

*Corresponding author

 Email address: c.t.noviandi@mail.ugm.ac.id

*Corresponding author

 Email address: panyayot@coe.psu.ac.th

Songklanakarin J. Sci. Technol.

43 (4), 1230-1236, Jul. - Aug. 2021

Original Article

High performance 2D convolution utilizing the AVX512

on a multi-core architecture

Isamail Masamae and Panyayot Chaikan*

Department of Computer Engineering, Faculty of Engineering,

Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand

Received: 20 February 2020; Revised: 19 August 2020; Accepted: 25 September 2020

Abstract

Convolution is a time consuming operation, especially for signal and image processing, which led us to develop an

efficient implementation of 2D convolution for a multi-core architecture utilizing AVX512 intrinsics and OpenMP. For single

precision convolution, our algorithm is on average 2.30, 3.88, 5.75, and 19.95 times faster than the IPP, OpenCV, Baziotis's

algorithm, and MKL libraries. For double precision convolution, our algorithm is on average 3.12, 5.10, and 16.95 times faster

than the OpenCV, Baziotis's algorithm, and MKL libraries. We have also developed a hybrid 2D convolution algorithm, written

in C and assembly, to further augment the processing speeds for small kernel sizes.

Keywords: AVX512, Advanced Vector Extension, 2D convolution, OpenMP, x64 assembly language

1. Introduction

The Advanced Vector Extension (AVX) has become

a ubiquitous part of the 80x86 architecture. It consists of

sixteen 256-bit registers that allow 8 single precision or 4

double precision floating point pieces of data to be processed

simultaneously. Its successor, the AVX512, doubles the size

of each register from 256 to 512 bits, allowing 16 single

precision or 8 double precision floating point data items to be

processed at the same time. Several researchers have looked at

using the AVX512 to augment processing speeds. For

example, Kodama and Ishiyama (2019) accelerated the

calculation of quadrupole terms in the Barnes-Hut tree code,

Rucci et al. (2019) enhanced the computational speed of the

Smith-Waterman (SW) algorithm, and Watanabe and

Nakagawa (2019) employed AVX2 and AVX512 to calculate

the Lennard-Jones force potential.

Two dimensional (2D) convolution is a

computationally intensive image processing operation

required in many filtering applications. Although modern

processors are equipped with powerful SIMD instructions, the

traditional 2D convolution algorithm and the automatic

vectorization capabilities of compilers cannot fully exploit the

computing capacity of the SIMD execution engines in multi-

core architectures. In this paper, we employ AVX512

intrinsics to augment the convolution speed.

This paper is organized as follows: section 2

introduces background and related work, section 3 describes

our algorithm and a hybrid 2D convolution implementation

written in C and assembly, section 4 presents experimental

results, and section 5 concludes the paper.

2. Background and Related Work

The 2D convolution of a template T of size

Tx_sz×Ty_sz with a kernel K of size M×N is given by the

expression:

(,) (,) (,)
a b

m a n b

OP x y K m n T x m y n
   

     (1)

where OP is the output of the convolution, and a = (M-1) / 2

and b = (N-1) / 2.

In timing critical applications, special hardware

accelerators using FPGAs have been proposed as a way of

I. Masamae & P. Chaikan / Songklanakarin J. Sci. Technol. 43 (4), 1230-1236, 2021 1231

optimizing convolution. For non-timing critical applications,

software optimization is often preferred. For example, Bipin

and Nair (2016) optimized convolution using a sparse matrix

vector multiplication technique, while Baziotis (2018)

accelerated convolution by means of a collaboration between

AVX2 and MPI.

Jin and Finkel (2019) compared the performance of

2D convolution on three platforms: the CPU, the GPU, and

the FPGA. They reported that the FPGA outperformed both

the CPU and GPU for larger kernel sizes, but that the GPU

was faster when the kernel size was smaller. Also, the FPGA

proved to be unsuitable for double precision convolution in

terms of performance and resource utilization. Although the

GPU delivered good performance, it consumed more power

than the other approaches.

Amiri and Shahbahrami (2017) showed that manual

vectorization using the compiler's intrinsics outperformed

automatic vectorization by both the GCC and LLVM

compilers. They also proposed a way to utilize AVX2

instructions to increase convolution speed, but their method

did not employ a multicore architecture, and fine tuning and

optimization methods were not investigated.

