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Abstract

In sheet metal forming process, springback is a critical problem for die makers, particularly in case of advanced high
strength steels. Therefore, FE simulations were often used to calculate materials deformation behavior and the springback
occurrence of formed sheet metals. Recently, the Yoshida–Uemori model, a kinematic hardening model, has shown great
capability for describing the elastic recovery of a material. Nevertheless, determination of model parameters is sophisticated
for industrial applications. In this work, an AHS steel grade JIS JSC780Y was investigated, in which tension–compression
tests were carried out and the procedure of parameter identification was analyzed. Different fitting methods were examined
and verified by evaluation of cyclic stress–strain responses obtained from simulations of 1–element model and experiments.
The most appropriate parameter set was determined. Finally, hat shape forming test was performed and springback obtained
by calculation and experiment was compared. It was found that the introduced procedure could be acceptably applied.
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1. Introduction

At  present,  production  of  automotive  components
have  become  very  high  competitive.  Thus,  part  manufac-
turers require shorter time for developing dies. Besides, more
accurate methods are needed in order to improve the quality
of produced parts. For current automotive parts, advanced
high strength (AHS) steel grades have been continuously
introduced and employed so that both lightweight and higher
strength  characteristics  are  fulfilled.  However,  one  great
challenge  of  AHS  steels  in  the  forming  process  is  the

springback effect. It significantly affects the final shape of
parts and can raise critical problems by the part assembly.
To precisely describe this behavior of such steels is sophisti-
cated.  Die  makers  as  well  as  researchers  have  paid  much
attention to prediction and compensation of the springback
(Carden et al., 2002; Gan et al., 2004). In the industries, finite
element (FE) simulation has been widely employed in support
of springback description. Accuracies of the FE simulation
results depend not only on forming process parameters like
tools and binder geometries, contact conditions, but also on
the choice of the material’s constitutive model. The material
model plays an important role for calculating deformation
behavior  of  formed  sheet  metal,  which  greatly  influences
arising elastic recovery, residual stresses and corresponding
springback. Different types of material constitutive laws such
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as isotropic hardening law, kinematic hardening law, mixed
isotropic–kinematic hardening law (Hodge et al., 1957), the
Armstrong–Frederick hardening law (Armstrong et al., 1966),
and the Geng–Wagoner hardening law (Geng et al., 2000)
have been developed and extended for describing individual
material behavior. The Yoshida–Uemori model (Yoshida et
al., 2002; Yoshida et al., 2003) have been introduced for
representing  deformation  behavior  of  large–strain  cyclic
plasticity and stress–strain responses at small scale re–yield-
ing after large pre–strain. In the model, a backstress equation
was  defined  in  order  to  capture  the  transient  Bauschinger
effect. Eggertsen et al. (2009) investigated five different hard-
ening models and compared resulted cyclic curves between
simulations and experiments for various steel grades. It was
shown that the Yoshida–Uemori model could well character-
ize  the  transient  Bauschinger  effect,  permanent  softening
and work hardening stagnation of the materials.

For using the Yoshida–Uemori model, a cyclic materi-
als testing is required. Under compression sheet specimens
generally tend to buckle. Due to these difficulties, many test-
ing methods have been developed to obtain the characteristic
cyclic stress–strain curve; Yoshida et al. (2002) successfully
bonded a few thin sheets of metal to provide a support for
sheet specimen during in plane cyclic tension–compression
test at large strain. Another kind of frequently used experi-
ment is the bending test, as reported in Zhao et al. (2007),
Mattiasson et al. (2006) and Yoshida et al. (1998). However,
stress–strain curves could not be directly gathered from the
experimental data of such bending tests. Furthermore, opti-
mization  methods  have  been  often  applied  for  obtaining
precise material parameters. They are usually based on an
inverse approach, in which appropriate algorithm enables
a  minimization  between  experimental  observed  variables
and simulated ones; Yoshida et al. (2003) used an iterative
multipoint approximation concept for minimizing differences
between  test  and  corresponding  numerical  results.  This
approach was verified by comparing simulated stress–strain
curves using the constitutive model incorporating parameters
identified from experimental cyclic bending curves. Collin et
al. (2009) employed an inverse approach code in the SidoLo
software, which offered the minimization in order to evaluate
the Chaboche model parameters. In a recent study, Eggertsen
et al. (2010) performed FE simulations of a three point cyclic
bending test in the explicit code of LS–DYNA (LS–DYNA,
2007). Parameter identification of applied hardening model
was done by means of the optimization code LS-OPT. Never-
theless, such optimization methods are still not suitable for
industrial purposes.

