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Abstract

In this paper, we investigate an upper bound of the polar derivative of a polynomial of degree 11

N— (bt +-t+ty)

p@) = (2 — 2"z =zt G =20 @+ )

v=p
where zeros Zg, ..., Zy are in {z ¢ |z| < 1} and the remaining n — (&, + +- + tg) zeros are outside {z : |z| < k} where
k = 1. Furthermore, we give a lower bound of this polynomial where zeros Zg, ---, Z3 are outside {z ¢ |z| < k} and the

remaining 1 — (t,,, + ** + to) zerosarein{z : |z| < k}wherek = 1.

Keywords: polar derivative, polynomial, inequality

1. Introduction

Let k be a positive real number. We denote {z: |z| < k} and {z : |z| = k} by D(0,k) and D(0,k),
respectively.

Consider a polynomial p(z) of degree 1. Bernstein (1926) presented the well-known inequality lmlax|p'(z)| =
z|=1

HHIHK|P(Z)|. This result is sharp for a polynomial p(z) = az™ where @ is a nonzero complex number. Bernstein’s
lz]=1

inequality is sharp for a special class of polynomials. Not only upper bounds of Imlax |p'(z) | have been studied, but also lower
z[=1

*Corresponding author
Email address: kmaneeruk@hotmail.com



N. Arunrat & K. Maneeruk Nakprasit / Songklanakarin J. Sci. Technol. 41 (5), 1192-1203, 2019 1193

bounds.

Lax (1944) proved the conjecture which was posed by Erdés for p(z) having no zero in D(0,1) that
max|p @) = max|p(z)| This bound was improved by Aziz and Dawood (1988) who proved that
lmlax|p'(z)| gg max Ip(2)] — lnllin|p(z)| . Furthermore, the equality holds for p(z) = az™ + b with |b| = |al.
z|=1 z|=1 z|=1

Turan (1939) proved that max |p (2)] = Ilnax |p(2)| where p(z) is a polynomial having all its zeros in D(0,1).

The bounds of Lax (1944) and Turan (1939) are sharp for a polynomial which has all of its zeros on {z : |z| = 1}.

The improvement of this lower bound was presented by Aziz and Dawood (1988) that

This new bound is sharp for a polynomial p(z) = az™+ b with

max|p (@) = [max lp(2)| + n11n|p(z)|
|b| = |al.

Govil (1991) studied a polynomial p(z) of degree 1t which has no zero in D(0, k), k = 1. He proved that

maxlﬂ(Z)l P rllzllglp(Z)l - E?i%'p(zﬂ :

Moreover, Govil (1991) also studied a polynomial p(z) of degree 1@ having all its zeros in D(0, k), k < 1, and proved that

max(p' ()| = 1= [ max Ip(2)| + o minlp ()|
Both bounds are sharp and equalities hold for p(z) = (z + k)™.
Aziz and Shah (1997) studied a lower bound of a derivative of a polynomial p(z) =ag +

Zgzp a,z”, 1 = p = n,which has all of its zeros in D(0,k), k = 1.

Theorem A (Aziz & Shah, 1997) If p(z) = ay + 2=, apz”, 1 = pu = n, is a polynomial of degree 1 having all of its

zerosin D(0,k), thenfork = 1

max[p' ()] = o [maxlp ()] + o minlp ()1

lz]=1 1+k'“

n
Equality holds for p(z) = (z# + kH)x, where 1t is a multiple of f.
Although their Theorem stated that p(z) has all of its zeros in D(0,k), k < 1, it is described in the proof that the

result still holds when p(z) has a zero on {z : |z| = k}. Thus, we restate their theorem as follows.

Theorem [Restate Theorem A] If p(z) = a, + 23:;: a,z’, 1 < u < n,isapolynomial of degree 7 having all its zeros in

D(0,k) thenfork < 1

max|p( = maxIp(z)I + — k” iy 11n|p(z)| (LD

1+k""l

Somsuwan and Nakprasit (2013) investigated a lower bound of a polynomial of degree 1t which has a zero outside

D(0, k) and the remaining zeros in D(0, k), k < 1. One of their results is as follows.
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Theorem 1 (Somsuwan & Nakprasit, 2013) Let k < 1 and p(z) = (z — z,)*(ao + i a,z’),1<u<n-s,

be a polynomial of degree 1 having zero Zg outside D(0, k) and the remaining . — s zeros in D(0,k). Then

. A s A
el @ 2 [ oy~ g B PO [ ) 12

5
where 4 = J-lzol[ (n=s)
(1+kH)

Nakprasit and Somsuwan (2017) investigated an upper bound of a polynomial of degree 1 which has a zero in D(0,1)

and the remaining zeros outside D(0, k), k = 1. One of their results is as follows.

