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Abstract

This paper presents a Chebyshev-Gauss collocation method to determine an approximate solution to the initial value
problems of ordinary differential equations. We propose an algorithm to solve an ordinary differential equation on a single-
interval domain and extend the algorithm to a multi-interval domain. We then generalize the algorithm to the system of ordinary
differential equations including the Hamiltonian systems. Numerical results show that the proposed method gives a spectral
accuracy. The comparison of our method to some related work is provided to show the accomplishment of the method.
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1. Introduction

Ordinary  differential  equations  occur  mostly  in
problems  in  science  and  engineering.  There  are  several
numerical methods to solve the initial value problems of the
ordinary differential equations. The classical methods such
as the Euler method and explicit Runge-Kutta methods are
known to provide numerical solutions with a low accuracy
(Burden  et  al.,  2010),  whereas  the  implicit  Runge-Kutta
methods  give  a  high  accuracy  for  the  numerical  results
(Butcher, 1964, 1987; Guo, 2009). There are some other high
accuracy  methods  for  the  ordinary  differential  equations
proposed by Hairer et al. (1993), Lambert (1991) and Stuart
et al. (1996).

Spectral  methods  have  been  successfully  used  to
obtain  the  numerical  solutions  of  ordinary  and  partial
differential  equations.  The  solutions  of  the  methods  are

approximated in forms of the expansion of higher-order poly-
nomials (Canuto et al., 2006; Hesthaven et al., 2007; Kopriva,
2009; Shen et al., 2011). The spectral collocation methods
recently capture many researchers’ interests as they give a
spectral accuracy to the solutions. The smoother the exact
solutions, the smaller the numerical errors are (Yang et al.,
2015).

The recent work for solving the ordinary differential
equations using the spectral methods was proposed by Guo
et al. (2007, 2008, 2009, 2010, 2012). They developed the
Legendre-Gauss (Guo et al., 2009) and designed Laguerre-
Gauss  and  Laguerre-Radau  type  (Guo  et  al.,  2007,  2008)
spectral  collocation  methods  for  the  ordinary  differential
equations. Furthermore, Kanyamee et al. (2011) described the
comparison of several spectral Galerkin and spectral collo-
cation  methods  and  symplectic  methods  for  Hamiltonian
systems. Wang et al. (2010, 2015) developed the Chebyshev-
Gauss  spectral  collocation  methods  and  developed  the
Legendre-Gauss  collocation  methods  for  nonlinear  delay
differential equations. E-Baghdady et al. (2015) designed a
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new Chebyshev spectral collocation method for solving a class of one-dimensional linear parabolic partial integro-differential
equations.

In this work, we are interested in finding a numerical solution of the ordinary differential equations. We first propose
the collocation method with ( 1)N   Chebyshev-Gauss points as the nodes. Then, we derive a new algorithm for solving an
ordinary differential equation and a system of ordinary differential equations.

2. Materials and Methods

2.1 Chebyshev polynomials of the first kind on the interval
Chebyshev polynomials of the first kind, denoted   

n
T x , are the eigenfunctions of the singular Sturm-Liouville equa-

tion of the form

         2 '' ' 2 1      0,   1,1 .
n n n

x T x xT x n T x x     

An alternative representation of the Chebyshev polynomial of degree n is given by

  cos( arccos( ))
n

T x n x .

Let ( )
l

T x  be the Chebyshev polynomial of degree l defined on the interval  1,1 . We define the shifted Chebyshev

polynomials 
,
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T t


 on the interval   0, , with the transformation 
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t

x


  , by

1
,

2 2
( ) 1 cos cos 1 ,   0,1, 2,

l l

t t
T t T l l
  

     
    
    
    

The first few polynomials are illustrated as follows:
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By following a property of Chebyshev polynomials, we have the three-term recurrence relation for shifted Chebyshev poly-
nomials

     
, 1 , , 1

2
2 1 0,    1.  

l l l

t
T t T t T t l
   

    
 
 
 

(2.1)

The shifted Chebyshev polynomials are also orthogonal on the interval  0, , i.e.

