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Abstract 
 

 A new three-parameter lifetime distribution called the Topp-Leone generalized Rayleigh (TLGR) distribution obtained 

by the Topp-Leone generator based on the generalized Rayleigh (GR) distribution is proposed. Some of the proposed 

distribution’s mathematical properties such as its survival function, hazard function, moments, and moment generating function 

are investigated. Furthermore, the expansion of the probability density function is derived in terms of a linear combination of the 

GR distribution; this function is used to obtain its moments, and the maximum likelihood method is applied to estimate its 

parameters. Using real-life datasets, a comparative analysis is carried out to fit them to the TLGR, GR, and Rayleigh distributions 

based on the Anderson-Darling test and the Akaike information and Bayesian information criteria. The results from these datasets 

exhibit that the TLGR distribution is more appropriate than the other distributions.  

 

Keywords: lifetime distribution, Rayleigh distribution, maximum likelihood estimation, Topp-Leone generator

 

 

1. Introduction 

 

Lifetime analysis refers to survival time or failure 

time and plays an important role in various fields including 

engineering, biological sciences, finance, and medicine in 

predicting, for example, the time to failure of equipment, time 

to occurrence of events, time of death, time of the next 

earthquake, and so on. These phenomena can be explained by 

the characteristics of a lifetime distribution in a statistical 

framework, and there are many well-known distributions 

 

suitable for lifetime analysis, such as exponential, Weibull, 

and chi-squared.  

In the late 19th century, a number of interesting dis-

tributions were discovered, one of which is the Rayleigh dis-

tribution (Rayleigh, 1880), which is a special case of the 

Weibull distribution and is often encountered in a number of 

areas: in particular, lifetime testing and reliability. For exam-

ple, Siddiqui (1962) discussed datasets connected with the 

Rayleigh distribution, Hoffman and Karst (1975) studied 

properties and the bivariate of the Rayleigh distribution and 

dealt with its application to a targeted problem, and Ali and 

Woo (2005) proposed inference on reliability  P Y X  in a 

p-dimensional Rayleigh distribution. However, the Rayleigh 
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distribution only deals with increasing failure rate, which 

poses a weakness for modeling phenomena with other failure 

rate shapes. Vodă (1976a) proposed the generalized Rayleigh 

(GR) distribution with two parameters, and also discussed 

parameter estimation for a two-component mixture of the GR 

distribution (Vodă, 1976b) to accommodate better goodness of 

fit in real-life applications.  

Besides, the GR distribution has been applied to 

lifetime testing and reliability; for instance, Tsai and Wu 

(2006) developed an acceptance sampling plan for a truncated 

lifetime test when the data followed a GR distribution, and 

Aslam (2008) developed an economic reliability acceptance 

sampling plan for a GR distribution when the value of the 

shape parameter is known. 

 The extension of several families of distributions 

have been discussed in the last decade in order to generate a 

more flexible family of distributions, and the method for 

creating this consisted of two main components: a generator 

and the parent distributions (Alzaatreh, Lee, & Famoye, 2013; 

Lee, Famoye, & Alzaatreh, 2013). Following this approach, 

Sangsanit and Bodhisuwan (2016) recently proposed the 

Topp-Leone generator (TLG) for distributions by using a one-

parameter Topp-Leone distribution (Topp & Leone, 1955) as 

a generator to establish a new family of distributions. The 

TLG for the distributions not only adds one parameter to the 

parent distribution but also creates an advantage for the parent 

distribution. The authors also demonstrated one of its special 

cases, called the Topp-Leone generalized exponential distri-

bution, and suggested its flexibility for fitting real-life data to 

a generalized exponential distribution. The cumulative distri-

bution function (cdf) ( )F x  of the TLG random variable X  is 

defined as 

 

( )

1 1

0

( ) 2 (1 )(2 ) ;  d 0 1, 0

G x

F x t t t t t        

 ( ) 2 ( ) 0; ,
 G x xG x   (1)  

 

where ( )G x is the cdf of the parent distribution and   is the 

shape parameter of the TL distribution. The corresponding 

probability density function (pdf) of the new distribution is

   
11( ) 2 ( ) 1 ( ) ( ) 2 ( ) ,


  f x g x G x G x G x   

  

where ( )g x  is the pdf of the parent distribution. 

In this research, we attempt to produce a new 

three-parameter lifetime distribution, namely the Topp-Leone 

generalized Rayleigh (TLGR) distribution, and some mathe-

matical properties are also studied. Furthermore, the TLGR 

random variable is obtained by generating GR random va-

riates from the TLG framework.  