Theorem 2 (Nakprasit & Somsuwan, 2017) Let k = 1 and p(z) be a polynomial of degree 10 in the form
n-s
p(z) =(z —z0)°| ao +Zavzp l=pu=n—s50=s=n-1
v=p

If azero Zgisin D(0,1) and the remaining n — s zeros are outside D (0, k), then

max |p(z)| — 1in|p(z)], 1.3)

. - 5 A ] A
max|p (2)| _[(1—|Zo|} (-1zoh°) 221 (k+1zoD® 2=k

(1+1zg)**1(n-s)

h = :
where A = e (—lza)

The inequality (1.3) is sharp for a polynomial p(z) = z*(z + k)" 5.

The polar derivative of a polynomial p(z) of degree 1 with respect to a complex number o, denoted by D, p(2), is
defined by Dp(z) = np(z) + (@ — z)p'(z). Note that D, p(z) generalizes the derivative of a polynomial in the sense
that lim (D¢p(2)/c) = p'(2).

The bounds of D p(z) have been studied by many researchers. For example, Aziz and Shah (1997, 1998) studied

upper bounds of lm|ax|Dap(z)| where p(z) is a polynomial of degree 1 having no zero in D(0,k), k = 1 and @ € C with
z|=1

|a| = 1. Aziz and Rather (1998), Dewan, Singh, & Mir (2009), and Govil and McTume (2004) studied lower bounds of

|n1|ax|Dap(z)| where p(z) is a polynomial of degree 1t having all of its zeros in D(0, k), k < 1 and @ € C with |a| = 1.
z|=1

In this paper, we investigate an upper bound of the polar derivative of a polynomial of degree 11
n—(tm+-+tg)

pE) = G =z — 2y )t G =z [ @+ ) ae
v=pt

where zeros Zg, ..., Zpy, are in D(0,1) and the remaining n — (t,,, + =+ + tg) zeros are outside D(0,k) where k = 1.
Furthermore, we give a lower bound of this polynomial where zeros Zg, ..., Z4; are outside D(0,k%) and the remaining

n— (tm + ot tg) zeros are in D (0, k) where k = 1. Consequently, our results generalize the inequalities (1.2) and (1.3).
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2. Upper Bound of A Polar Derivative of Polynomials Having at Least One Zero in D(0, 1).
In this section, we investigate an upper bound of lmlax|Dap(z)| where @ € C with |e| =1 and p(z) is a
z|=1

polynomial of degree 71 which has some zeros in D(0,1) and the remaining zeros outside D(0, k) where k = 1.

For a polynomial p(z) of degree 11, we define g(z) = z™p(1/2). Let Z be a complex number with |z| = 1. It
follows from the result of Govil and Rahman (1969) that
Ip'(@)] + '@ = n- maxlp(2)]. 1)

Furthermore, one can show that
Inp(2) — zp'(2)| = |q'(2)|. (2.2)

Theorem 3 Let p(z) be a polynomial of degree 71 in the form

n—s
p(z) = (z — zp)*| ag -I—Zapz" 1l=p=n—s50=s=n-1
v=p

Letk = 1and ¢ € Cwith || = 1. Ifazero Zgis in D(0,1) and the remaining 11 — § zeros are outside D(0, k), then

A
maxiDp(@)| = [n+ (lal - D (= + o) | mas @)
(lal-1)a
2.3
{k+|20|)S] lz|=k @39
where 4 = —[le"l}SH[H 5)
(1+r4)(1-]z51)
Proof: Observe that
IDap(@)| = |np(2) + (@ — 2)p'(2)| < [np(@) — zp'(2)| + lal|p'(2)| (2.4)

Set q(z) = z"p(1/Z). From the relation (2.2), we have [np(z) — zp'(2)| = |q'(2)| for|z| = 1.
By substituting this result into (2.4), we obtain for |z| = 1 that
IDap(2)| < |¢'@)| + lallp'@)| = |a @] + [p' @] + (al = D[p'(2)].

