1809 0.1622 0.1242 0.6874 0.7126 0.6731
(0.1737) (0.1876) (0.2011) (0.1547) (0.1554) (0.1439)
0] 0.3604 0.5038 0.6756 02115 0.2967 0.4397
(0.0243) (0.0268) (0.0257) (0.0462) (0.0910) (0.1261)
200 r 7.4350 9.2306 12.3486 11.7925 14.3856 19.4347
(72.4392) (130.9781)  (256.9596)  (207.7966)  (358.4074) (714.9175)
A 12.9305 14.5895 16.9362 21.5065 23.1955 262326
(209.9968) (291.9971)  (410.4352) (699.6490)  (825.8080)  (1063.5563)
0 0.0314 0.0310 0.0292 0.0149 0.0141 0.0122
(0.0011) (0.0013) (0.0016) (0.0014) (0.0015) (0.0016)
y 0.2325 02134 0.1716 0.6452 0.6832 0.6871
(0.1513) (0.1615) (0.1778) (0.1159) (0.1238) (0.1257)
0] 03165 0.4798 0.6685 0.2812 0.3603 0.4951
(0.0183) (0.0243) (0.0230) (0.0437) (0.0709) (0.0956)
500 r 4.6980 52142 6.7689 7.6731 8.1930 10.5295
(9.7023) (22.0971) (52.5528) (38.7817) (67.1388) (154.5054)
A 6.9862 9.3031 104776 11.3627 152902 16.6283
(33.3647) (96.5675) (127.0873) (119.0248)  (327.7339) (368.4699)
0 0.0414 0.0388 0.0363 0.0227 0.0204 0.0179
(0.00006) (0.0008) (0.0011) (0.0010) (0.0011) (0.0013)
y 0.2939 0.2544 02212 0.6336 0.6436 0.6632
(0.1044) (0.1238) (0.1459) (0.0664) (0.0788) (0.0928)
0] 0.2936 04738 0.6748 0.3981 0.4548 0.5879
(0.0115) (0.0154) (0.0130) (0.0480) (0.05006) (0.0561)




708 P. Saengthong et al. / Songklanakarin J. Sci. Technol. 37 (6), 701-711, 2015

Table 3. The average estimates and the corresponding MSE in parentheses for the ZINB-CR distribution
(True parameters: r=6, A=9, 0=0.04, y=0.3 and @ =0.3,0.5,0.7)