The rest of this paper is composed as follows. In 

Section 2, we present the GR distribution, while a new life-

time distribution, the TLGR distribution, is proposed in Sec-

tion 3. After this, some mathematical properties including the 

quantile function, expansion of the pdf, moments, and mo-

ment generating function (mgf) are derived in Section 4. The 

parameter estimation according to the maximum likelihood 

method is discussed in Section 5 and more detail on the 

information matrix is included in the Appendix. Moreover, the 

fitting results of real-life data with the TLGR, GR, and 

Rayleigh distributions are verified by the Anderson-Darling 

(AD) test and the Akaike information and Bayesian infor-

mation criteria in the application section. 

 

2. GR Distribution 

 

The GR distribution was first presented by Vodă 

(1976a), who also provided various mathematical properties 

such as non-central and central moments. Moreover, the GR 

distribution was used to solve a variety of lifetime and relia-

bility problems. It has two parameters, namely scale parameter 

  and shape parameter .   

 

Definition 1:  

Let X  be a random variable of the GR distribution 

with 0   and 1   , then the pdf and cdf of X  are given 

by 

 
2

1
2 12

( ) ;  > 0, 0, 1
( 1)


 

 



    

 

xg x x e x             (2) 

and  
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 
 

21,
( ) ,

1

  






 

x
G x             (3) 

respectively, where   1

0

, d   
a t

b

a b t e t  is the lower 

incomeplete gamma function and   1

0

d



   
a ta t e t  is the 

incomplete gamma function.  

 

The GR distribution reduces to the Rayleigh 

distribution when 0   and 21/ (2 ) .   If we take 1/ 2   

and 21/ (2 )  , then we obtain the Maxwell distribution 

(Bekker & Roux, 2005), and if 1/ 2    and 21/ (2 ),   

the half-normal distribution is realized (Tanis & Hogg, 1993). 

In the case of 0,   we suppose that / 2 1    and 1/ 2  , 

where N  , and the GR distribution becomes a Chi-squared 

distribution with   degrees of freedom. Vodă (1976a) also 

derived the thr  moment of the GR distribution by applying 

the integral formula provided by Grandshteyn and Ryzhik 

(2007). Hence,  

 

/2

( / 2 1)
( ) .

( 1)



 

  


 

r

r

r
E X             (4) 

 

 Furthermore, the expectation and variance of  the 

GR distribution are  1/2(3 / 2 ) ( 1)       and 

       2 21 / 3 / 2 ( 1)          , respectively. 

 

3. New Lifetime Distribution 

 

In this section, we propose a new lifetime distri-

bution called the TLGR distribution. Its pdf and cdf are 

obtained from the TLG and a parent distribution, in this case 

the GR distribution.  

Theorem 1: 

Let X  be a positive continuous random variable of 

the TLGR distribution with parameters , 0,   and 1,    

denoted as ~ ( , , ).X TLGR     The cdf and pdf of X  are  

     2 2

1 1( ) 1, 2 1,
 

        F x x x            (5) 

and 

     
2

1
1

2 1 2 2

1 1 
4

( ) 1 1, 1,
( 1)

xf x x e x x
 

 
     






    
 

 

        
1

2

12 1, ; 0,x x


  


              (6) 

   

respectively, where 
1( , ) ( , ) / ( )a b a b a    is the incomplete 

gamma ratio function. 

 

Proof:  

 

The cdf of X  can be obtained by substituting 

Equation (3) into Equation (1). By differentiating the cdf of 

X  with respect to ,X  the pdf is obtained, i.e. 

 

 

     

     

    

        

2

2

2 2
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2
1

2 2
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2
1

2 2

1 1

1 1
2 2 2

1 1 1

d d
( ) 1, 2 1,

d d

2 ( )
1, 2 1,

( 1)

2 ( )
2 1, 1,

( 1)

1, 2 1, 2 2 1,

2

x

x

F X x x
x x

x x e
x x

x x e
x x

x x x

 

  

  

 

     

 
      



 
     



         







 

   

  
           

 
      

 
 
 
   

  


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

22( )

( 1)

xx x e  



 
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2 1 2 2

1 1

1
2

1

4
1 1, 1,

( 1)

2 1, .
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 




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

  




 



   
 

  

xx e x x

x

   

   

 Figure 1 shows plots of the pdf and cdf of the TLGR 

distribution. The pdf can be classified into two cases; one is a 

decreasing function while the other is unimodal and right-

tailed and depends on the   and   parameter values. 

