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Abstract 
 

Convolution is a time consuming operation, especially for signal and image processing, which led us to develop an 

efficient implementation of 2D convolution for a multi-core architecture utilizing AVX512 intrinsics and OpenMP. For single 

precision convolution, our algorithm is on average 2.30, 3.88, 5.75, and 19.95 times faster than the IPP, OpenCV, Baziotis's 

algorithm, and MKL libraries. For double precision convolution, our algorithm is on average 3.12, 5.10, and 16.95 times faster 

than the OpenCV, Baziotis's algorithm, and MKL libraries. We have also developed a hybrid 2D convolution algorithm, written 

in C and assembly, to further augment the processing speeds for small kernel sizes. 
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1. Introduction 
 

The Advanced Vector Extension (AVX) has become 

a ubiquitous part of the 80x86 architecture. It consists of 

sixteen 256-bit registers that allow 8 single precision or 4 

double precision floating point pieces of data to be processed 

simultaneously. Its successor, the AVX512, doubles the size 

of each register from 256 to 512 bits, allowing 16 single 

precision or 8 double precision floating point data items to be 

processed at the same time. Several researchers have looked at 

using the AVX512 to augment processing speeds. For 

example, Kodama and Ishiyama (2019) accelerated the 

calculation of quadrupole terms in the Barnes-Hut tree code, 

Rucci et al. (2019) enhanced the computational speed of the 

Smith-Waterman (SW) algorithm, and Watanabe and 

Nakagawa (2019) employed AVX2 and AVX512 to calculate 

the Lennard-Jones force potential.  

Two dimensional (2D) convolution is a 

computationally intensive image processing operation 

required in many filtering applications. Although modern 

processors are equipped with powerful SIMD instructions, the 

 

 
traditional 2D convolution algorithm and the automatic 

vectorization capabilities of compilers cannot fully exploit the 

computing capacity of the SIMD execution engines in multi-

core architectures. In this paper, we employ AVX512 

intrinsics to augment the convolution speed.  

This paper is organized as follows: section 2 

introduces background and related work, section 3 describes 

our algorithm and a hybrid 2D convolution implementation 

written in C and assembly, section 4 presents experimental 

results, and section 5 concludes the paper. 

 

2. Background and Related Work 
 

The 2D convolution of a template T of size 

Tx_sz×Ty_sz with a kernel K of size M×N is given by the 

expression: 

 

( , ) ( , ) ( , )
a b

m a n b

OP x y K m n T x m y n
   

      (1) 

 

where OP is the output of the convolution, and a = (M-1) / 2 

and b = (N-1) / 2. 

In timing critical applications, special hardware 

accelerators using FPGAs have been proposed as a way of 
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optimizing convolution. For non-timing critical applications, 

software optimization is often preferred. For example, Bipin 

and Nair (2016) optimized convolution using a sparse matrix 

vector multiplication technique, while Baziotis (2018) 

accelerated convolution by means of a collaboration between 

AVX2 and MPI.  

Jin and Finkel (2019) compared the performance of 

2D convolution on three platforms: the CPU, the GPU, and 

the FPGA. They reported that the FPGA outperformed both 

the CPU and GPU for larger kernel sizes, but that the GPU 

was faster when the kernel size was smaller. Also, the FPGA 

proved to be unsuitable for double precision convolution in 

terms of performance and resource utilization. Although the 

GPU delivered good performance, it consumed more power 

than the other approaches. 

Amiri and Shahbahrami (2017) showed that manual 

vectorization using the compiler's intrinsics outperformed 

automatic vectorization by both the GCC and LLVM 

compilers. They also proposed a way to utilize AVX2 

instructions to increase convolution speed, but their method 

did not employ a multicore architecture, and fine tuning and 

optimization methods were not investigated. 

Many APIs support SIMD instructions, for example, 

the OpenCV library has supported AVX512 since version 

3.4.1 (Alekhin, 2020) while the convolution function of Intel's 

MKL library utilizes AVX512 instructions if the CPU 

supports them (Intel, 2019a), as does the IPP library (Intel, 

2019b). 

In this paper, we focus on the utilization of AVX512 

to augment convolution speed, using two programming 

models on a multi-core architecture: (1) compiler intrinsics 

and (2) calling AVX512 instructions directly via assembly 

language. Optimization and fine-tuning methods are proposed 

to maximize the utilization of the FMA engines in each 

processing core, which allows the developers to adapt our 

algorithm to process different sizes of data on different 

numbers of cores. 

 

3. Our Proposed AVX512 Convolution Algorithms 
 

Let T, K, and OP be the template, the kernel, and the 

output of the convolution of size Tx_sz×Ty_sz, Kx_sz×Ky_sz, and 

OPx_sz×OPy_sz respectively. The convolution operation, 

defined as OP = T *K, is obtained by performing three steps: 

Step 1: SIMDsz is the number of data elements that 

the AVX512 instructions can process at a time, which is 16 

and 8 for single and double precision data types. Zero padding 

is applied to the template initially, producing TZ of size 

TZx_sz×TZy_sz, which has two main benefits. Firstly, it lets the 

convolution kernel be applied to the edges of a template more 

easily with more general code. Also, the AVX512 instruction 

reads 64 bytes of memory at a time, which means that Tx_sz 

should be divisible by SIMDsz. If it isn't then the remaining 

template data on each row must be manipulated using a 

normal SISD load instruction, which reduces the performance. 