     
, , ,

0

   ,    0 
2

T

l m l l m
T t T t t dt c l
 


   (2.2)

where   1/2
0

 ( ) , 2, 1
l

t t t c c        and  
,l m

  is  the Kronecker symbol.
Consider any function  2 0, .u L


  A Chebyshev expansion of a function u is

   
,

0

ˆ
l l

l

u t u T t






 (2.3a)

where the expansion coefficients, ˆ
l

u , are constant. Multiplying both sides of (2.3a) by  
,

( )
l

T t t


  and integrating with
respect to t over the interval  0,  yields the expansion coefficients

   
,

0

2
. ˆ

( )
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l
l

u t T t
u dt
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Next, for any positive integer N, we consider the Chebyshev-Gauss quadrature. Let   
0

,
NN N

j j j
x 


 be the Chebyshev

nodes (x are the zeros of  
1N

T x


) and the corresponding weights on the interval  1,1 . We define the shifted Chebyshev-
Gauss nodes and the corresponding weights on   0,  as

 ,
1 , 0

2
N N

j j
t x j N



     and 

,
,  0 .

2
N N

j j
j N




   

Let ( , ) 
N

a b  be the set of polynomials of degree at most N on [ , ]a b . According to the Gauss-type quadrature rule.
The Gaussian quadrature is exact for all polynomials
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 (2.4)

2.2 Discrete Chebyshev-Gauss expansion (Hesthaven et al., 2007)

In the continuous  2 0,L


  space, we define the inner product and 2L


-norm as

     
0

,u v u t v t dt


     and   1/2,u u u    for   2,  0, .u v L


 .

For the discrete expansion, using the Chebyshev-Gauss quadrature formula, the discrete inner product and norm on  0,  is
defined by

     , , ,
0

,
1

N
N N

N j j
j

u v u t v t
N  






    and   1/2

,,
, NN

u u u 
 (2.5)

where  2, 0, .u v L




It follows from (2.4) that for any  
2 1

0,
N

 


  and  0, ,
N

 

       , ,
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, ( ) ( )
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  ,, ,N  (2.6a)

and the two norms 2


  and 2

,N
  coincide, i.e.
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,, ,
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1
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  (2.6b)

Recall the Chebyshev expansion in (2.3), the truncated continuous expansion of u is considered as the projection of u
on the finite dimensional space 

1N
  of the form

   
1

,
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N
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where 
1

span{  : 0 1}k
N

x k N

     with the coefficients

   , , ,

2 2
, , 0ˆ ,   N

l l l N
l l

u u T u T l N
c c   

     and   1 , 1
1

,ˆ
2

.N
N N

N

u u T
c   





Let 
,

 
N

u

T  be the discrete Chebyshev-Gauss expansion of any u in  2 0,L


 . Using the Chebyshev-Gauss quadrature, we

define the discrete approximation of u

   
, ,

0

  
N

N
N l l

l

u t u T t
 



T (2.8)

where the discrete expansion coefficients are
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This   
,
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T   and  it  interpolates  u  at  all  the Gaussian quadrature points.
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where  
i

t   is the Lagrange polynomials based on the Chebyshev-Gauss nodes. From (2.6a) and (2.8), we have
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   T T ,  

1
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  (2.9)

Using (2.9) and the above statement that  
,

( ) 0,
l N

T t


  , the discrete expansion coefficients N
l

u  in (2.8) can be written as
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2 2
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Next, we consider the relationship between the coefficients of  the truncated continuous Chebyshev expansion in (2.7) and
the discrete expansion in (2.8). For any  

1
0,

N
u 


 , the coefficients ˆ N

l
u  and N

l
u  determined in (2.7) and (2.10) gives
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The result from (2.11) gives the comparison of the discrete norm and the 2L