The  aim  of  this  work  was  to  introduce  parameter
determination procedures for the Yoshida–Uemori model by a
simple fitting method. Cyclic tension–compression experi-
ments  were  performed,  in  which  a  designed  sample  fixture
installation for preventing buckling by spring force was used
and  a  video  extensometer  was  employed  to  measure  the
sample elongation. Subsequently, cyclic stress–strain curves
were determined and each parameter of the Yoshida–Uemori

model was identified. Different obtained sets of parameters
were  evaluated  by  comparing  the  stress–strain  responses
from  experiments  and  FE  simulations  of  1–element  model.
Finally, forming tests of a hat shape sample were carried out
for verifying the parameter sets.

2. Yoshida–Uemori  Hardening  Model  and  Generalized
Parameter Identification

The  Yoshida-Uemori  (Y-U)  (Yoshida  et  al.,  2002)
constitutive model takes into account both translation and
expansion of the bounding surface (F), while the active yield
surface (f) only evolves in a kinematic manner. A schematic of
yield surfaces according to the Y-U model was presented in
Chongthairungruang et al. (2013). O is the original center of
the yield surface,  is the center of the bounding surface.
 is the relative kinematic motion of the yield surface with
respect to the bounding surface and can be expressed by
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Y is the size of the yield surface and is constant throughout
the deformation, B+R represents the size of the bounding
surface and B is the initial size of bounding surface with R
being associated with isotropic hardening. Uniaxial cyclic
stress–strain curves described by the Y–U model were shown
in Yoshida et al. (2002) for the yield and bounding surface.

p  is the effective plastic strain rate, which is defined as the
second invariant of pD , and C is a material parameter that
controls the rate of the kinematic hardening. Here,    stands
for the objective rate. The change of size and location for the
bounding surface is defined as:
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  and 


 are the deviatoric component of   and its objec-
tive rate, respectively and b is a material parameter. The work
hardening stagnation during reverse deformation, where Y,
C, B, k, b, and Rsat are material constants were described in
Yoshida et al. (2002). In addition, all parameters, except the
parameter h, control the translation and expansion of the
surface g  in Chongthairungruang et al. (2013). It could be
used to fit the hardening stagnation behavior with experi-
mental results. The Y–U model is referred to the kinematic
hardening transversely anisotropic material model or the
MAT_125 model in LS-DYNA.
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Moreover, degradation of the elastic stiffness taking
place during plastic loading could be considered by the Y–U
model. It was found that varying elastic moduli should be
defined for a simulation of the springback problem. The
Young’s modulus E was taken into account using following
equation (Yoshida et al., 2002).

   0 0  1sat pE E E E exp        (7)

where 0E  and satE  represent the Young’s modulus value at
initial state and infinitely large pre-strain state of material,
respectively.   is a material constant.

