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Abstract 
 

In this study, activated carbon -based adsorbent was prepared from eggshells and coconut shells. The effects of contact 

time, initial H2S concentration, and the calcium impregnated coconut shell activated carbon (Ca-CSAC) adsorption dosage on the 

hydrogen sulphide (H2S) removal efficiency and adsorption capacity were investigated. The batch adsorption data obtained from 

the experimental runs were employed to fit an artificial neural network (ANN) model. An initial optimization was performed to 

obtain the most suitable number of hidden neurons for training and validation of the ANN. The optimization results show that 16 

hidden neurons was the most appropriate choice. The trained ANN was adequately validated and tested with coefficients of 

determination (R2) of 0.99 and 0.95, respectively. The ANN was found to be a robust tool for modeling of H2S removal 

efficiency by and adsorption capacity on Ca-CSAC under different process conditions. 
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1. Introduction 
 

The refining of crude oil to obtain different fractions 

of petroleum products is often accompanied with negative 

environmental impacts from the release of pollutants, such as

 
hydrogen sulphide (H2S) usually present in the discharged 

process wastewater (Elmawgoud, Elshiekh, Khalil, Alsabagh, 

& Tawfik, 2015). The presence of H2S in process water is a 

potential health risk and often results in significant economic 

losses arising from the fouling of the resin bed and the 

corrosion of process equipment (Strahand, 2010). In order to 

mitigate these economic losses and negative environmental 

impacts, prior studies have sought to develop state-of-the-art 

techniques for the removal of this toxic gas pollutant 

(Guerrero et al., 2016).  
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Physicochemical techniques such as air stripping 

(Al-Haddad, Azrag, & Mukhopadhyay, 2014), catalytic 

oxidation (Kastner, Das, Buquoi, & Melear, 2003), the use of 

ferric/alum water treatment residuals (Wang & Pei, 2012) and 

adsorption (Xiao, Wang, Wu, & Yuan, 2008) have been 

employed for the removal of this toxic pollutant from process 

waters. In comparison to other methods, adsorption as the 

separation process has gained wide acceptance as a technique 

for purifying wastewater on an industrial scale by using 

porous media such as activated carbon (Seredych & Bandosz, 

2011). The discovery of using porous media by McBain 

(1932) for the adsorption of vapours in large quantities can be 

dated to 1932. However, its industrial applications to waste-

water treatment span only a few decades due to some 

advances made.  The use of activated carbons to remove toxic 

H2S is gaining wide acceptance due to several benefits, such 

as large savings in energy costs, low operating costs, and 

comparatively small equipment size (Mailler et al., 2016). 

Besides, activated carbons possess excellent physicochemical 

properties, such as large surface area, microporosity, and good 

surface chemistry, which have made them the most sought 

after medium for removing toxic pollutants from refinery 

effluents (Dias et al. 2007; Ioannidou & Zabaniotou 2007). 

However, commercially available activated carbon is not cost 

effective, motivating the quest for low-cost sources of 

activated carbons from locally available materials (Ioannidou 

& Zabaniotou 2007). 

Several authors have investigated the use of 

activated carbon for the removal of toxic substances from 

water, by using coconut shell (Bagreev, Rahman, & Bandosz, 

2000), palm kernel shell (Guo et al., 2007), wood, and lignite 

(Adib, Bagreev, & Bandosz, 1999). All the aforementioned 

studies focused on the adsorption capacity and kinetic mo-

deling of the H2S removal from wastewater. To the best of the 

authors’ knowledge, there is no prior published study on 

predictive models for H2S removal from wastewater using 

calcium (Ca) modified coconut shell activated carbon. The 

main objective of this study was to investigate the effects of 

process parameters, such as adsorption contact time, initial 

H2S concentration and adsorbent dosage on the H2S removal 

efficiency and on the adsorption capacity of Ca-CSAC; as 

well as developing an artificial neural network model that can 

predict the H2S removal efficiency and the adsorption capacity 

of the Ca-modified coconut shell -based activated carbon.  

The application of ANN in predictive modelling of the 

adsorption process will facilitate dealing with the non-linear 

relationships between the input and the output variables. This 

will enhance setting the process variables for optimum 

performance. 