-norm of  
1

0,
N

u 


  as follows:
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2.3 Chebyshev-Gauss collocation method

In  this  section,  we  introduce  a  Chebyshev-Gauss  collocation  method  to  obtain  a  numerical  solution  of  ordinary
differential equations. Consider the first-order ordinary differential equation on the interval [0, ]  of the form
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d
X t f X t t t

dt

X X
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For the spectral collocation method, we find  
1

( ) 0,N
N

X t 


   such that
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0  ,                                           

N N N N N
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which implies the residual error vanishes at the collocation points 
,
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As a result, we have that    
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  and integrating the
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for any 0 .l N 
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To derive the derivative term,  Nd
X

dt
, for the equation, we consider the recurrence relation
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Due to the nature the Chebyshev polynomials, we divide  l  into two different cases.
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Case II   l  is odd,
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For simplicity, we let
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and
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Therefore,

    0
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0

1
, 0 .

N
N N N N N N

k k j j k
j

Xd
X t a X t b k N
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       (2.19)

Substituting (2.19) into the left hand side of (2.14) yields the following matrix equation of (2.19)

    0
. N N N N NA F X b X X (2.20)

where NA  is the matrix with the entries 
,

, 0 , ,N
k j

a j k N   given in (2.18a)

        ,0 ,1 , 0 1
, , , , , , , ,

TN N N N N N N N N N N
N N
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T
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F X f X t t f X t t f X t t
     

 

We solve this system for the solution        ,0 ,1 ,
, , , . N N N N N N N

N
X t X t X t

  
 X

T

The last step of our algorithm is to determine  NX t  at the right end (or  NX  ). This value will be used as the initial
value of the consecutive interval when considering a domain decomposition. To compute  NX t , we use the values of

  , 0

NN N
k k

X t
 

 which are obtained from (2.20) together with (2.17). Since  
,

1
l
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 (2.21)

In the following theorems, we discuss the uniqueness of the solution in Theorem 2.1 and spectral accuracy of our
method in Theorem 2.2. The proof of the theorems was completed in Yang et al. (2015). We will apply these theorems to our
work.

Theorem 2.1.    If   ,f z t  satisfies the following Lipschitz condition:

   1 2 1 2
, , ,    0,  f z t f z t z z     (2.22)

and 
1

0 ,
4

     where   is a certain constant. Then the system (2.14) has a unique solution.

Proof   See Yang et al. (2015).
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Theorem 2.2.   Assume that  ,f z t  fulfills the Lipschitz condition (2.22). Then for any 
3

2

(0, )r

r
X H






  with integers

2 1,r N    we have

   
23

2 2 4 2 2
2 (0, ) , 0

.
2

r
rN N r

rL

d
X X X X c N t X t dt
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 (2.23)

   
23

2 4 2 2

0

( ) ( )
r

rN r
r

d
X X c N t X t dt

dt




   

 
 
  
 

 (2.24)

where c


 is a positive constant depending only on  .
Proof   See Yang et al. (2015).

Theorem 2.2  shows a spectral accuracy of the Chebyshev-Gauss collocation methods. Since the theorem discussed in
Yang et al. (2015) can be applied to any Chebyshev-Gauss collocation method, we can use it for our method. However, the
algorithm to compute for nX  in Yang et al. (2015) is different from that in our algorithm. We will present the spectral accuracy
of our method in the numerical result in section 3.