The  Yoshida–Uemori  model  involves  overall  seven
material parameters, Y, C, B, Rsat, b, k, h. All of the parameters
could be obtained from uniaxial stress–strain curve deter-
mined under a defined cyclic deformation, as depicted in
Yoshida et al. (2002). A general approach for identifying each
parameter was summarized as followed (Yoshida et al., 2002).
is the initial yield stress. It was determined as the elastic limit
of material. The forward stress–strain curve (line (a)–(c)) in
Yoshida et al. (2002) was fitted with the Equation 8. Then, the
parameters B, k and term ( satR b ) could be derived by this
manner. A forward bounding surface curve ( )fow

bound  similar to
the line (b)–(c) in Yoshida et al. (2002) was plotted.
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The parameter b represented the beginning of reverse bound-
ing surface curve ( ( )
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value at ˆ 0p   of the reverse bounding surface curve. The
reverse  bounding  surface  curve  was  afore  determined  by
extrapolating data of the reverse stress–strain curve from its
saturation point, as line (e)-(j) illustrated in Yoshida et al.
(2002). The difference between values at point (j) and (k) in
Yoshida et al. (2002) was described by ( )
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The parameter C is a material parameter, which controls the
rate of the kinematic hardening. It was determined according

to  the  range  of  transient  Bauschinger  deformation  of  the
reverse stress–strain curve, as line (d)-(e) shown in Yoshida
et al. (2002). The parameter C could be expressed as a func-
tion given in Equation 10.
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The parameter h is a material parameter, which demonstrates
the  expansion  rate  of  non–isotropic  hardening  (non–IH
surface), as shown in Chongthairungruang et al. (2013). It
describes the rate of expansion of the surface g . Larger
values of the parameter h present a rapid expansion of non-
IH surfaces, in which a prediction with lower saturated and
smaller cyclic hardening was provided. Regarding Yoshida
et  al.  (2002),  this  parameter  was  used  for  adjusting  the
calculated  cyclic  stress–strain  curves  to  fit  best  with  the
experiment data. The value h ranges between 0 and 1.

3. Experiments

In this work, a dual phase (DP) steel sheet grade JIS
JSC780Y with a thickness of 1.4 mm was investigated. Various
material tests were performed in order to determine the
mechanical behavior of the steel for parameters identification
of the Yoshida–Uemori model. First, uniaxial tensile tests
were carried out for obtaining anisotropic parameters of the
DP steel. Determined mechanical properties of the investi-
gated DP steel were given in Table 1.

A series of uniaxial tests were conducted for sheet
samples taken in parallel to the rolling direction in order to
investigate variations of the elastic modulus at different pre–

Table 1. Mechanical properties of the investigated steel obtained by tensile test and parameters
for relationship between elastic modulus and pre–deformation.

E y u             Elongation (%)
Direction r -value

(GPa) (MPa) (MPa) Uniform Total

 0° 199.852 457.804 809.673 14.122 23.894 0.9987 0.3
45° 187.057 459.780 805.465 15.119 27.019 1.1508 0.3
90° 219.998 469.094 819.639 14.561 24.576 1.1116 0.3

0E  (GPa) satE  (GPa) 

199.852 168.625 37.046

Poisson’s Ratio
(assumed)
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strain values. Uniaxial pre–deformation of about 0.02 was
applied before and followed with unloading. Subsequently,
an  additional  strain  of  0.02  was  introduced  to  the  same
sample and again succeeded with unloading. This procedure
was repeated with an incremental strain of 0.02 until a total
pre-strain of 0.1 was reached. The determined true stress–
strain curves were plotted together, as shown in Figure 1a.
From the determined true stress–strain curves, elastic moduli
for  each  pre–strain  were  identified.  Then,  relationships
between the elastic modulus and effective plastic strain were
established with regard to Equation 7. The evolutions of the
elastic modulus during plastic deformation experimentally
obtained and calculated by Equation 7 are illustrated in
Figure 1b. The involved parameters of the elastic modulus
change were the initial elastic modulus 0E , saturated elastic
modulus satE  and material constant , which are presented
in Table 1.