Consequently, lmlaiiLIDap(z)I <n- lmla;iilp(z)I + (Ja| — 1) Ha}la|p’(z)| from the relation (2.1).
Z = Z|= Z| =

Theorem 2 implies that

A
|max Ip(@)] ~ s minlp()|

. A
- _ 4
|1;1|E}1{|P (@) = [(1_|20|} (=lzo D=1 2|

and therefore

A
maxIDap(z)| < nmaxlp(z)I + (la| — 1)[ {1 D -I—m.) rllzllzi}lilp(z)l
A
~ Gz pnlp @)l
A
< 4
= [”+ (lerl = 1) ((1 EA) {1—|zo|)f)]‘|?|3’§|p(z)|
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B (|a|—1}a]
(k+lzoD®

minlp 2

(1+|z5)5 1 (n—s)

h =
where 4 (1+E4)(1-zo)

Remark 4 Dividing both sides of the inequality (2.3) by |e| and letting |ez| — <=, we get the inequality (1.3) in Theorem 2.

In case Zg = 0, we obtain the following corollary.

Corollary 5 Let p(z) be a polynomial of degree 1 in the form
n—s
p(z) = z°| ag —I—Zavz" d1=p=n—50<=s=n-1
v=p

Letk = 1 and @ € C with |a| = 1. Ifall n — s zeros (except a zero at the origin) are outside D(0, k), then

(lal-1)(n-s] .
25
e | inlp @)l (25)

lal(n+sk®)+(n—s)kH
14+KH

max|D,p(z)| = max |p(z)| — [
lz]=1 lz| =1

Next, we show that the upper bound in (2.3) is sharp for a polynomial p(z) = z°(z + k)™~ where k is a real
number with |k| = 1.
One can see that |D,p(z)| = |{z5[(n — s)k + an] + askz*"1}(z + k)" 51|
Note that (n — s)k + an > 0 because n, k,s € Z* and @ € R with |a| = 1.

Furthermore, lmlax|zs[(n —s)k + an] + askz*~!| and ma;d (z + k)" 51| are attained at z = 1.
z|=1 zl=1

These results yield that
lmlaildDap(z)l =((n — )k + an + ask)(1 + k)" (2.6)
z|=

The right side of the inequality (2.3) becomes

[+ el = D (S5 + ) | max o @) |

(la]-1)(n—s) min | (Z)l
(1+x)(1-0)</1 |z] p

(1+k)k+0)5] [z =k

= ((n —s)k+an+ ask](l + k)yvsTL
which equals lmla;l.;|Dap(z)| in (2.6).
Z|=

This means that the upper bound in Theorem 3 is sharp.

Moreover, this polynomial also makes (2.5) an equality, that is, Corollary 5 is sharp.

Corollary 6 Let p(z) be a polynomial of degree 11 in the form
n—(ty+tg)

p@) =@ -Gz @t ) ar | 1spsn— ot
v=p

O£t1+t0£n—1.
Let k = 1 and @ € € with |a] = 1. If zeros Zp and Z1 are in D(0,1) and the remaining . — (&; + t;) zeros are outside

D(0, k), then
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tillal +lzoD(2+z 271 (n—t) (A2, )0
(1-lz, 2 (1-lz, Dt

max|D p(z)]| = [
lz]=1

(Ial—l}{1+lzil}*1( to

A
T mn (1—|20|]+(1—|20|]:°)]lilz1|i}§|p(2)|

mlnlp(Z)l

(el —1)(1+|2z, ) T24 ]
lz]=

Lk +izgDEo (k+1zy DEL

(1+]zgTo+ L (n—(tg+ty))
(1+x™)(1-]z5])

where 4 =

Proof: Let p(z) = (z — z1)"py(2) where p, (2) = (z — zo)™ (ao + X0, (tr+to) )and a € Cwith |e| = 1.
Then D p(z) = (z — z)" [Dpo(2)] + ty(a — z,)(z — 2,)" 7 1py (2),
and [Dp(2)| = |z — 21|t |Dapo (2| + t1 ] — 24|z — 2, [+ 7 pp (2) .
Since|z —z¢| = |z| + |z1| =1 4 |zq| and |@ — z;| < |a| + |z ]| for |z] = 1, we get
max|Dep(2)| = (1 + |21 maxiDapo(2)| +1(lal + |z D + 12, maxlpo ()]