3. Results and Discussion

In this section, we present some numerical results to support the method in (2.20). We consider two errors, the discrete
2L  error and the point-wise absolute error, in order to compare the results obtained from the Chebyshev-Gauss collocation

method, the Legendre-Gauss collocation method in Guo et al. (2009) and the Chebyshev-Gauss collocation method in Yang
et al. (2015). For the Hamiltonian system, we compare the error in the total energy of the systems and CPU times of those
three collocation methods.
For simplicity, we use the following notations,

 CGC : Chebyshev-Gauss collocation method  (2.20).
 LCG : Legendre-Gauss collocation method in Guo et al. (2009).
 CGC-Yang : Chebyshev-Gauss spectral collocation method in Yang et al. (2015).
 CGC-Yang1 : The simple iterative algorithm.
 The point-wise absolute error

,
( ) ( ) .N

p
E X X


  

 The discrete 2L  error

, ,
.N

d N
E X X
 

 

 The point-wise absolute error  for systems of differential equations

       2 2
( ) ( )N N NE t p t P t q t Q t   

 The maximum error in energy for systems of differential equations

     (0), (0) ( ), ( )
H

E H P Q H P Q   

The algorithms to solve for the solution are implemented using MATLAB and calculations are carried out with a
computer Intel(R) Core(TM) i5-2410 CPU @ 2.30GHz RAM 4.00 GB.

3.1 Single-interval Domain

For the domain containing only one interval, we apply the algorithm in (2.20) directly. The scheme (2.20) is an implicit
scheme. We apply an iterative method to solve the system.
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3.2 Multi-interval Domain

For the domain decomposition, we break the domain [0, ]T  into M subintervals where each of which is of length

.
T

M
   We first evaluate the solution 

1
( )NX t  on the first subinterval [0, ]  with the given initial condition  

0
0X X . Then,

we compute the end point value of 
1

( )NX   and set it as the initial condition for the next subinterval. By continuing the process,
the solution on the i-th interval can be evaluated by finding    

2 1
0, , 2  N

i N
X t i M


     such that

      
   

, , ,

1

, 1  ,    0 , 2  

0 .                                                                            

N N N N N
i k i k k

N N
i i

d
X t f X t i t k N i M

dt

X X

  





      


(3.1)

The value of  ,
N N
i k

X t
  is the local value for each subinterval. Patching all the solutions together with the global notation

    
,

1 , N N N
k i

X t i X t


    we finally arrive with the numerical solution for the equation.

The following example demonstrates the solution of an initial value problem with single and multi-interval domains.
The numerical results for the single domain are presented in Example 1 (Figure 1 to Figure 7) and the results with the multi-
interval domains are presented in Example 1 (Figure 8), Example 2 and Example 3.

Example 1  We use scheme (2.20)  to solve the problem

    

 

,  ,             0                        

0 1.                                                                             

d X t f X t t t
dt

X

  


(3.2)

with    
 

 
    1 1 3/2sin sin 1 5sin 2

5 51/23
, 1 10 cos(2 ) . 

2

X t t t

f X t t e t t e
 

   
   
       

The exact solution of this problem is

   3/21 5 sin(2 )X t t t  

which oscillates and grows to infinity as t increases. The corresponding function on right side,   , ,f X t t  satisfies the
Lipschitz condition as follows. Consider

     
   

1 1
sin sin1 25 5

1 2
, , .

X t X t

f X t t f X t t e e

   
   
     

Figure 1. Point-wise absolute error of scheme (2.20) when at  =
0.5, 0.8  and 1.

Figure 2. Discrete L2 error of scheme (2.20) when at  =  0.5, 0.8
and 1.
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By the Mean Value Theorem, we have

   

   
 

  

1 1
sin sin 11 25 5 sin

5

1 2

1
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5

X t X t
X tc

c

e e
e X t

X t X t

   
          

 





for some  
c

X t  between  
1

X t  and  
2

X t .

Since  sin 1
c

X t   and  cos 1
c

X t  ,  it follows that

   
   

1 1 1
sin sin1 25 5 5

1 2

1
.

5

X t X t

e e e X t X t

     
     
       

Thus,   ,f X t t  fulfills the Lipschitz condition with  

1

51
 .