Cyclic tension–compression tests were performed in
order  to  obtain  cyclic  stress–strain  curves  for  identifying
material hardening parameters of the Yoshida–Uemori model.
During the cyclic tests, a buckling of tested sheet specimens
could  occur.  Thus,  a  specific  tool  installation  was  initially
designed for the cyclic test in order to prevent the buckling
problem. Kuwabara (2007) proposed a buckling prevention
tool  for  thin  sheet  copper  and  aluminum  alloy  by  using
hydraulic system. A hard Teflon film was used for reducing
friction between sheet specimens and clamping plates. In this
work,  spring  forces  were  used  instead  for  supporting  the
sheet specimens during tension–compression movement.
In order to minimize the buckling effect and obtain optimum
clamping  force,  array  and  number  of  spring  needed  to  be
specified. The spring grade SWF 12-50 with a spring constant
k of 73.5 N/mm was finally selected for the fixture. This
fixture included eight springs for supporting both clamping
plates and exhibited the array in a serial pattern. By this
installation, a pre-load of around 1,970 N and a maximum
pressure of 1.58 MPa were realized. Almost no buckling was
observed by the cyclic tests using this fixture installation.

By the tests, specimens were tensioned up to a total
strain of about 7-11% in order to achieve a saturation of deter-
mined stress-strain curve. Afterwards, they were compressed
until the plastic strain became zero. During the experiments,
local displacements were measured by an advanced video
extensometer (AVE) system. Figure 2 presents the gathered
cyclic stress–strain curve under tension–compression load in
comparison with stress–strain curve from monotonic tensile
test. A fair agreement in the tension region of both stress–
strain curves could be observed. The saturated zone of each
cyclic curve could be identified by means of relation between

strain hardening (
d
d



) and true strain. The strain hardening
of material continuously decreased until reaching a constant
state. Within this stress range model parameters were deter-
mined.

A stamping test of a hat-shape sample was carried out
to verify the determined model parameters. The dimensions of

die and punch were described in detail in Chongthairung-
ruang et al. (2013). The initial size of the blank sheet was 50
mm in width, 314 mm in length, and 1.4 mm in thickness. The
clearance of 7% of the sheet thickness was designed for the
dies. In the forming process, a metal plate with a thickness
of 1.6 mm or so–called dummy plates were used in order
to inhibit blank holder force. After the forming tests, final

Figure 1. (a)  True  stress-strain  curves  from  loading-unloading
tensile test for investigating elastic modulus change and
(b)  dependency  between  elastic  modulus  and  effective
plastic strain of the investigated steel.

Figure 2. Comparison  between  experimentally  obtained  cyclic
stress–strain curve under tension-compression load and
monotonic tension stress–strain curve.
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dimensions of stamped parts were measured using a 3D laser
scanner. Shapes of the formed samples along cross–section
after tool removal were considered for springback evaluation.
The springback and sidewall curl were characterized by using
three variables, the angles 1 and 2 and curl radius R.

4. Determination of Model Parameters

The Yoshida–Uemori hardening model used two sets
of parameter for describing material behavior. These both
parameter sets are presented as following.

a) Parameters  representing  relationship  between
Young’s modulus and degree of pre–strain. This parameter
set consists of 0E , aE  and 

b) Parameters representing plastic behavior of mate-
rial. This parameter set includes seven parameters, namely,  Y,
C, B, Rsat, b, k, and h.

The parameters for elastic behavior were determined
by  interrupted  tensile  tests  with  various  pre–strains  as
mentioned before. Determination of the plastic parameters is
discussed here. Regarding constitutive equations of the Y–U
model, the plastic parameters are dependent. Therefore, each
parameter  could  not  be  identified  individually  or  varied
without any effect on other parameters. Thus, in this work,
a  simply  method  was  introduced  for  determining  sets  of
parameters and investigating their influences on cyclic stress–
strain  curves.  This  procedure  could  be  applied  in  general
without any further optimization method. The determination
procedure could be presented in detail as following.