MLE Method of Moments
n Parameter r
0=0.3 0=0.5 w=0.7 0=0.3 0=0.5 w=0.7
50 r 10.0056 11.8090 17.3398 15.7802 18.3659 27.7652
(89.3894) (161.2464) (410.1144)  (273.9664)  (470.5508)  (1259.0436)
A 24.7603 31.6682 37.1857 39.6714 49.3284 56.5315
(751.7713)  (1313.8136) (1734.6542) (2324.4299) (3637.6055) (4459.9239)
0 0.0285 0.0258 0.0218 0.0132 0.0118 0.0094
(0.0009) (0.0011) (0.0013) (0.0009) (0.0010) (0.0011)
y 0.1649 0.1284 0.0989 0.6551 0.6874 0.7387
(0.0494) (0.0640) (0.0729) (0.2472) (0.2645) (0.2981)
0] 0.2837 0.4839 0.6811 0.2060 0.2943 0.4345
(0.0098) (0.0116) (0.0094) (0.0402) (0.0850) (0.1207)
100 r 7.2908 8.4865 10.8187 11.8463 13.0894 16.8953
(26.4415) (48.0479) (122.0891) (96.8123) (142.4844)  (378.4028)
A 20.6594 22.3712 284398 334103 35.3081 43.5653
(447.0301) (631.0660)  (1084.7831) (1476.0023) (1853.5099) (2893.1389)
0 0.0308 0.0303 0.0270 0.0156 0.0149 0.0128
(0.00006) (0.0007) (0.0009) (0.0007) (0.0008) (0.0009)
y 0.1519 0.1725 0.1294 0.6232 0.6507 0.7132
(0.0468) (0.04406) (0.0568) (0.1942) (0.2121) (0.2616)
0] 0.2925 0.4908 0.6891 0.2911 0.3736 0.5165
(0.0054) (0.0054) (0.0049) (0.0394) (0.0590) (0.0738)
200 r 6.0473 6.2124 8.1813 9.8916 10.1097 12.5662
(7.8735) (11.8616) (42.7475) (38.5876) (42.5334)  (136.2966)
A 15.7839 18.6851 21.4896 252538 29.5959 32,9602
(180.0129) (306.4642)  (579.6301)  (653.6727)  (993.5747)  (1595.8258)
0 0.0350 0.0329 0.0307 0.0185 0.0174 0.0158
(0.0004) (0.0005) (0.00006) (0.00006) (0.0007) (0.0008)
y 0.1371 0.1154 0.1611 0.6064 0.5836 0.6956
(0.0430) (0.0503) (0.0422) (0.1575) (0.1441) (0.2270)
0] 0.2952 0.4936 0.6942 0.3602 04717 0.6004
(0.0025) (0.0025) (0.0020) (0.0413) (0.0380) (0.0365)
500 r 5.7041 5.9002 6.7194 9.7274 9.7881 10.3938
(1.4992) (2.1900) (9.1385) (18.8916) (20.2171) (39.5173)
A 10.8689 11.3716 13.4305 16.7964 17.6928 20.6586
(37.9674) (48.8545) (183.6736)  (157.7526) (192.9932)  (525.9799)
0 0.0399 0.0388 0.0382 0.0222 0.0215 0.0207
(0.0002) (0.0003) (0.0004) (0.0004) (0.0004) (0.0005)
y 0.1713 0.1452 0.2074 0.5934 0.5490 0.6155
(0.0298) (0.0354) (0.0242) (0.1171) (0.0929) (0.1499)
0] 0.2979 04978 0.6979 0.4695 0.5934 0.6843
(0.0009) (0.0008) (0.0007) (0.0546) (0.0274) (0.0143)

estimators. It is shown that the ML estimator outperforms the
MM estimator in all cases for the parameters r, A, € and @.
However, the ML estimator does not perform well overall on
the ZINB-CR distribution, especially for small to moderate
sample sizes. As to be expected, the MSE in almost all the

estimated parameters except y decreases as the sample size
increases, which may be the result of a weak parameter (%)
from the Crack distribution thus making the estimate un-
certain. Bowonrattanaset (2011) showed the estimates of y
are out of the closed interval [0,1] or are far from true para-
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Table4. The average estimates and the corresponding MSE in parentheses for the ZINB-CR distribution

(True parameters: r=8, 1=8, 6=0.06, y=0.1and » =0.3,0.5,0.7)