 

2. Materials and Methods 
 

2.1 Preparation of adsorbent 
 

The coconut shell waste residue (CNS) used in this 

study was collected from a commercial farm located close to 

the Universiti Malaysia Pahang (UMP), Gambang, Pahang, 

Malaysia.  The collected CNS was washed with distilled water 

to remove soil and other impurities. Thereafter, the CNS was 

dried in the sun and subsequently ground and sieved to 

particle sizes of 0.5-1 mm. In order to ensure that the ground 

CNS is free from moisture, it was further dried in an oven at 

110 oC for 24 h. After drying, the CNS precursor was mixed 

with KOH at optimum KOH/precursor ratio of 4:1 as stipu-

lated by Cazetta et al. (2011) and left in a mechanical shaker 

for proper mixing. After 24 h of mixing, the slurry was 

filtered and placed in a tubular horizontal reactor for treatment 

with N2. The reactor temperature was increased from room 

temperature to 750 oC in order to gradually heat the slurry for 

contact activation time of 120 min. The gas was thereafter 

switched to CO2 for an additional 2 h. The resulting activated 

carbon formed from the heat treatment was washed using 

boiled aqueous solution of HCl for 1 h in order to neutralize 

the KOH. This was followed by washing the activated carbon 

with distilled water until a neutral pH was attained. The final 

activated carbon products were dried at 110 °C for 24 h in 

order to remove any traces of moisture, and are here labeled as 

coconut shell activated carbon (CSAC)  

The eggshells used as a source of calcium were ob-

tained from poultry waste disposal Centre at Kajang-Malaysia. 

The eggshells were washed to remove dirt and other traces of 

impurities. After washing, the eggshells were dried, blended, 

and sieved using a sieve to a diameter range of 0.25-0.5mm. 

The powdery form of the eggshell was further dried at 105 oC 

for 8 h and thereafter soaked in acetic acid solution (25-75 

vol. %) for 48 h in order to extract the calcium. The Ca 

solution to be impregnated into the adsorbent was prepared by 

mixing 0.2 g of the powdered eggshell per ml of acetic acid. 

The mixing was performed under constant stirring (150 rpm) 

at 30 °C for 2 h. Subsequently, the slurry obtained was eva-

porated at 66 °C and thereafter dried at 100 °C for 15 h. 

Finally, the Ca-impregnated carbon was further heat-treated 

and then washed with deionized water at 50 °C until neutral 

pH of adsorbent was obtained. The final Ca-impregnated 

adsorbent was finally dried at 100 °C for 24 h. The pyrolyzed 

Ca-CSAC was stored in a sealed flask and kept in a desiccator 

prior to the adsorption study. 

 

2.2 Adsorbent characterization  
 

Scanning electron microscopy (SEM) (HITACHI S-

3400N system) was employed for investigating the textural 

morphologies of the Ca-CSAC. The textural properties of the 

activated carbon were measured by N2 adsorption-desorption 

isotherms at −196 using an ASAP 2010 apparatus (Micromeri-

tics Co., USA). Brunauer–Emmett–Teller (BET) and Barrett-

Joyner-Halenda (BJH) methods were used to estimate the 

specific surface area (SBET, m2 g−1) and total pore volume 

(Vt, cm3 g−1 at STP) of the adsorbent. The actual density (ρs) 

of the sample was measured using helium displacement 

method (AccuPyc 1330 pycnometer, Micromeritics Co., 

USA). The pH of the carbon surface was measured by the 

addition of 0.4 g of dry carbon powder to 20 mL of water, 

followed by stirring the suspension overnight for attaining 

equilibrium. Elemental composition of the activated carbon 

was analyzed using energy-dispersive X-ray spectroscopy 

(EDX).  

 

2.3 Formulation of H2S-contaminated wastewater  

      solution 
 

In this study, synthetic wastewater was prepared 

according to the procedure reported by Asaoka et al. (2009a). 

First, a known amount of Na2S·9H2O was dissolved in a 500 
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mL solution of 0.01 M KCl purged with N2. Second, the pH of 

the solution was adjusted to neutral using 0.2 M HCl (Asaoka, 

Yamamoto, Kondo, & Hayakawa, 2009a). H2S can exist in 

solution in three forms: H2S, bisulfide (HS−), and sulfide (S2−) 

(Silva, Ponte, Ponte, & Kaminari, 2011). 