Many APIs support SIMD instructions, for example,

the OpenCV library has supported AVX512 since version

3.4.1 (Alekhin, 2020) while the convolution function of Intel's

MKL library utilizes AVX512 instructions if the CPU

supports them (Intel, 2019a), as does the IPP library (Intel,

2019b).

In this paper, we focus on the utilization of AVX512

to augment convolution speed, using two programming

models on a multi-core architecture: (1) compiler intrinsics

and (2) calling AVX512 instructions directly via assembly

language. Optimization and fine-tuning methods are proposed

to maximize the utilization of the FMA engines in each

processing core, which allows the developers to adapt our

algorithm to process different sizes of data on different

numbers of cores.

3. Our Proposed AVX512 Convolution Algorithms

Let T, K, and OP be the template, the kernel, and the

output of the convolution of size Tx_sz×Ty_sz, Kx_sz×Ky_sz, and

OPx_sz×OPy_sz respectively. The convolution operation,

defined as OP = T *K, is obtained by performing three steps:

Step 1: SIMDsz is the number of data elements that

the AVX512 instructions can process at a time, which is 16

and 8 for single and double precision data types. Zero padding

is applied to the template initially, producing TZ of size

TZx_sz×TZy_sz, which has two main benefits. Firstly, it lets the

convolution kernel be applied to the edges of a template more

easily with more general code. Also, the AVX512 instruction

reads 64 bytes of memory at a time, which means that Tx_sz

should be divisible by SIMDsz. If it isn't then the remaining

template data on each row must be manipulated using a

normal SISD load instruction, which reduces the performance.

The TZx_sz value is determined by:

_ _ _ _

_

_ _ _ _

2(/ 2), if ((2(/ 2)) %) 0

2(/ 2) (2(/ 2)) % , otherwise,

x sz x sz x sz x sz sz

x sz

x sz x sz sz x sz x sz sz

T K T K SIMD

TZ

T K SIMD T K SIMD

  


 
    

 (2)

where / and % are integer division and modulo. The TZy_sz

value is determined using:

_ _ _2(/ 2).y sz y sz y szTZ T K  (3)

Once memory of size TZx_sz×TZy_sz×sizeof(data type) has been

allocated, the T data is copied into TZ using the following

condition:

_ _ _ _ _

_ _ _

[/ 2][/ 2], if (/ 2 / 2) and

 (/ 2 / 2),
[][]

0, otherwise.

y sz x sz y sz y sz y sz

x sz x sz x sz

T y K x K K y TZ K

K x TZ K
TZ y x

    


  
 




 (4)

Step 2: Memory of size Kx_sz×Ky_sz×sizeof(data type)

is allocated, producing a space for a flipped kernel, named

KF. All of the original kernel, K, is copied into KF using the

following condition:

 _ _[] [* 1].x sz y szKF i K K K i   (5)

Step 3: The convolution algorithm shown in

Figure 1, or the alternative in Figure 4, is applied to the data in

TZ and KF, producing the convolution result, OP.

Figure 1. The basic convolution algorithm utilizing AVX512

intrinsics

3.1 Basic convolution

Figure 1 shows our basic convolution algorithm

using AVX512 intrinsics on double precision data. In this

case, SIMDSZ is set to be 8 because the AVX512 can process 8

double precision data elements at a time. In each iteration of

the x variable loop, all eight elements in out_vect are

initialized to zero. In the innermost loop, eight elements from

TZ are loaded into x_vect at a time, before being multiplied

with the broadcasted kernel data, and the product is added to

out_vect. These operations can be implemented using a single

multiply-accumulate operation called _mm512_fmadd_pd.

After all the elements in the kernel have been processed at the

end of the innermost loop, out_vect is stored in the OP array.