Theorem 3 yields that

maxlDepo@| < (= 1) + (al = D (2 + o) [ max o @] — [(5%| minlpo (@)1,
s 4 = ™
Therefore,
maxlDap(2)| = [tl(lal + 1z DA+ [z D87+ (=) + [z )
+Hlal = DA +12D% (2 +{1—|:0|}¢o)]r|§|ax Po(2)l
B [{Ial {Jle]-lll-[llz_:l)zz Untm] ﬂl_mp“ @ @.7)
On |z| = 1, we have |py (2)| = —— - [p(2)| = —];1 Ip(2)I.
Consequently,
max Ipo(2)| = m : ﬁlli}f (2. (2.8)
On |z| =k, we have |po (2)| = —— - Ip(2)| = {:c+| wepn 1P@l
Thus,
E}Eﬁ'p“ (2)| = m : lrgllizrélp(Z)I. (2.9)

By substituting (2.8) and (2.9) in (2.7), we obtain that

t(al +lz: DAz DB (not)(14lza D
Ll
max|Dap(2)| —[ (-|z Dt (-lz Dt

(el —1)(1+]z, ) 2 to A
HETE L ((1—|zo|}+(1—|zo|}to)]l|?|i}§|p(z)|
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_I:{lal_]-]‘{l'l'lz:lDt:l“1 I‘I111’1| (Z)l
(k+lzo Do (k+ze DE ) =k P

(1+|zg NPt (n—(to+t1))

Where A = e (-lzaD

Remark 7 Consider a polynomial of degree 11
n—{(tm+-+tg)

p(2) = (z = 2,)"" (2 — Zp-y)'m 4 (2 — Z9)*0 | ap + Z a,z’
v=p

where zeros Zg, ..., Zmy are in D(0,1) and the remaining n. — (t,,, + +++ + tg) zeros are outside D(0, k) where k = 1.

An upper bound of |m|ax|Dap(z) |, where & € € with |a| = 1, can be obtained by applying Theorem 3 as in the
z|=1

proof of Corollary 6.
t.
Let po(z) = (z — zg)bo (ag + Zn (trm - +t°}avz").pj (z) = (z —zj-) ‘pioi(2), for 1=j=m,
and @ € C with |a| = 1. Theorem 3 yields an upper bound of lmlax|Dap0 (z)|- Combining this upper bound together with the
z|=1

facts that
1
- - .
max lpo(2)| = TR Ip1(2)]

and

|TI|11n|Po (2)| = m

min z)|,
minlp, (2)|
we can obtain an upper bound of Imlaxlpapl (z)| asin Corollary 6.
z|=1
Consequently, an upper bound of lmlax|Dapj (z)| for 2 = j = m can be obtained by a similar process by using an upper
z|=1

bound of Imlaxmapj_ 1 (z)| and the facts that
z|=1

max pj-1(2)| = —r ax [p; (2)|

and

llelli:1;|Pj'—1(Z)| |P} (Z)|

R+| |); |I k
for2 =j=m.

3. Lower Bound of A Polar Derivative of Polynomials Having at Least One Zero Outside D(0, k) where
k<1

In this section, we investigate a lower bound of lmlax|Dap(z)| where @ € € with |a| = 1 and p(z) is a polynomial
z|=1

of degree 71 which has some zeros outside D(0, k), k < 1 and other zeros in D(0, k) where k < 1.
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Theorem 8 Let p () be a polynomial of degree 11 in the form
n—s
p(z) =(z —zo)°| ao +Zapz" Jl<u=sn—-s50<s<n-1
v=p

Let k = 1and @ € C with || = 1. Ifazero Zg is outside D(0, k) and the remaining n — s zeros are in D(0, k), then

m§X|Dap(Z)| > [{lal—l}A _ (n n s{lal+1})] ax p(2)]
lz[=1 lz]=

(1+]zq])* (1+]z])

(la|-1)a
e minlp @)1,

(3.1)

[1-lzlI° (n—s)

h =
where 4 RYTE)

Proof: By setting ¢p(z) = ap + Xj=; @, 2", we can rewrite p(z) = (z —zp) p(2).
The derivative of p(2)is p'(z) = (z — 25)¢'(2) + ¢(z)s(z — z5)* ! and then
D.p(2) = (@ — 2)(z — 20)°¢ (2) + [n(z — zo) + s(a — 2)](z — z)* P(2).
The triangle inequality implies that