4.1 Parameter

Principally, the parameter Y is the material yield stress
and could be determined by a standard method. The 0.2%
offset  strain  was  used  to  define  the  elastic  limit.  Figure  2
showed this elastic limit or yield strength of the investigated
JSC780Y steel in comparison with the monotonic and cyclic
curve.

4.2 Parameters from forward stress

Here, from the cyclic experiments, stress–strain data of
the plastic zone beginning with the parameter Y were used.
This plastic stress–strain curve under tension and compres-
sion were used to define the forward and reverse bounding
surface. The forward bound stress according to Equation 8
was related to the Voce hardening model, which could be
expressed by the following equation:

( ) ( )(1 )
pVoce k

iso B A e     (12)

where satA R b  . Therefore, a forward bound curve could
be simply described by Equation 12. However, ranges of data,
which were used for curve fitting, strongly affected the varia-
tion of obtained parameter values. In this work, three ranges
of data, namely, 50%, 75%, and 100% of the total forward
plastic strain 0

p  were considered for finding the parameter

set, as illustrated in Figure 3a. From these ranges of data, three
different sets of parameter were determined from the forward
bound stress as following.

50% range of 0
p :

( ) 15.872608.095 (355.647)(1 )
pVoce

iso e    

75% range of 0
p :

( ) 20.755565.676 (367.699)(1 )
pVoce

iso e    

100% range of 0
p :

( ) 32.330489.528 (399.003)(1 )
pVoce

iso e    

4.3 Parameters from reverse stress

The point (d) in Yoshida et al. (2002) represented a
re–yielding point during compression, which was two times
the elastic limit or 2Y. Only the plastic zone of the reverse
stress was taken into account, thus the reverse stress curve
was plotted backwards to the plastic strain 0

p  of 0.088.
In addition, point (k) exhibited an isotropic boundary, for

Figure 3. (a) Fitting of forward bound stress curve using different
ranges of data (50%, 75%, and 100% of the total forward
plastic strain) and (b) fitting of reverse bound stress curve
using different ranges of data (25%, 50%, and 75% of the
total reverse plastic strain).
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which value of the forward stress at a plastic strain of 0.088
was used. For the investigated steel, the value of point (k)
was about -876.12 MPa. Then, point (j) could be identified
by an intersection of a linear extrapolation of the saturated
reverse stress with the plastic strain of 0.088. Three ranges
of data of the reverse bound curve from the saturated point
were incorporated, namely, 25%, 50%, and 75% of the total
reverse plastic strain, as shown in Figure 3b.

Following this, three values of point (j) in Yoshida
et al. (2002) were obtained for these different ranges of data:

25% range of 0
p  : value of point (j) was -777.87 MPa

50% range of 0
p  : value of point (j) was -752.36 MPa

75% range of 0
p : value of point (j) was -684.71 MPa

Furthermore, the extrapolated line up to a deviation
point of the reverse bound curve represented the region of
permanent  softening.  The  extrapolated  line  beyond  this
region until the total plastic strain described the transient
Bauschinger effect. They were used in conjunction with Equa-
tion 9 to calculate the parameter b.

4.4 Parameter

Generally, in some literatures the parameter C was
determined by an optimization method. Such kind of method
was sophisticated and expensive for industrial cases. On the
other hand, solving for C from Equation 10 and 11 could be
another  possibility.  However,  in  this  work  more  simple
method for finding the parameter C was applied. The original
backstress  model  as  defined  in  Equation  13  was  here
considered.

* *( )p pC a       (13)

This was the principle equation before it was modified by
Yoshida et al. (2002) to be Equation 2. Thus, the value of C
was then determined by a relation between cyclic tension–
compression test data and parameter, as expressed in Equa-
tion 14.