The “#pragma omp” directive enables the compiled

program to create multiple concurrent threads that are

assigned to different processing cores. This lets the data be

split between processing cores to encourage data parallelism,

1232 I. Masamae & P. Chaikan / Songklanakarin J. Sci. Technol. 43 (4), 1230-1236, 2021

as shown in Figure 2. The ID of each thread is obtained by

means of the omp_get_thread_num function, and are used to

split the template data among the processing threads. For

example, if Ty_sz = 20 and NUM_THREADS = 4, then the

threads number 0, 1, 2, and 3 will process the data at y = {0, 4,

8, 12, 16}, {1, 5, 9, 13, 17}, {2, 6, 10, 14, 18}, and {3, 7, 11,

15, 19} respectively, as shown in Type I of Figure 2. This

decomposition allows data to be shared between the

processing cores at a higher level than the block-wise

decomposition employed by Type II in Figure 2.

The Figure 1 code only supports double precision

data. For it to handle single precision data, all the __m512d

variables must be changed to be of type __m512, and all the

AVX512 operations of the form _mm512_<op>_pd must be

changed to _mm_512_<op>_ps. Also, the SIMDSZ value must

be changed from 8 to 16 to reflect the number of elements that

the AVX512 can process simultaneously.

3.2 Unrolled convolution

Although the algorithm in Figure 1 speeds up the

calculation by allowing 8 data elements to be processed

simultaneously by each AVX512 instruction, the calculation

still relies on storing the result of each multiply-accumulate

operation in one out_vect variable. This data dependency

between each loop iteration leads to inefficient usage of the

FMA engines in each processing core. To overcome this

problem, we utilize an unrolling technique to minimize the

data dependencies between the loop iterations, although two

important questions are raised. The first is how to unroll the

AVX intrinsic code efficiently to maximize the utilization of

the FMA engines. The second is how to define a general

unrolling method to support any unrolling size factor for the

various sizes of template and kernel.

 Let UF be an unrolling factor which specifies the

number of independent FMA intrinsic functions to be

explicitly called in the C code. In order to perform a

convolution between the kernel and all the data in each row of

the template, multiple iterations are required to calculate the

data of size UF×SIMDSZ. The general form of our unrolling

method is shown in Figure 3. In each template row, the shaded

part is the data that can be processed in the innermost loop,

and the unshaded part is the remainder, of size R×SIMDSZ, for

which the AVX intrinsic function need to be called again to

perform the calculation at the end of the loop.

Figure 4 shows the unrolled version of our AVX

algorithm. The UF value in this code is actually the number of

independent FMA calculations allowed to take place in each

iteration of the x-loop. The out_vect numbers must match this

factor, as does x_vect. At each iteration of the x-loop, x is

increased by UF×SIMDSZ, while the upper bound, xub, is:

  _ _ % .ub x sz x sz SZx T T UF SIMD   (6)

At the end of the x-loop, if the values of Tx_sz and xub

are not equal, then there must be some remaining elements of

TZ that have not been processed. R numbers of out_vect are

cleared again, and the remaining elements of TZ are multiplied

with the broadcasted kernel before being accumulated in the

out_vect variables. The FMA intrinsic function is called R

times to complete the multiply-accumulate operation for the

Figure 2. Two examples of data decomposition among four
processing threads

Figure 3. The general form of our AVX512 convolution utilizing

unrolling

Figure 4. The general form of our algorithm using unrolling

I. Masamae & P. Chaikan / Songklanakarin J. Sci. Technol. 43 (4), 1230-1236, 2021 1233

remaining data loaded from TZ, kept in x_vect, and the kernel.

The value of R is defined by:

  _ % / .x sz SZ SZR T UF SIMD SIMD  (7)

Figure 5 shows the dataflow of our AVX512

convolution algorithm utilizing unrolling. In each i-loop, UF

independently fused multiply-add operations are fed to the

FMA pipelines of each CPU core.

Figure 5. Dataflow graph of our AVX512 convolution with

unrolling

3.3 Hybrid 2D convolution using assembly

 language

The 2D convolution algorithms proposed in section

3.1 and 3.2 are written in C, with the utilization of AVX512

intrinsic functions carried out by the C compiler. Calling

intrinsic functions in C gives better performance than

automatic vectorization, as confirmed by Amiri and

Shahbahrami (2017). However, there are two other ways to

augment the performance of the AVX512 intrinsics C code:

(1) employing inline assembly language, or (2)

reimplementing the entire algorithm in assembly. Since some

compilers do not support inline assembly for 64-bit

applications, we chose to rewrite the algorithm.