5
e

 
 
    It follows from Theorems 2.1 and 2.2 that the equation

(3.2) has a unique solution and has the error estimates in (2.23) and (2.24).
We implement the algorithm by using this function   ,f X t t . The figures below illustrate the errors by the spectral

collocation methods defined at the beginning of the section. In Figure 1, we plot the point-wise absolute error at 0.5, 0.8 
and 1 with different values of N. We observe that the point-wise absolute error decreases as N increases and  decreases.
Furthermore, The errors oscillate between odd and even N. The rate of convergence when N is even is faster than the rate
when N is odd.

In Figure 2, we present the discrete 2L  error at 0.5, 0.8   and 1 with various N. There is only slight oscillation for the
discrete 2L  errors. The error decreases as N increases and   decreases. In Figure 3 and Figure 4, we compare the Chebyshev-
Gauss collocation method in (2.20) and the Chebyshev-Gauss spectral collocation method in Yang et al. (2015). The point-
wise absolute error and the discrete 2L  error of two methods nearly coincide. The rate from both methods are of the same
order.

Figure 3. Point-wise  absolute  error  of  scheme  (2.20)  versus  the
Chebyshev-Gauss spectral collocation method in Yang
et al. (2015).

Figure 4. Discrete L2 error of scheme (2.20) versus the Chebyshev-
Gauss spectral collocation method in Yang et al. (2015).

The rate of convergence of the point-wise absolute errors and the discrete 2L  errors from the Chebyshev-Gauss
collocation in (2.20) and the Chebyshev-Gauss spectral collocation method in Yang et al. (2015) shown in Figure 5 and 6
demonstrate the spectral accuracy. We plot the point-wise absolute errors of the two methods and estimate them by comparing
with the function 3.1Ne  in Figure 5. It follows that convergence rate is of order  3.1Ne . Similarly, as shown in Figure 6,

the convergence rate of the discrete 2L  error is of order  4.33 NN  .
In Figure 7, we compare the Chebyshev-Gauss collocation method in (2.20) with the Legendre-Gauss collocation

method and the Chebyshev-Gauss spectral collocation method in Yang et al. (2015). We observe that the discrete 2L  error of
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the  Legendre-Gauss  collocation  method  decays  slightly  faster  as  N  increases  and  the  two  Chebyshev-Gauss  collocation
methods are of the same rate.

Figure 8 shows the point-wise absolute error of the Chebyshev-Gauss collocation method in (2.20). We observe that
the point-wise absolute error grows rapidly when the time is less than 200 seconds then it increases at a slower rate and
slightly oscillates as t increases.

3.3 System of differential equations

For the system of differential equations, we denote the vectors

      1 2
, , , ( )

T

n
X t X t X t X t 


            1 2, , , , , , , .
Tnf X t t f X t t f X t t f X t t 

    

We can apply the algorithm in (2.20) to the system of equations. The solution can be determined in a similar way.
Consider the system

    

 
0

,  ,             0

0 .                                           

d
X t f X t t t

dt
X X

  



 

  (3.3)

Figure 5. Point-wise absolute error of scheme (2.20) versus the
Chebyshev-Gauss spectral collocation method and the
convergence rate when N varies.

Figure 6.   Discrete L2 error of scheme (2.20) versus the Chebyshev-
Gauss spectral collocation method and the convergence
rate when N varies.

Figure 7. Discrete L2 error of scheme (2.20) versus the Chebyshev-
Gauss  spectral  collocation  method  and  the  Legendre-
Gauss collocation method.

Figure 8. Point-wise absolute error of scheme (2.20) when t = 2000,
= 1 and N = 17.
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In spectral collocation method, we approximate the solution of (3.3) as follows.
Find   1

( ) 0,
nN

N
X t 





  such that

    
 

, , ,

0

,  ,             0 , 0

0 .                                                                      

N N N N N
j j j

N

d
X t f X t t j N t

dt

X X

  
    



 

  (3.4)

We evaluate each  
i

X t  by applying (2.20) together with an iterative method.
In  the  examples  below,  we  present  the  numerical  solution  of  linear  and  nonlinear  Hamiltonian  systems.  We  are

interested in the long-term behavior of the system. A good algorithm should preserve both the area (orbit) and the energy of
the system (Kanyamee et al., 2011).