 

2.4 ANN data acquisition via batch equilibrium  

      studies 
 

The dataset employed in ANN modeling was ob-

tained using batch mode experimental runs for the adsorption 

of H2S. To measure the adsorption capacity and the H2S 

removal efficiency, 0.1 g of the Ca-CSAC adsorbent was used 

in each run after degassing at 105 °C for 24 h in an oven. 

Batch adsorption experiments were conducted in a set of 250 

mL Erlenmeyer flasks containing 100 mL of H2S solution at 

various initial concentrations (100, 200, 300, 400, and 500 mg 

L-1). The flasks were agitated in a thermostatic orbital shaker 

at 150 rpm and 30 °C until the equilibrium was reached. The 

pH of the solution was controlled to neutral by using NaOH 

oHCl. The adsorption capacity of the pollutants was 

calculated by Equation (1). Subsequently, the initial and final 

concentrations were measured after the suspensions were 

filtered.  

 

                  (1) 

where V is volume (L), m is amount of adsorbent (g), Co and 

Ce are the initial and final concentrations of H2S, respectively, 

and (qe) is adsorption capacity (mg g−1). The experiment was 

performed in a fume hood as H2S is a very poisonous gas. 

Equation (2) was employed for calculating the H2S removal 

efficiency. 

 

          (2) 

 

2.5 Artificial neural network modeling 
 

The ANN was employed to fit a non-linear model 

consisting of input, hidden (with weight and bias) and output 

layers, using the neural networks toolbox in MATLAB 

software environment (Joo, Yoon, Kim, Lee, & Yoon, 2015). 

The input parameters of the ANN are the initial H2S con-

centration (100-500 mg/l), adsorption contact time (360-

720min) and adsorbent dosage (0.1-1 g), while the outputs are 

the adsorption capacity and the H2S removal efficiency, as 

shown in Figure 1. The hidden neurons between the input and 

output layers are scaled within the range from -1 to 1 by using 

hyperbolic tangent  activation functions, see Equation (3). The 

ways the neurons are linked to each other significantly 

influence the performance of ANN. In the present study, the 

input parameters subjected to summing mechanism of the next 

neuron, with a view to choosing the highest probability for the 

output (Agatonovic-Kustrin & Beresford, 2000). Each input 

exemplar (data record for one experiment) is assigned a 

weight, which is iteratively adjusted to minimize the training 

error.  The ANN model was of feed-forward type, which has 

been widely applied in industrial processes (Scott, Coveney, 

Kilner, Rossiny, & Alford, 2007). In addition, the feed-

forward configuration is easy to implement in a variety of 

chemical processes. The feedforward ANN was trained using 

the Levenberg-Marquardt optimization algorithm (Equation 

(4)). The training was performed by inputting a “training data 

set to the ANN network” (Scott et al., 2007). During the 

training, the ANN matches the input and output values by 

minimizing the difference between the predicted and the 

targeted values (Agatonovic-Kustrin & Beresford, 2000) by 

adjusting the network’s interconnection weights to reduce the 

prediction errors iteratively. The difference between the target 

and the model output was quantified using the MSE defined in 

Equation (5) (Zamaniyan, Joda, Behroozsarand, & Ebrahimi, 

2013). The ANN training and modeling were performed using 

the neural network toolbox in MATLAB computing envi-

ronment (The Mathworks, Inc. ver.2010 a) 

 

                 (3) 

 

where n is the number of neurons.  

 

                 (4) 

where  is the Jacobian matrix for the process,  is the 

Levenbrg’s damping factor,  is the weight update vector and 

E is the output vector.  

 

                 (5) 

 

where N, Xi and Yi are the number of data records in network 

training, the targeted output and the model output, res-

pectively. 

 
Input      Hidden layer          Output 

Ca-CSAC adsorption 

capacity (mg/g) 

 
 

Figure 1. ANN architecture for the modeling of H2S removal and adsorption capacity. 
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3. Results and Discussion 
 

3.1 Characterization of the Ca-modified coconut  

      shell adsorbent 
 

The SEM is a useful technique for assessing the 

morphology of an adsorbent such as activated carbon. Figures 

2 (a) and (b) respectively show the SEM images of the fresh 

coconut-based activated carbon impregnated with calcium 

(Ca-CSAC) (before the adsorption process) and a spent one. 