 Writing a convolution algorithm in assembly using

the AVX512 machine instructions for a multi-core

architecture is both cumbersome and error prone. We decided

on a compromise method which offered the performance of

assembly, but supported the multi-core architecture using

OpenMP.

 Figure 6 shows C code for calling a function named

ASM_AVX512_CONV inside an OpenMP directive. This

function is implemented using assembly, but most C

compilers allow an .asm file to be added to a project as an

"extern" statement, such as:

extern "C" { void ASM_AVX512_CONV(type

argument1, type argument2,); }.

The "pragma omp" statement in Figure 6 creates

NUM_THREADS parallel threads, which will each call the

ASM_AVX512_CONV function. Each thread will determine

which segment of data to process based on the thread ID that

it receives as an argument, as shown in Figure 2.

For ASM_AVX512_CONV, the values for the

algorithm's TZ, KF, OP, and the thread ID are passed via the

registers RCX, RDX, R8, and R9, while the other parameters

are passed using the stack. The length of the assembly source

(over 250 lines) means that only key parts are shown in Figure

7.

Figure 6. Calling an assembly language function inside an OpenMP
directive

Figure 7. Part of the ASM_AVX512_CONV function

4. Experimental Results

The performance of our algorithm was tested with C

code written using Microsoft Visual Studio C++ 2017. The

test machine was a 3.3GHz Core i9-7900X with

hyperthreading turned on. The test template was fixed at

10240×10240, with a convolution kernel of K×K, with twelve

different K values, starting from 3, incremented by 2, until

equal to 25. To find the best unrolling factor, we evaluated our

algorithm across 99 UF values, ranging from 2 to 100. The

performance results are shown in Figures 8 and 9.

Figure 8(a) shows the performance of our algorithm

when the kernel size was between 3×3 and 9×9. As the

unrolling factor increased, performance improved, but stopped

when the factor exceeded 35. As a consequence, we fixed the

factor at 35 for kernel sizes between 3×3 and 9×9, and only

the performance of unrolling factors between 2 and 64 are

shown in Figure 8(a).

1234 I. Masamae & P. Chaikan / Songklanakarin J. Sci. Technol. 43 (4), 1230-1236, 2021

Figure 8. Performance of our single precision algorithm for various

unrolling factors, tested with (a) kernel sizes smaller than
11×11, and (b) kernel sizes between 11×11 and 25×25

For kernel sizes between 11×11 and 25×25, the

relationship between performance and the unrolling factor

trended in the same direction, but the best performance point

changed, as shown in Figure 8(b). For kernel sizes between

11×11 and 21×21, the best performance was reached when the

factor was 62, and there was no significant improvement with

larger values. An unrolling factor of 93 gave the optimum

performance for kernel sizes of 23×23 and 25×25.

Figure 9 illustrates the performance of our double

precision algorithm. The optimum unrolling factors for

different kernel sizes are shown in Table 1.

The performance of our algorithm was compared

with three well known libraries: Intel's MKL (version 2019,

update 5), Intel's IPP (version 2019, update 5), and OpenCV

(version 4.2.0). In addition, we also compared the

performance with the algorithm developed by Baziotis (2018).

The performance was evaluated on a template of size

10240×10240. As before, these algorithms and libraries were

tested using 12 different kernel sizes, and the performance

results are shown in Figures 10 to 13.

Figure 10(a) shows that our algorithm is faster than

the MKL library for all kernel sizes. OpenCV is also slower

than our algorithm, but by a smaller amount even though it

also utilizes AVX512 instructions. Baziotis's algorithm is

slower than OpenCV for almost every configurations because

it only supports AVX2, which is theoretically slower than

AVX512.

Our algorithm outperforms IPP for kernel sizes of

5×5 or larger, but an IPP kernel size of 3×3 is 5 percent faster

than our algorithm. Figure 10(b) shows the speed-up ratios of

our algorithm compared to MKL, IPP, and OpenCV when

performing single precision convolution. Our algorithm is on

average 2.30, 3.88, 5.75, and 19.95 times faster than IPP,

OpenCV, Baziotis's algorithm, and MKL respectively.