Example 2  Consider the Hamiltonian system

   

   
   

'

'

1, 0

, 0  

0 1,    0 0.

p t q t t

q t p t t

p q





    

  

 

(3.5)

with the exact solution

  cos( ) sin( )p t t t    and           2 2 cos cos sin sin .q t t t t t    

The corresponding Hamiltonian function of this system is   2 21 1
,  .

2 2
H p q p q q    The total energy of the system is

2 21 1 1
 (0) (0) (0) .
2 2 2

E p q q   

Figure 9 represents the phase plots of  Np t  and  Nq t  by using the Chebyshev-Gauss collocation method when
510 ,  0.1 M   and  7.N   The other two collocation methods also present the same orbit. We see that the orbit preserves

the area as it does not shift from the exact solution when  t  is large.

Figure 9.  Phase plot pN versus qN when M = 105,  = 0.1 and N = 7.

Figure 10. (a) Error in energy of scheme (3.4) versus the Legendre-Gauss collocation method (b) the Chebyshev-Gauss spectral collocation
method when M = 105,  = 0.1 and N = 7.
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Table 1. Comparison of the errors and CPU times from the three collocation methods
for the system (3.5).

                   N 7 9 11 13 17 21
                   t 0.1 0.25 0.5 1 2 4

CGC 2.77e-11 1.77e-11 3.82e-11 2.48e-11 8.14e-11 2.62e-11
( )NE t LGC 3.70e-11 1.50e-11 3.44e-11 3.51e-11 5.05e-11 3.40e-11

CGC-Yang1 1.15e-13 1.36e-13 2.33e-13 3.27e-12 1.03e-12 4.82e-12

CGC 3.92e-11 2.48e-11 5.06e-11 3.48e-11 9.22e-11 3.21e-11
( )

H
E LGC 5.24e-11 2.12e-11 4.70e-11 4.32e-11 3.26e-11 4.81e-11

CGC-Yang1 1.36e-13 8.30e-14 4.54e-14 3.71e-13 6.26e-14 4.00e-13

CGC 15.60 25.20 42.07 87.14 221.91 659.08
LGC 19.038 31.14 56.20 124.27 379.50 743.33
CGC-Yang1 33.32 70.70 197.68 539.41 1.35e+3 2.15e+3

CPU
Times

In Figure 10(a) and 10(b), we compare the error in energy of the Chebyshev-Gauss collocation method in (3.4) with the
Legendre-Gauss collocation method and the Chebyshev-Gauss spectral collocation method in Yang et al. (2015). The error in
energy from the Chebyshev-Gauss collocation method in (3.4) is smaller than the error from the Legendre-Gauss collocation
method. However, the errors are still larger than those from the Chebyshev-Gauss spectral collocation method in Yang et al.
(2015). The three methods show a constant growth (with respect to the log scale) of the error, but the point-wise absolute
error from Yang et al. (2015) slightly oscillates as  t  increases.

Table 1 represents the point-wise absolute error  NE t , the maximum error of energy  
H

E   and the CPU times when
410M   with different values of   and N of the system (3.5). We have that the Chebyshev-Gauss spectral collocation

method in Yang et al. (2015) preserves energy better and the point-wise absolute error is less than the other two methods.
However, when we compared the CPU times, it takes much longer than the time taken from the other two methods. The
Chebyshev-Gauss collocation method (3.4) gives the best CPU times.

Example 3  In this example, we consider the Henon–Heiles system given by

       

       
   
   

1 1 1 2

2 2
2 2 1 2

1 1

2 2

'  2 , 0

'  , 0

'  ,  0

' ,  0

p t q t q t q t t

p t q t q t q t t

q t p t t

q t p t t









   

    

  

  

(3.6)

with initial conditions      
1 2 1

0 0.011,  0 0,  0 0.013p p q    and  
2

0 0.4.q  
The corresponding Hamiltonian function for this system is

   2 2 2 2 2 3
1 2 1 2 1 2 1 2 1 2 2

1 1
, , ,  .