From Figure 2 (a), the activation with KOH helps in the 

formation of well-distributed pores in the activated carbon, 

which invariably facilitates the adsorption of sulfur com-

pounds. In comparison with the used Ca-CSAC, the SEM 

image in Figure 2 (b) shows the possibility of the blockages of 

the pores in Ca-CSAC due to the adsorption of sulfur com-

pounds. The adsorption of sulfur compounds can further be 

corroborated by the presence of a white-appearing particles on 

the surface of the adsorbent, seen in Figure 2 (b). 

EDX micrographs showing the elemental com-

positions of the fresh and the used Ca-CSAC are shown in 

Figure 2 a and b, respectively. It can be seen from the EDX 

micrograph that the fresh Ca-CSAC had mainly C, Ca, K, and 

O.  The presence of a metal such as calcium has been found to 

enhance the adsorption capacity of the adsorbent (Wang et al., 

2016). This elemental make-up of the Ca-CSAC is consistent 

with that reported by Cazetta et al. (2011). On the other hand, 

the used Ca-CNSAC has S in addition to C, Ca K and O 

which implies the removal of sulfur from the simulated waste-

water. The compositional analyses of fresh and used Ca-

CSAC are presented in Table 1. The EDX also shows a slight 

decrease in the amounts of C, Ca, K and O, possibly due to the 

partial blockage of the pores by the adsorbed sulfur com-

pound.  

 
Table 1. Elemental compositions of the fresh and the used coconut 

shell -based adsorbent obtained from EDX analysis. 

 

Element 
Component of fresh 

adsorbent (Weight %) 
Components of spent 
adsorbent (Weight %) 

   

Carbon (C) 88.639 83.16 

Oxygen (O) 9.156 13.02 

Potassium (K) 0.916 0.029 

Calcium (Ca) 1.289 0.543 

Sulfur (S) 0.000 3.241 
   

 

The BET specific surface of the fresh Ca-CSAC 

adsorbent was estimated as 582 m2/g with a corresponding 

pore volume and average pore diameter of 0.33 cm3/g and 

3.547 nm, respectively. These values are typical of a meso-

porous material as indicated by Gupta et al. (2011). The BET 

surface area of 582 m2/g obtained for the fresh Ca-CNSAC is 

smaller than the 783 m2/g reported by Cazetta et al. (2011) for 

NaOH-modified coconut shell-based activated carbon. The 

difference in the BET surface areas of the two coconut shell -

based adsorbents could be from effects of modification with 

Ca and NaOH. Nevertheless, the large surface area obtained 

for the fresh Ca-CNSAC is beneficial for the removal of 

sulphur compounds from wastewater.  

 

(a)  (b)  
 

(c)  (d)  

 

Figure.2. (a) SEM image of the fresh Ca-CSAC adsorbent, (b) SEM image of the used Ca-CSAC, (c) EDX micrograph of the fresh Ca-CSAC 

adsorbent, and (d) EDX micrograph of the used Ca-CSAC adsorbent 
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The XRD pattern showing the crystallinity of the 

Ca-CNSAC adsorbent is seen in Figure 3. Interestingly, 

various diffraction peaks signifying components of the as-

prepared Ca-CNSAC can be identified. The diffraction peaks 

at 2  = 29.84 o, 36.97 o, 39.89 o, 47.59 o, 57.79 o, 61.11 o, 61.77 

o, 65.98 o, 69.62 o, 70.52 o, 73.26 o, 76.65 o and 77.5 o can be 

attributed to cubic CS2, as evidence of the adsorption of 

sulfide onto the surface of the Ca-CSAC adsorbent. In 

addition, the diffraction peaks at 2  = 23.53 o, 26.93o, 31.87o, 

36.44o, and 77.55o could be due to cubic Ca, which confirms 

the presence of Ca in the adsorbent. The unused active sites of 

the coconut -based activated carbon are confirmed by the 

diffraction peak at 2  = 43.63 o.  