 

4. Mathematical Properties of the TLGR Distribution 

 

Some of the mathematical properties for the TLGR 

distribution are derived, such as its quantile, survival, and 

hazard functions, the expansion of the probability density 

function, moments, and mgf.  
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Figure 1.      Pdf and cdf plots of the TLGR distribution for different parameter values. 

 

4.1 Quantile function 

 

The quantile function is obtained from the inversion 

method as 

 

 1 1/1 1 ,GX Q U      

 

where U is a uniform (0,1) distribution and ( )GQ   is the 

standardized gamma quantile function with shape parameter 

1  . The standardized gamma quantile function is available 

in most statistical packages, such as the zipfR package 

(Evert & Baroni, 2007) in the R language (R Core Team, 

2016). This quantile function can be generated from a random 

sample of the TLGR distribution. We demonstrate two cases 

of 50 random variates from the quantile function in Figure 2.
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Figure 2. Generated samples and fitted density function of the TLGR distribution for different values of  , ,   and  . 

 

4.2 Survival and hazard functions 

 

The survival function, ( )S x , also known as the reliability function, is usually related to the mortality of specimens or 

failure of equipment or systems, and is the probability that the system will survive beyond a specified time. Similarly, alternative 

characterization of the distribution results in the hazard function,  h x , which is sometimes known as the failure rate or hazard 

rate. The hazard function refers to the instantaneous rate of death or failure at a specified time and is the ratio of the pdf to the 

survival function. These are obtained respectively as 

 

       2 2

1 1( ) 1 1, 2 1,
 

         S x x x   

and 

         

     

2 1 1
1 2 1 2 2 2

1 1 1

2 2

1 1

4 1 1, 1, 2 1,
( ) .

( 1) 1 1, 2 1,

xx e x x x
h x

x x

 
  



         

      

 
       


 

     
  

  

 

 Figure 3 shows the hazard function of the TLGR distribution. We can see that the TLGR hazard function can be 

bathtub-shaped or monotonically increasing. 

 

4.3 Expansion of the probability density function 

 

 We consider the pdf in the form of a series expansion. The pdf in Equation (6) can be provided by a simple expansion, 

and by using binomial, lower incomplete gamma, and power series expansions, that of the TLGR distribution becomes 

convenient to use. First, we consider the term     
1 1

1 ( ) ( ) 2 ( )G x G x G x
  

   to be applied by a binomial series expansion as 

follows:     
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Figure 3. Hazard plots of the TLGR distribution for different parameter values. 
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 
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 
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   
   


  

   
 
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
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               (7) 

 

Substituting Equation (7) into Equation (6) results in 

 

21 2 1 1
1

, 0 0

1 1 14
( ) ( 1) 2 ( ) .

( 1)

x j
i j k i k

i j k

i jx e
f x G x

i j k

  


 



   
   

 

    
 



 
   
   

                                 (8) 

 

In Equation (8),   is a non-integer, but on the other hand, if it is a positive integer, the index i  in Equation (8) stops at 1  . 

The cdf of the GR distribution (Equation (3)) has a lower incomplete gamma term, thus we use the series representation for the 

incomplete gamma function (Gradshteyn & Ryzhik, 2007) resulting in 

 

 

0

( 1)
( , ) .

!( )

n n

n

x
x x

n n

 










   

 
Therefore, 

, ( )G x 
  can be rewritten as 
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The power series (Gradshteyn & Ryzhik, 2007) is applied in 
, ( )kG x 

. The power series is 

 

,

0 0

k

n n

n n k

n n

a x c x
 

 

 
 

 
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where the coefficients 
,n kc  are obtained from the relationship 

0, 0 , 0k

kc a n  , and 
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Consequently, 
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Thus, the pdf in Equation (9) becomes 
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By taking Equation (10) into account, a convenient form can be expressed as 
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Consequently, the pdf of the TLGR distribution in Equation (11) can be expressed in terms of a linear combination of 

the GR distribution. Moreover, it is useful to derive several properties of the TLGR distribution.  

 

4.4 Moments 

 

Many interesting characteristics of the TLGR distribution can be considered through its moments, thus we derive the 

thr  moment of X  when ~ TLGR( , , ).X     In addition, the thr  moment of X  can be expressed as 
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which is an important result since it presents the moments of the TLGR distribution as a linear combination of GR moments with 

*,   parameters. Substituting Equation (4) into 
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 in Equation (12) results in  

1

, , , /2
, 0

*

*
, 0

2 ( / 2 1)
( ) .