IDep(@)| + [[n(z — 20) + s(a — 2)1(z — 20)" p(2)| = |(a — 2)(z — 20)°¢ (2)|.
One can see that

ll’;llgfmap(zﬂ = Ellﬂiﬂ (@—2)(z— 20)5¢'(2)|—E1|§!f|[n(2 — 2o) +s(a — 2)1(z — z,)* T p(2)].
For |z] = 1, weobtainthat |z — zp| < |z] 4+ |24] = 1 + |2o] .
since |z —zpl* = (lz| — |zo]) = (1 — |z0])¥ for k<l|zol<1l and |z—2zo° =|zp—2z|° =
(lzol = 121)* = (Izo| = 1)%for |zo] > 1, we obtain that |z — z4|5 = ‘1 — |zg|‘S for |zo| > k.
Consequently,

max|Dp(2)| = (lal ~ D[1 ~ |zl max|¢ (2)]

—[n(1 +|zo) + s(a| + DI + |20 E}§§|¢(Z)|-

By applying ¢(z) in the inequality (1.1), we have that

(n—s)
(1+64)

maxlé ()] > 22 maxi ()] + 2 minlo ()|

This implies that

(al- 1)1~z (n—s)
(1+kH)

mai{IDap(zH > — [n(1 + |zoD) + sCla| + 1)1 + |21

lz]=

(lal - D |1z, | (n—s)
KRTSTR(1+RH)

X max|o(2)| +

m migl(ﬁ(Z) .

2|

Observe that |¢p(z)| = p(2)] = _m lp(z)|for|z| = 1.

lz-zoF ZIS
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- max|p(z)|.

Thus, (1+lz1)®
u lmax|¢(z)| {1+|20|)5 B

On |z| = k, we have that |¢p(z)| =

lp(2)] = _[k+| 5= P@I.

lz—zoF° ZIS

This implies that mm|¢(z)| in|p(z)]|.

(k+|z e |z| k

Therefore,

[(|a|—1)|1—|zo||’(n—s}

Dol 09 (1 + Lol + sClal + DI + |20

max|Dp(z)| =
lz]=1

1 (Ia|—1}|1—|20||s(n—s)H
[ map 1] + [ < [ minte 1
_ JUal-1)A _( s(led] +1) ]
- [(1+|zg|}3 n+ (1+|20|]) L=t p(2)]
al —1)A
(lal =1 mlnlp(Z)l
kn=s=i(k + |zg])% |1

|1-lzo1]° (n-s)

where 4 = LRk

Remark 9 (1) Dividing both sides of the inequality (3.1) by |a| and letting |ez| — =2, we get the inequality (1.2) in Theorem 1.

(2) In case p(z) has at least one zero on {z : |z| = kJ, we obtain that ln|1in|p(z)| — 0. Then
z|=k

(la] — 1A s(lal+ 1)
E}Ei"”“p(z)' [(1 Flzo)s (n A+ 1z

)]maXIp(Z)I

1-1z, [ (n-s)

where 4 = e

Corollary 10 Let p(z) be a polynomial of degree 71 in the form
n—(t;+tg)
p@) =@ -2 G -z a0+ ) @ | 1=p=n— ot
v=y

0 S;fl‘Fth =n— 1L

Let k = 1 and @ € C with || = 1. If zeros Zg and Z1 are outside D(0, k) and the remaining n — (t; + to) zeros are in

D(0,k), then
(lal-1)]1-1z 1| a ((n—r1}|1—|zl||“ t0{|a|+1}|1_|21||‘1) ty (lad 41241
= — _
max|Dep(2)] —[(1+|zo|)fo{1+|zl|}f1 (1+lz: Dt (oD@ E ) e JRax Pl
t
(lal-1)|1-]z4 ]| *4
+ [kn—('r1+tg)—p_{k+|zo|}t0{k+|21|}t1 E}ln |P(Z)|

l1- |Zo|| (n—(t;+tg))
(14+EH)

where 4 =

Proof: Let p(z) = (z — z1)"1py(2) where py (z) = (z — z)t (ag + X {t1+t°]avz )
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and ¢ € Cwith |a] = 1.
Then Dop(2) = (z — 21 [Dapo(2)] + t1(a — z1)(z — 21)"+ 7 py(2),
and [Dop(2)| = |z — 21| |Dapo (2)| — tyla — zy |1z — zy [+ po (2).
sincelz — z1 |t = (|z| — |z, = (A — |z1DB for k<|z|<1 and |z—z¢|ft=|z;— 2| =
(Iz4] = |2z = (2] — 1) for |z1] = 1, we obtain that |z — z, |t = |1 — |zl|‘t1 for |z,| > k.
For|z| = 1, wegetthat |z — zy| < |z| + |z4| = 1 + |zy| and l@ — 24| = |a| + |z4].
By combining these two results, we have that

maxlDap(2)| = 1z max|Dapo (2) |—t; (lal + |z, D(1 + |z, )™ maxip, (2)]. (3.2)