) ˆ( 2
pC

B
t ae   (14)

where ( )
B
t  described the differences between the reverse

stress-strain curve from the range (d)-(e) and the extrapolated
line of the transient Bauschinger region ((e)-(j)) in Yoshida
et al. (2002). ˆ p  is the reverse plastic strain. Figure 4 shows
the proposed method for determining the parameter C. By
this manner, a value of 92.037 was obtained for the parameter
C. It was noticed that stress–strain curves obtained by this
value in the transient Bauschinger zone was acceptable when
comparing with experimental results.

4.5 Parameter h

In the literature, h is a material parameter, which was

used to adjust results of cyclic stress–strain curves obtained
from experiments and simulations. In this work, it was found
that  influence  of  the  parameter  h  on  the  results  of  cyclic
simulations was small in the LS-DYNA solver. Therefore,
a default value of h  = 0.5 was taken into account.

From the procedures mentioned above, various para-
meter sets were obtained and provided in Table 2. All seven
plastic parameters of the Y–U model for each range of fitting
data were presented. It was seen that the parameters could be
quite different when the range of fitting data was varied. These
parameter sets were further applied for FE simulations of 1–
element model in order to investigate their effects on cyclic
stress–strain responses.

5. FE Simulations

5.1 1-element model

FE  simulations  of  tension–compression  test  were
performed in LS-DYNA by using a single plane stress shell
element model. The model was a square element with a size
of 1x1 mm. The left–bottom node was constrained in both
x–  and  y–direction,  while  the  right–bottom  node  was
constrained in the y–direction. Displacements in positive and

Figure 4. Determination of parameter C: (a) ( )
B
t  and (b) curve

fitting by Equation 14.
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negative  y–direction  were  applied  to  the  top  side  of  the
element. The element formulation type 2 (Belytschko-Tsay)
with one integration point through thickness was used. This
element type was also further applied in forming simulations.
Results of the each parameter set were compared with experi-
mental data. Afterwards, averaged deviations between both
obtained stress–strain curves were calculated.

5.2 Forming simulation

In  addition,  numerical  FE  simulations  of  the  hat–
shape sample were carried out in LS-DYNA for predicting
the springback effect. It was also used to verify springback
results of the parameter set, which was the best fit prediction
of the cyclic stress–strain responses. The models of blank
and tools were defined using shell elements and boundary
conditions  were  generated  according  to  the  experimental
setup.  A  friction  coefficient  of  0.125  was  given  for  every
contact surface. Calculated results were compared with the
shape of the stamped part.

6. Results and Discussion

6.1 Cyclic stress–strain curves

To investigate influences of using different range of
fitting data, 1–element FE simulations were conducted with
all parameter sets, given in Table 2. Some deviations of stress–
strain curves from each parameter sets were observed. The
cyclic curves mainly differed at the beginning zone of forward
stress  and  around  the  saturation  zone  of  reverse  stress.
When the data range of the forward stress was the same, but
the data range of the reverse stress increased, increases of
the  stress–strain  curves  in  both  tension  and  compression
regions were found. The whole cyclic curves seemed to shift
when only parameters from the reverse stress were altered.
In case of using an increased data range of the forward stress,
but the same data range of the reverse stress, decreases of

the forward stress were observed. Additionally, the calculated
curves were compared with the experimental ones for an
entire cycle and errors of each case were then determined.
The  mean  differences  and  standard  deviations  for  each
parameter sets were summarized in Table 3. It was found that
the range of fitting data, which provided the best agreement
with the experimental data, was the 50% range of 0

p  from the
forward stress in combination with the 75% range of 0

p  from
the reverse stress (case C). The largest difference value was
noticed by the 75% range of 0

p  from the forward stress and
the 25% range of 0

p  from the reverse stress (case D). The
cyclic  stress–strain  curves  of  both  parameter  sets  were
compared with the experimental curve in Figure 5. The worst
parameter set exhibited significant lower forward stress, lower
reverse stress in the range of permanent softening and higher
reverse stress in the transient Bauschinger region. For the
best parameter set, a maximum stress difference of 20 MPa
was detected.