Figure 9. Performance of our double precision algorithm for various

unrolling factors, tested with kernel sizes between 3×3 and
25×25

Table 1. The optimum unrolling factors for our convolution

algorithm

Convolution type Kernel dimension
Optimum unrolling

factor (UF)

Single precision 3, 5, 7, 9 35
11, 13, 15, 17, 19, 21 62

23, 25 93

Double precision 3, 5, 7, 9 16
11, 13, 15 40

17, 19, 21, 23, 25 81

Figure 10. Performance comparisons of a single precision
convolution with our algorithm versus Baziotis's

algorithm, MKL, IPP, and the OpenCV libraries: (a)

execution time, and (b) speed-up

Figure 11(a) shows the performance of our double

precision convolution using our algorithm compared to MKL,

I. Masamae & P. Chaikan / Songklanakarin J. Sci. Technol. 43 (4), 1230-1236, 2021 1235

Figure 11. Performance comparisons of a double precision

convolution with our algorithm versus MKL, Baziotis's
algorithm, and the OpenCV libraries: (a) execution time,

and (b) speed-up

Baziotis's algorithm, and OpenCV. IPP was not included

because its convolution function does not support double

precision data. Our algorithm outperforms MKL in every

configuration. When no unrolling was applied, our algorithm

was faster than OpenCV for kernel sizes of 15×15 or larger,

but slower for all smaller sizes. However, after unrolling was

applied with the optimum factor shown in Table 1, our

algorithm outperformed OpenCV, Baziotis's algorithm, and

MKL in all configurations. On average, our algorithm with

unrolling was 3.12, 5.10, and 16.95 times faster than OpenCV,

Baziotis's algorithm, and MKL respectively.

For single precision convolution, our algorithm was

superior to both OpenCV and IPP with a kernel size of 5×5 or

larger. However, for a kernel of size 3×3, our algorithm was

still faster than OpenCV, but 5 percent slower than IPP. Since

a kernel of size 3×3 is frequently used in image processing

applications, we looked at ways to improve the performance

of our algorithm at this size. We investigated two approaches:

loop tiling and data decomposition. Although loop tiling has

proved effective for some problems, such as matrix-vector

multiplication (Hassan, Mahmoud, Hemeida & Saber, 2018),

it made our algorithm slower. Similarly, different forms of

data decomposition among the processing threads only

degraded performance.

Since the Microsoft Visual Studio 2017 does not

support inline assembly for 64-bit applications, a complete

rewrite in assembly was carried out.

Figure 12 shows the modified single precision

convolution optimized for a kernel size of 3×3. To reduce

reading overheads, the kernel elements are read only once and

then broadcasted to 9 variables of type __m512 before

entering the main loop. This code was initially written in C,

and ran a little faster than the previous code, but still slower

than the IPP. When it was reimplemented in assembly, its

performance exceeded the IPP. We fixed the kernel size at

3×3, with a template of T×T, with ten different T values,

Figure 12. The AVX512 convolution optimized for a kernel size of
3×3

starting from 1024, incremented by 1024, until it was equal to

10240, and the performance is shown in Figure 13. Our

assembly language convolution, optimized for kernel size of

3×3, is 1.04, 1.84, 2.28, and 24.46 times faster than IPP,

OpenCV, Baziotis' algorithm, and MKL respectively.

Since our double precision convolution, which was

written in C, already outperformed all the other algorithms, it

was unnecessary to reimplement it in assembly. When tested

with a kernel size of 3×3, with ten different template sizes, the

performance results are illustrated in Figure 14. Our algorithm

is 1.80, 2.10, and 18.08 times faster than Baziotis's algorithm,

OpenCV, and MKL respectively.