By applying pg (z) in Theorem 8, we obtain that

(lel-1)4

to(lal+1)
CER

(lee]—1)a
(141201 |z| 11H|P0(Z)|

kRl =i (k2o ) fo [z =

maK|DaP0(Z)|

max po () |+ |

|1-lz]] U{n—(t1+t0}]
(1+kH)

where 4 =

By substituting this result into (3.2), we have that

t
(al-1)|1-|z, ]| *a

ty
EE?'DHP(ZH = (1+]|zo[) %0 — (- t1)|1 B |zl||

_ tolal+1)[1 -]z, | — t,(la| + |z, DA + |z, T2

max |po(2) |
lz]=1

(1+1zoD

[l e iniy @)
Since [pg (2)| = |— p(2)| =z W [p(2)] forlz] = 1, max |po (2)| = (1+| s maxlp (@)
For |z| = k, we have |p, ()| = Iz—z s p@l = 7(3€+|2 e [p(2)| and then lr;}izglpa(Z)l >

m mmIp(z)I

.Consequently,

t t t
(lal-Dl1-lzyl| 4 (m—rl}ll—lzlll b tollal+D)]1-lz ] ’)_r1{|a|+|zl|)

=
max|Dqp(2)| = [(1+|z0|}to(1+|zl|}t1 (+lzsDt1 (+1zoD 1tz )2

a+iz) 1 p(2)]

min p(2)],

lz]=

t
L (lal-1)[1-1zy]| "4
kP (Etto) b (g +|z, ) To (k 4]z, ) T2

|1-1zo] | (n—(t, +24))

where 4 = i)

Remark 11 Consider a polynomial of degree 1.
n—{(tm+--+to)

p(z) = (z —z,)'m(z =z )1 (2 — o)t | @y + Z a,z’
=i
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where zeros Zg, .-,

N. Arunrat & K. Maneeruk Nakprasit / Songklanakarin J. Sci. Technol. 41 (5), 1192-1203, 2019

Zy are outside D(0, k) and the remaining n — (t,, + *++ + tg) zerosare in D(0, k) where k < 1

A lower bound of |r~[1|a}f;|,D@cgsr(z)|, where @ € € with |a| = 1, can be obtained by applying Theorem 8 as in the
z|=1

proof of Corollary 10.

Let po(z) = (z — zp)bo (ag + E" (Em +t°]avz") p;(2) = (z —zj-)t‘rpj-_l(z), for 1=j=<m.

Theorem 8 yields a lower bound of max]|D ,p,(2)|. Combining this lower bound together with the facts that
1

lz]=

1
-1
max Ipo(2)| = (1+]z, Dt

max |p, (z)]
|z] =1

|z|

and

min|po(2)| =

5 e minle ()],

1
ket lz

we can obtain a lower bound of lmlax|Dap1 (z)] asin Corollary 10.
z|=1

Consequently, a lower bound of |m|ax|Dapj (z)| for 2 =< j < m can be obtained by a similar process by using a lower bound
z|=1

of |rﬂlaxu.}qu_1(z)| and the facts that
z|=1

::+I DR |§|11n|pj (@lforz <j <m.

4. Conclusions and Discussion

max|p} 1(z )|

e B o i) >

In this paper, we generalize bounds of lmlax |p'(z) | in the inequalities (1.2) and (1.3) to bounds of max | D, p(z) |
z|=1 1

lz]=

in the inequalities (3.1) and (2.3) and thereby we obtain refinements of these results. Since lim (D p(z)/a) = p'(z). our
a—00

results on the polar derivative of p(2) generalize results on the derivative of p(2) as Theorem 3 and Theorem 8 generalize

Theorem 2 and Theorem 1, respectively. Our lower bound of lmlax|Dap(z)| is more general than lower bounds in Dewan,
z|=1

Singh, & Mir (2009) and Govil and McTume (2004).
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