2 3
H p p q q p p q q q q q     

The total energy of the system with respect to the initial conditions is

              2 2 2 2 2 3
1 2 1 2 1 2 2

1 1
0 0 0 0 0 0 0 0.1014.

2 3
E p p q q q q q      

Figure 11 and Figure 12 illustrate the phase plots of  
1
Np t  and  

1
Nq t  and the phase plots of  

1
Nq t  and  

2
Nq t ,

respectively, using the Chebyshev–Gauss collocation method (3.4) when 410 ,  0.1 M    and  7.N   The other two colloca-
tion methods also present the same orbit.

Table 2 illustrates the maximum error of energy  
H

E   and CPU times when 410M   with different values of   and  N
of the system (3.6). From the table, the method (3.4) and the Legendre-Gauss collocation method provide the error in energy of
the same order. In this example, the Chebyshev-Gauss spectral collocation method in Yang et al. (2015) preserves energy
better. However, when we compare the CPU times, the time from the Chebyshev-Gauss spectral collocation method in Yang
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et al. (2015) grows as   and N increases. The CPU times of
the method (3.4) and the Legendre-Gauss collocation method
are close to each other when   and N are small.

4. Conclusions

In  this  work,  we  proposed  the  Chebyshev-Gauss
collocation method to solve to the initial value problems of
ordinary differential equations. We constructed the algorithm
for an ordinary differential equation as well as for systems of
ordinary  differential  equations  in  both  single-  and  multi-
interval domains. The numerical results support the theoreti-
cal result discussed in section 2. For a fixed , the error drops
rapidly as N increases. This behavior is expected since we
increase the number of collocation points. We compare the
results to show the order of convergence of 3.1( )Ne  and

4.33( )NN   in Figure 5 and 6 respectively. It shows that
the method (2.20) possesses a spectral accuracy.

For fixed   and N, with the scheme for a multi-interval
domain, the error grows at a faster rate for a smaller t than
a larger t. As t gets larger, the error increases due to the accu-
mulation of errors from the subintervals. These errors may
occur  when  we  approximate  the  endpoint  value  of  each
subinterval  and  set  it  as  the  initial  condition  for  the  next
subinterval. For the Hamiltonian systems, we have that the
method (2.20) preserves both energy and the area. The CPU
times for the method (2.20) are the best for the linear systems

Table 2. Comparison of the errors and CPU times from the three collocation methods
for Henon Heiles (3.6).

                   N 7 9 11 13 17 21
                   t 0.1 0.25 0.5 1 2 4

CGC 5.91e-12 1.10e-12 8.41e-12 9.30e-12 2.29e-11 1.85e-11
( )

H
E LGC 3.45e-12 2.28e-11 9.48e-12 9.79e-12 4.19e-11 2.09e-11

CGC-Yang1 1.21e-14 6.34e-15 2.39e-15 1.42e-14 2.73e-14 2.47e-12

CGC 10.69 16.34 26.19 54.59 158.19 290.49
LGC 13.12 18.24 24.58 34.66 77.84 141.30
CGC-Yang1 6.54 9.20 16.05 43.08 163.52 407.01

CPU
Times

Figure 11. Phase plot 
1
Nq  versus 

1
Np  when M = 104,  = 0.1 and

N = 7.
Figure 12. Phase plot 

1
Nq  versus 

2
Nq  when  M = 104,  = 0.1 and

N = 7.

and are comparable to the Legendre-Gauss collocation
method  and  the  Chebyshev-Gauss  spectral  collocation
method in Yang et al. (2015) for nonlinear systems. One may
improve the algorithm by designing the iterative methods for
solving  the  implicit  systems  (2.20),  especially  when  the  co-
efficient matrix has a large condition number.
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