( 1) ( 1)

j
r

i j k n r
i j n k

r
E X b

 

  



 

  

   

   

 
Consequently, we can use the moments to find the expectation, variance, skewness, and kurtosis. 

 

4.5 Mgf 

 

 The moments of the TLGR distribution were discussed earlier and at this point, the mgf of TLGR distribution is 

derived. Let ~ TLGR( , , )X    , then the mgf can be obtained from Equation (11) as 
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where D ( )p z  is a parabolic cylinder function (Gradshteyn & Ryzhik, 2007) given by 
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We obtain the thr  moment about the origin by differentiating the mgf r times with respect to t and setting t = 0 as it can then be 

used to calculate the expectation, variance, skewness, and kurtosis. 

 

5. Parameter Estimation 

 

The most widely used method for estimating parameters of a probability distribution is maximum likelihood estimation 

(MLE), and so in this research, we use it to estimate the unknown parameters of the TLGR distribution. Suppose ( , , )T     

is the unknown parameter vector of the TLGR distribution, and let 1 2, , , nx x x  be an observed random sample of size n  

from the TLGR distribution, then the likelihood function can be expressed as 
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and the log-likelihood function of   is given by 
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By taking the partial derivatives of    with respect to , ,   and  , the components of the unit score vector are 
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where ( ) ( ) ( )        is a digamma function. A simplified form of  21, ix          21,
d

d
ix  


  is shown in the 

Appendix.  

In addition, we derive a system of non-linear equations by setting ( ) ( )   U U ( ) 0  U . Subsequently, the 

maximum likelihood estimate ˆ ˆˆ ˆ( , , )T    was obtained by numerically solving the system of non-linear equations through 

the stats package of the R language (R Core Team, 2016). In order to determine the confidence intervals and hypothesis tests on 

the model parameters, we needed to use the Fisher information matrix, the elements of which as information matrix ( )J   are 

given in the Appendix. 

 

6.  Applications 

 

In applications study, we fitted the TLGR model to three real-life datasets and compare the fitness with GR and 

Rayleigh distributions. The first dataset taken from Barlow, Toland, and Freeman (1984) contains data on the stress-rupture 

lifetime of Kevlar 49 epoxy strands at 90% stress level until all had failed; the complete data with the exact times of failure are 

presented in Table 1. Besides, Table 2 shows a dataset consisting of 63 observations of the tensile strength in GPa of single 

carbon fibers and impregnated 1000-carbon fiber tows (Bader & Priest, 1982). For the last dataset, the time-to-failure 3(10 h)  for 

40 turbocharger suits (Xu, Xie, Tang, & Ho, 2003) are shown in Table 3. 

 

 

         Table 1.     Epoxy strand stress-rupture lifetime dataset. 

 

          0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 

0.07 0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 

0.13 0.18 0.19 0.2 0.23 0.24 0.24 0.29 0.34 0.35 
0.36 0.38 0.4 0.42 0.43 0.52 0.54 0.56 0.60 0.6 

0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73 0.79 0.79 

0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01 
1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 

1.31 1.33 1.34 1.40 1.43 1.45 1.50 1.51 1.52 1.53 

1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 1.80 1.81 
2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 4.69 

7.89 
 

          

 

    Table 2.     Carbon fiber tensile strength dataset. 

 

            

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 
2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 

2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145 

3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 
3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 

4.225 4.395 5.020 
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                                                      Table 3.     Turbocharger suit time-to-failure 3(10 h)  dataset. 

          

1.6   2.0 2.6 3.0 3.5 3.9 4.5 4.6 4.8 5.0 
5.1 5.3 5.4 5.6 5.8 6.0 6.0  6.1 6.3 6.5 

6.5 6.7 7.0 7.1 7.3 7.3 7.3 7.7 7.7 7.8 

7.9 8.0 8.1 8.3 8.4 8.4 8.5 8.7 8.8 9.0 
          

 

 

We plotted the total time on test (TTT) for these datasets as shown in Figure 4 to provide information on the hazard 

rate shape. Figure 4(a) indicates that the hazard function of the first dataset has a bathtub shape, while Figure 4(b) and (c) show 

the increasing monotone shape of their hazard functions. Therefore, the TLGR distribution is a possible candidate for fitting the 

data from these datasets. 

  
      (a)       (b) 

 
(c) 

Figure 4. TTT plots of (a) the epoxy strand stress-rupture lifetime, (b) the carbon fiber tensile strength, and (c) the turbocharger suit time-to-

failure 3(10 h)  datasets. 
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Comparison of the TLGR, GR, and Rayleigh distributions was performed using the AD test, for which the test values 

for comparing the fitting of the distributions were calculated using the ADGofTest package (Bellosta, 2011) in the R language. 