MLE Method of Moments
n  Parameter r
0=0.3 0=0.5 w=0.7 0=0.3 w=0.5 w=0.7
50 r 7.9017 8.2705 9.9263 12.8557 12.9972 154340
(11.5620) (26.0328) (69.0230) (51.7836) (85.5968) (230.8282)
A 14.6170 21.9235 35.2507 23.7135 344293 53.5673
(303.0780)  (937.3355)  (2042.5102)  (976.4302)  (2584.7595) (5098.9238)
0 0.0578 0.0505 0.0361 0.0263 0.0232 0.0165
(0.0012) (0.0015) (0.0018) (0.0014) (0.0016) (0.0021)
y 0.3976 0.2629 0.3033 0.6751 0.7005 0.7638
(0.1224) (0.0705) (0.1379) (0.4184) (0.4433) (0.5300)
0] 0.3005 0.5006 0.6952 0.2406 0.3173 0.4953
(0.0050) (0.0051) (0.0046) (0.0227) (0.0607) (0.0781)
100 r 6.9886 7.5790 8.3589 11.6448 12.0076 12.8470
(5.5071) (9.1322) (19.0649) (26.9409) (35.6681) (69.5462)
A 12.6439 13.5234 15.8022 20.0600 21.3158 23.9725
(183.4274) (248.1196) (381.0389) (574.3650)  (738.8352)  (995.8539)
0 0.0622 0.0594 0.0546 0.0292 0.0277 0.0258
(0.0009) (0.0010) (0.0012) (0.0011) (0.0012) (0.0014)
y 04787 0.4851 0.2954 0.7251 0.7223 0.7390
(0.1866) (0.1866) (0.0820) (0.4578) (0.4477) (0.4664)
0] 0.2964 0.4959 0.6996 0.2588 0.3638 0.5249
(0.0024) (0.0030) (0.0022) (0.0230) (0.0424) (0.0615)
200 r 6.6516 6.8952 7.1409 11.0697 11.0800 10.8890
(3.6876) (4.3678) (6.5430) (15.5145) (17.8388) (21.4721)
A 9.4362 104761 12.9935 149139 164798 19.8588
(33.6238) (80.9886) (253.8543)  (134.7750)  (268.5188)  (683.3817)
0 0.0701 0.0671 0.0619 0.0331 0.0317 0.0299
(0.0007) (0.0008) (0.0008) (0.0008) (0.0010) (0.0011)
y 0.4700 0.4895 0.4927 0.7296 0.7107 0.7484
(0.1675) (0.1898) (0.1973) (0.4538) (0.4230) (0.4688)
0] 0.2962 0.4981 0.7004 0.2588 0.3993 0.5571
(0.0013) (0.0015) (0.0011) (0.0186) (0.0358) (0.0462)
500 r 6.4721 6.5634 6.7594 10.7464 10.5672 104264
(3.0364) (3.3082) (3.46306) (9.8254) (10.3340) (10.3449)
A 8.5674 9.0707 9.3316 13.5395 14.3366 14.3789
(3.8138) (17.2931) (17.7374) (38.6579) (80.3799) (84.2035)
0 0.0707 0.0696 0.0674 0.0341 0.0334 0.0332
(0.0003) (0.0004) (0.0005) (0.0007) (0.0008) (0.0008)
y 0.4520 0.4659 04977 0.7207 0.7122 0.7247
(0.1533) (0.1708) (0.1935) (0.4378) (0.4096) (0.4205)
0] 0.2949 0.4985 0.6987 0.2774 0.4215 0.6039
(0.00006) (0.00006) (0.0005) (0.0134) (0.0238) (0.0263)
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meter value. In addition, the performance of the estimators
also depends on the zero-inflation parameter (®). We observed
that when @ increases the MSE tends to increase, but it is not
consistent for the parameters y and @, which are bounded
on [0,1].

4. Application Study

For one application of ZINB-CR, the distribution is
applied to the number of major derogatory reports (MDRs)
in the credit history of individual credit card applicants (see
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Greene (1994)). This data has 80.36 % of zeros and the index
of dispersion is 3.298, indicating that there is overdispersion
and a high percentage of zeros. We applied the ZIP, ZINB,
NB-CR and ZINB-CR distributions to fit the real data set. In
order to compare distributions, we consider the Chi-squares
test, AIC and BIC statistics for the data. From the results in
Table 5, we found that the MLE provides very poor fit for
the ZIP and ZINB distributions and acceptable fits for the
NB-CR and ZINB-CR distributions. However, the ZINB-CR
distribution is a much better model than the NB-CR distribu-
tion for the given data.

5. Conclusions

This paper offers ZINB-CR distribution, which is
obtained by mixing the Bernoulli distribution with a NB-CR
distribution. We have derived some properties of the ZINB-
CR distribution, including mean, variance and higher order
moments. The parameter estimation via the maximum likeli-
hood method and the method of moments are also imple-
mented. We conducted a simulation study to compare the
methods. Based on our simulations, we conclude that the
MLE is not performing well on the ZINB-CR distribution
even though it outperforms the MM method. In our next-
step research, we will apply some new estimating procedures
(e.g., Bayesian approach) to estimate the parameters and
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compare their results with MLE and MM methods. Finally,
we have compared efficiencies of the ZINB-CR distribution
with the ZIP, ZINB and NB-CR distributions, fitting distribu-
tion by using a real data. The results show that the ZINB-CR
distribution provides a better fit compared to the ZIP, ZINB
and NB-CR distributions.
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