6.2 Springback results

To verify springback effects predicted by the Y–U
model using the determined parameters, FE simulations of
hat–shape  samples  were  carried  out.  Both  parameter  sets
discussed before were applied to the simulations to investi-
gate influences of model parameters on the calculated spring-
back.  Experimental  and  simulation  results  regarding  both
designated angles 1 and 2, and sidewall curl radius R were
determined. In Figure 6, dimensions of stamped parts obtained
from the experiment and predicted by the simulations using
two different parameter sets were compared. All three spring-
back variables obtained from the experiments and predicted
by the simulations were compared with resulted %-error in
Figure 7. The calculated springback results of both parameter
sets were similar and slightly different from the experimental
one. Nevertheless, the error of the best fit parameter set was
slightly  lower  than  the  worst  fit  parameter  set  for  every
springback variable.

Table 2. Determined parameter sets for the investigated JSC780Y steel.

 Range of fitting data     Parameters

Forward Reverse Y B k b Rsat C h
stress stress

50% 25% (A) 608.095 15.872 65.277 290.370 84.830
50% (B) 608.095 15.872 82.222 273.425 92.037
75% (C) 608.095 15.872 127.170 228.478 113.746

75% 25% (D) 565.676 20.755 58.553 309.146 84.830
50% (E) 565.676 20.755 73.753 293.947 92.037
75% (F) 565.676 20.755 114.070 253.629 113.746

100% 25% (G) 489.528 32.330 52.159 346.844 84.830
50% (H) 489.528 32.330 65.699 333.304 92.037
75% (I) 489.528 32.330 101.613 297.390 113.746

45
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Figure 6. Shape comparison of stamped part determined by experi-
ment and predicted by simulations applying two para-
meter sets.

parameter sets were obtained. Influences of these parameter
sets on the predicted stress–strain responses were examined
by means of 1–element FE simulations under tension–com-
pression load. In addition, it was found that the determined
parameters provided acceptable agreement with the experi-
mental results. For verification of the parameters, stamping
tests of the hat–shape sample were carried out. The calcu-
lated  springback  results  of  different  parameter  sets  were
similar and slightly different from the experiments. The error
of  the  best  fit  parameter  set  was  slightly  lower  than  the
worst fit parameter set for every springback variables. The
recommended procedure for parameter determination of the
Y–U model for the investigated steel is here summarized:

Figure 5. Comparison of stress–strain curves experimentally deter-
mined and calculated using the best fit and the worst fit
parameter sets.

Table 3. Mean errors and standard deviations between simulations
and experiments for each parameter set.

           Range of fitting data      Error between simulation
                and experiment

Forward stress Reverse stress Mean S.D.

25% (A) 35.9 20.6
50% 50% (B) 31.2 19.9

75% (C) 20.7 19.5

25% (D) 38.7 20.1
75% 50% (E) 34.4 19.0

75% (F) 23.6 17.9

25% (G) 38.5 22.5
100% 50% (H) 34.9 20.6

75% (I) 25.9 17.6

7. Conclusions

In the current study, the Yoshida–Uemori model was
used to investigate springback effect of the JSC780Y steel.
This kinematic hardening model consists of seven plastic
parameters. The simple approach for determining model
parameters from cyclic tension–compression stress–strain
curves  was  introduced  in  detail.  Nevertheless,  different

Figure 7. Comparison of springback angles and sidewall curl radius
of stamped parts measured by experiments and predicted
by FE simulations and %-error.
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1) Parameter Y was identified as the 0.2% offset yield stress,
2) Forward bounding surface was obtained by fitting the
50%  range  of  the  forward  stress  data  and  using  the  Voce
hardening model, 3) Reverse bounding surface was deter-
mined by fitting the 75% range of the reverse stress data and
using a linear equation, and 4) Parameter C was identified by
the differences between the reverse stress–strain curve and
the extrapolated line of the transient Bauschinger region.
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