The other criteria used for comparing the modeling for the three distributions were the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). Consequently, the estimates, the AD test results, and the AIC and BIC values are shown in 

Tables 4, 5, and 6 for datasets 1, 2, and 3, respectively. 

Table 4. Summary of fitting and AD test results, and AIC and BIC values for the stress-rupture lifetime dataset. 
 

 MLE AD test (p-value) AIC BIC 
     

TLGR ̂  =  0.0309 1.0602 (0.3270) 212.9762 220.8216 

 ̂ = -0.8625    

 ̂ =  3.8194    

GR ̂  =  0.1400 1.1542 (0.2855) 216.3660 221.5962 

 ̂ = -0.6790    

Rayleigh ̂  =  1.0703 35.0624 (<0.0001) 362.4596 365.0748 
     

 

 

Table 5. Summary of fitting, AD test results, AIC, and BIC values for the carbon fiber tensile strength dataset. 
 

 MLE AD test (p-value) AIC BIC 

     

TLGR ̂  =   0.1535 0.3396 (0.9054) 119.0136 125.4430 

 ̂ = - 0.0743    

 ̂  = 13.1262    

GR ̂  =  0.6658 0.4468 (0.8008) 119.3114 123.5976 

 ̂ =   5.4843    

Rayleigh ̂  =   2.2067 11.0175 (<0.0001) 189.0399 191.1830 
     

 

 

                                             Table 6.     Summary of fitting, AD test results, AIC, and BIC values for the turbocharger  

                                                               suit time-to-failure 3(10 h)  of dataset. 

 MLE AD test (p-value) AIC BIC 
     

TLGR ̂  =   0.2675 0.8160 (0.4686) 122.3212 126.5248 

 ̂ = 18.1572    

 ̂  =  0.1015    

GR ̂  =   0.0690 0.8734 (0.4300) 125.2414 128.0437 

 ̂ =   1.3680    

Rayleigh ̂  =   4.1451 2.6033 (0.0441) 133.3049 134.7061 
     

 

Considering the results of fitting the real-life datasets, the p-value of the AD test under the TLGR distribution was 

greater than those of the other distributions. In addition, the AIC and BIC values of the TLGR distribution were smaller than 

those of the others. Consequently, the TLGR distribution was better at fitting these datasets than the GR and Rayleigh 

distributions. Furthermore, the graphical analysis in Figures 5 and 6 were another way to help us verify the fitting of the 

distributions. Figure 5 displays the histograms of the datasets with the fitted TLGR, GR, and Rayleigh density functions, and a 

comparison of the empirical and estimated cdfs are presented in Figure 6. Clearly, the TLGR distribution provided the best 

results. 
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(a) (b) 

 

 
(c) 

 

Figure 5. Empirical and fitted distributions of the TLGR, GR, and Rayleigh distributions 

 

 

7.  Conclusions 

 

In this research, the TLGR distribution is proposed. 

Some properties of the TLGR distribution are discussed, 

including the cdf, pdf, and hazard, survival, and quantile 

functions. Moreover, the expansion of the TLGR pdf was 

accomplished by using binomial, lower incomplete gamma, 

and power series expansions, and the moments and mgf were 

also derived. Parameter estimation and the observed Fisher 

information matrix of the TLGR distribution were provided 

using the maximum likelihood method. Afterwards, we also 

applied the TLGR distribution in a comparative analysis with 

the GR and Rayleigh distributions to real-life datasets and 

compared the fitting results. Referring to the values of the AD 

test, AIC, and BIC in Section 6, the TLGR distribution was 

the best at fitting data from these real-life datasets. In practice, 

the TLGR distribution is likely to attract wide application in 

real-life data for lifetime and failure analysis, and it could also 

become an alternative distribution to the current methods of 

describing various kinds of lifetime data. 
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Figure 6. Empirical and theoretical cdfs of the Rayleigh, GR, and TLGR distributions. 
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Appendix 

 

The 3 3  total information matrix along with its elements is given by the elements of the observed information matrix 

 J   for the parameters  , ,    as 
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where, ( )    is the trigamma function, and so  
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We can use the integrals of the logarithmic and power functions from Abramowitz and Stegun (1964) to help calculate 

 2 , ,1iJ x s    and  2 , ,2iJ x s    more easily, thus 
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