 

3.2 Effects of process parameters on the adsorption  

      capacity of and removal efficiency by Ca-CSAC 
 

Prior to the neural network modeling, the effects of 

initial H2S concentration, adsorption contact time and adsor-

bent dosage on the adsorption capacity and removal efficiency 

of the Ca-CSAC were investigated. Figure 4 shows 3-D plots 

of the effects of the various parameters on the adsorption 

capacity and H2S removal efficiency of the Ca-CSAC 

adsorbent. From Figures 4 (a) and (b), it can be seen that the 

initial H2S concentration, the adsorption contact time and the 

adsorbent dosage have varying effects on the adsorption ca-  

 
 

Figure 3. XRD pattern of the Ca-CSAC adsorbent 

 
pacity of the Ca-CSAC adsorbent. In Figure 4 (a), increasing 

adsorption contact time from 100 to 500 min resulted in a 

corresponding increase in the absorption capacity from 60 to 

320 mg/g. A similar trend is also observed when increasing 

the initial ion concentration. However, varying the adsorbent 

dosage does not significantly impact the adsorption capacity. 

In Figures 4 (c) and (d), the H2S removal efficiency was found 

to increase with adsorption contact time, initial H2S concen-

tration, and adsorbent dosage. The interactions between ad-
 

(a)  

 

(b)  
 

(c)  (d)  

 
Figure 4. The effects of (a) contact time and initial H2S conc. on the adsorption capacity, (b) adsorption dosage and initial H2S conc. on the 

adsorption capacity, (c) contact time and initial H2S conc. on the removal efficiency, and (d) adsorption dosage and initial H2S conc. 

on the H2S removal efficiency 
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sorption contact time, initial H2S concentration, and adsorbent 

dosage gave the maximum H2S removal efficiency of 95%. It 

can be seen that the various parameters have synergistic 

effects on the adsorption capacity and the H2S removal 

efficiency rather than mutually independent effects. 

 

3.3 Artificial neural network modeling 
 

Prior to the neural network modeling, the hidden 

layer of the neural network was optimized in order to obtain 

the least mean standard error (MSE). Based on the opti-

mization (Figure 5), it was noted that too few hidden neurons 

gave a large MSE. However, when the higher hidden layer 

was chosen appropriately, lower values of MSE were ob-

tained. Hence, 14 hidden neurons were selected for the neural 

network modeling, which is consistent with that reported by 

Khataee, & Khani (2009).  

 

Number of Neuron

2 4 6 8 10 12 14 16 18 20

M
S

E

0.0

0.1

0.2

0.3

0.4

 
Figure 5. Optimization of the hidden layer size, based on MSE 

 

Subsequently, the data from batch runs were 

employed to train and validate the neural network using 16 

hidden neurons. The training of the neural network was done 

using 70% of the data as prescribed by Ayodele et al. (2016)  

and  Hossain et al. (2016), while 30% was used for validation. 

The plots showing the ANN outputs obtained from training 

and validation are seen in Figure 6. The ANN model very 

accurately reproduced adsorption capacity and H2S removal 

efficiency. A perfect coefficient of determination (R2) was 

obtained from the training process. Similarly, the ANN was 

adequately validated and tested with R2 values of 0.99 and 

0.95, respectively.  

The tested and validated ANN model was sub-

sequently employed to predict the adsorption capacity and the 

H2S removal efficiency of the Ca-CSAC. The parity plots 

comparing ANN predicted values of H2S removal efficiency 

and adsorption capacity to actual values, from training and 

validation, are shown in Figure 7. Statistical parameters such 

as R2, adjusted R2 and standard error of estimate were 

employed to test the validity of the ANN predictions. The 

ANN predicted values of H2S removal efficiency are in close 

agreement with the experimental values for both training and 

validation data, as seen from the statistical parameters 

summarized in Table 2. The R2 value of 1 obtained for the 

ANN model in both training and validation implies that the 

H2S removal efficiency was well fit by this type of model. In 

other words, the ANN predicted values are statistically 

reliable. The adjusted R2 value of 1 signifies that 100% of the 

data can be explained by the linear model. In both training and 

validation, the standard error estimate was very low, an 

indication that the ANN predictive model is reliable with 

minimal estimation errors. The significance of the ANN 

predictive model is validated by the p-values below 0.0001 for 

both training and validation. This further reiterates the 

robustness of the ANN model to adequately predict the H2S 

removal from wastewater. 