5. Conclusions

Our 2D convolution algorithm achieves high

performance, not only from the utilization of AVX512

Figure 13. Performance comparison of our single precision

convolution algorithms — optimized for a kernel size of

3×3 — versus MKL, Baziotis's algorithm, OpenCV, and

IPP

1236 I. Masamae & P. Chaikan / Songklanakarin J. Sci. Technol. 43 (4), 1230-1236, 2021

Figure 14. Performance comparison of our double precision
convolution algorithms — optimized for a kernel size of

3×3 — versus MKL, Baziotis's algorithm, OpenCV, and

IPP

instructions, but also from an awareness of data

decomposition between the processing cores, combined with

an unrolling mechanism that aims to maximize the utilization

of the FMA engines in each core. This means that our

algorithm is faster than convolution carried out by the

OpenCV, the IPP, and the MKL libraries even though they

also utilize AVX512 instructions. The main reasons that our

single precision convolution with a kernel size of 5×5 or

larger, and our double precision convolution algorithms,

outperform these libraries is due to a high unrolling factor,

combined with an optimum unrolling selected for each kernel

size. These features enable our algorithm to achieve higher

parallelism than these libraries, even though it is implemented

in C. For single precision convolution, our algorithm is on

average 2.30, 3.88, 5.75, and 19.95 times faster than the IPP,

OpenCV, Baziotis's algorithm, and MKL libraries. For double

precision convolution, our algorithm is on average 3.12, 5.10,

and 16.95 times faster than the OpenCV, Baziotis's algorithm,

and MKL libraries.

C with a high unrolling factor causes the compiler to

use register spilling which requires data swapping between the

AVX512 registers and memory. However, this situation does

not occur in assembly code, so our assembly convolution is

faster than the C version mainly because it reduces memory

bottlenecks. The 3×3 kernel convolution in our assembly

convolution is 1.04 times faster than IPP.

Acknowledgements

The authors are grateful to Dr. Andrew Davison for

his kind help in polishing the language of this paper.

References

Alekhin, A. (2020). OpenCV change logs. Retrieved from

https://github.com/opencv/opencv/ wiki/ChangeLog

Amiri, H., & Shahbahrami, A. (2017). High performance

implementation of 2D convolution using intel's

advanced vector extensions. International

Symposium on Artificial Intelligence and Signal

Processing (AISP2017), 25-30. doi:10.1109/AISP.

2017.8324097

Baziotis, S. (2018). 2D image convolution using MPI and

AVX instructions. Retrieved from https://github.

com/baziotis/2D-Image-Convolution-MPI-SIMD

Bipin, B., & Nair, J. J. (2016). Image convolution

optimization using sparse matrix vector

multiplication technique, International Conference

on Advances in Computing, Communications and

Informatics (ICACCI2016), 1453-1457. doi:10.

1109/ICACCI.2016.7732252

Hassan, S. A., Mahmoud, M. M., Hemeida, A. M. & Saber,

M. A. (2018). Effective Implementation of Matrix-

Vector Multiplication on Intel's AVX Multicore

Processor. Computer Languages Systems and

Structures, 51, 158-175. doi: 10.1016/j.cl.2017.06.

003

Intel Corporation. (2019a). Intel® Math Kernel Library

Developer Reference, MKL 2019 Revision: 024.

Retrieved from https://software.intel.com/sites/

default/files/mkl-2019-developer-reference-c.pdf

Intel Corporation. (2019b). Intel® Integrated Performance

Primitives 2019, Retrieved from https://software.

intel.com/sites/default/files/ipp-devguide.pdf

Jin, Z., & Finkel, H. (2019). Exploration of OpenCL 2D

convolution Kernels on Intel FPGA, CPU, and GPU

Platforms, IEEE International Conference on Big

Data (IEEE Big Data 2019). doi:10.1109/BigData

47090.2019.9006494

Kodama, T., & Ishiyama, T. (2019). Acceleration of the tree

method with a SIMD instruction set, Publications of

the Astronomical Society of Japan, 71(2), Article

No. 35. doi:10.1093/pasj/psy151

Rucci, E., Sanchez, C.G., Juan, G.B., De Giusti, A., Naiouf,

M., & Prieto-Matias, M. (2019). SWIMM 2.0:

Enhanced smith-waterman on intel's multicore and

manycore architectures based on AVX-512 vector

extensions. International Journal of Parallel

Programming, 47(2), 296-316. doi:10.1007/s10766-

018-0585-7

Watanabe, H., & Nakagawa, K. M. (2019). SIMD

vectorization for the Lennard-Jones potential with

AVX2 and AVX-512 instructions. Computer

Physics Communications, 237, 1-7. doi:10.1016/

j.cpc.2018.10.028