 
 

Figure 6. Training and validation of the neural network
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Figure 7. Parity plots showing comparisons between the ANN 

predicted and the experimental values of H2S removal 

efficiency: (a) training, and (b) validation 

 
Table 2. Statistical parameters to assess validity of model fit to H2S 

removal efficiency  

 

Statistical parameter Training Validation 

   

R2 1 1 

Adj R2 1 1 
Standard error of estimate 4.32X10-14 6.28X10-15 

p-test <0.0001 <0.0001 
   

 

Adsorption capacity was also fit with an ANN 

model subjected to testing and validation. The parity plots 

comparing ANN predicted values of the Ca-CNSAC adsorp-

tion to actual values, for training and validation, are shown in 

Figure 8. In order to assess the robustness of the predicted 

ANN values, the statistical parameters R2, adjusted R2 and 

standard error of estimate were employed, as shown in Table 

3. Interestingly, the ANN predicted values of adsorption capa-

city matched experimental values similarly in both training 

and validation, as seen in the statistical parameters summa-

rized in Table 2. The R2 values of 1 obtained for the ANN 

both in training and validation indicate very good model fit by 

ANN to the experimental adsorption capacity. This is an 

indication that the ANN predicted values are statistically 

reliable. The adjusted R2 value 1 signifies that 100% of the 

data can be explained by the model. In both training and 

validation, the standard error of estimate was very low, an 

indication that the ANN predictive model is reliable with 

minimal errors. The significance of the ANN predictive model 

is validated by p-values below 0.0001 in both training and

      

 
 
Figure 8. Parity plots showing comparisons between the ANN 

predicted and experimental values of the adsorption 

capacity: (a) training, and (b) validation 

 
Table 3. Statistical parameter to assess validity of model fit to 

predicted adsorption capacity  

 

Statistical parameter Training Validation 

   

R2 1 1 

Adj R2 1 1 
Standard error of estimate 2.44X10-14 2.45X10-15 

p-test <0.0001 <0.0001 
   

 

validation, which further buttress the adequacy of the ANN 

model to adequately predict the adsorption capacity of the Ca-

CSAC. The accuracy of the ANN model fit for H2S removal 

from waste is consistent with the work of Aghav et al. (2011), 

who utilized an ANN for the predictive modelling of 

competitive adsorption of phenol and resorcinol by wood and 

rice husk -based activated carbon. The study showed that the 

ANN perfectly fit the removal efficiency of Phenol and 

Resorcinol with R2 values of 0.965 and 0.968, respectively. 

This predictive performance of the ANN used in this study has 

demonstrated the capability of ANN models to represent non-

linear complex relationships between the input variables and 

the target variables. In the eventuality of scale-up of the 

refinery wastewater treatment process using the Ca-CSAC 

adsorbent, there may exist a non-linear complex relationship 

between the input and the output variables which needs to be 

learned from data in order to improve the performance of the 

process and also to enable predictive control and process 

optimization. 
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4. Conclusions 
 

This study confirms the suitability of Ca-coated 

CSAC as a suitable adsorbent for the removal of H2S from 

wastewater. Process parameters such as adsorption contact 

time, initial H2S concentration and the Ca-CSAC dosage were 

found to significantly affect the H2S removal efficiency and 

the adsorption capacity of Ca-CSAC. The interactions bet-

ween adsorption contact time, initial H2S concentration and 

Ca-CSAC dosage enabled highest H2S removal efficiency of 

95%.  The modeling results showed that ANN is a reliable 

tool for the prediction of H2S removal efficiency and adsorp-

tion capacity over a range of process conditions. Both training 

and validation of the predictive models show perfect corre-

lations of model predicted values and actual experimental 

responses (H2S removal efficiency and adsorption capacity). 

The reliability of the ANN as a predictive modeling tool was 

further assessed through the statistical parameters R2, adjusted 

R2, standard error of estimate, and p-values. The values of 1 

obtained for both R2 and adjusted R2 confirm that both the 

predicted ANN values and the experimental values were 

perfectly correlated. The p-values < 0.0001 and low standard 

error of estimate obtained for the ANN model show that the 

ANN has a high degree of reliability for predicting the H2S 

removal efficiency and the adsorption capacity. Therefore, 

with the aid of the predictive ANN model, it will be possible 

to anticipate and put necessary measures in place that can 

facilitate the removal of H2S from wastewater. 
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