The TZx_sz value is determined by: 
 

_ _ _ _

_

_ _ _ _

2( / 2), if (( 2( / 2)) % ) 0

2( / 2) ( 2( / 2)) % , otherwise,

x sz x sz x sz x sz sz

x sz

x sz x sz sz x sz x sz sz

T K T K SIMD

TZ

T K SIMD T K SIMD

  


 
    

 

 (2) 

where / and % are integer division and modulo. The TZy_sz 

value is determined using: 

 

_ _ _2( / 2).y sz y sz y szTZ T K   (3) 

 
Once memory of size TZx_sz×TZy_sz×sizeof(data type) has been 

allocated, the T data is copied into TZ using the following 

condition: 

 

_ _ _ _ _

_ _ _

[ / 2][ / 2], if ( / 2 / 2) and

                                                      ( / 2 / 2),
[ ][ ]

0, otherwise.

y sz x sz y sz y sz y sz

x sz x sz x sz

T y K x K K y TZ K

K x TZ K
TZ y x

    

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

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 (4) 

 

Step 2: Memory of size Kx_sz×Ky_sz×sizeof(data type) 

is allocated, producing a space for a flipped kernel, named 

KF. All of the original kernel, K, is copied into KF using the 

following condition:  

 

 _ _[ ] [ * 1 ].x sz y szKF i K K K i    (5) 

 
Step 3: The convolution algorithm shown in 

Figure 1, or the alternative in Figure 4, is applied to the data in 

TZ and KF, producing the convolution result, OP.  

 

 
 

Figure 1. The basic convolution algorithm utilizing AVX512 

intrinsics 

 

3.1 Basic convolution  
 

Figure 1 shows our basic convolution algorithm 

using AVX512 intrinsics on double precision data. In this 

case, SIMDSZ is set to be 8 because the AVX512 can process 8 

double precision data elements at a time. In each iteration of 

the x variable loop, all eight elements in out_vect are 

initialized to zero.  In the innermost loop, eight elements from 

TZ are loaded into x_vect at a time, before being multiplied 

with the broadcasted kernel data, and the product is added to 

out_vect. These operations can be implemented using a single 

multiply-accumulate operation called _mm512_fmadd_pd. 

After all the elements in the kernel have been processed at the 

end of the innermost loop, out_vect is stored in the OP array.  

The “#pragma omp” directive enables the compiled 

program to create multiple concurrent threads that are 

assigned to different processing cores. This lets the data be 

split between processing cores to encourage data parallelism, 
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as shown in Figure 2. The ID of each thread is obtained by 

means of the omp_get_thread_num function, and are used to 

split the template data among the processing threads. For 

example, if Ty_sz = 20 and NUM_THREADS = 4, then the 

threads number 0, 1, 2, and 3 will process the data at y = {0, 4, 

8, 12, 16}, {1, 5, 9, 13, 17}, {2, 6, 10, 14, 18}, and {3, 7, 11, 

15, 19} respectively, as shown in Type I of Figure 2. This 

decomposition allows data to be shared between the 

processing cores at a higher level than the block-wise 

decomposition employed by Type II in Figure 2. 

The Figure 1 code only supports double precision 

data. For it to handle single precision data, all the __m512d 

variables must be changed to be of type __m512, and all the 

AVX512 operations of the form _mm512_<op>_pd must be 

changed to _mm_512_<op>_ps. Also, the SIMDSZ value must 

be changed from 8 to 16 to reflect the number of elements that 

the AVX512 can process simultaneously.  

 

3.2 Unrolled convolution 
  

Although the algorithm in Figure 1 speeds up the 

calculation by allowing 8 data elements to be processed 

simultaneously by each AVX512 instruction, the calculation 

still relies on storing the result of each multiply-accumulate 

operation in one out_vect variable. This data dependency 

between each loop iteration leads to inefficient usage of the 

FMA engines in each processing core. To overcome this 

problem, we utilize an unrolling technique to minimize the 

data dependencies between the loop iterations, although two 

important questions are raised. The first is how to unroll the 

AVX intrinsic code efficiently to maximize the utilization of 

the FMA engines. The second is how to define a general 

unrolling method to support any unrolling size factor for the 

various sizes of template and kernel.  

 Let UF be an unrolling factor which specifies the 

number of independent FMA intrinsic functions to be 

explicitly called in the C code. In order to perform a 

convolution between the kernel and all the data in each row of 

the template, multiple iterations are required to calculate the 

data of size UF×SIMDSZ. The general form of our unrolling 

method is shown in Figure 3. In each template row, the shaded 

part is the data that can be processed in the innermost loop, 

and the unshaded part is the remainder, of size R×SIMDSZ, for 

which the AVX intrinsic function need to be called again to 

perform the calculation at the end of the loop. 

Figure 4 shows the unrolled version of our AVX 

algorithm. The UF value in this code is actually the number of 

independent FMA calculations allowed to take place in each 

iteration of the x-loop. The out_vect numbers must match this 

factor, as does x_vect. At each iteration of the x-loop, x is 

increased by UF×SIMDSZ, while the upper bound, xub, is:   

 

  _ _ % .ub x sz x sz SZx T T UF SIMD    (6) 

 

At the end of the x-loop, if the values of Tx_sz and xub 

are not equal, then there must be some remaining elements of 

TZ that have not been processed. R numbers of out_vect are 

cleared again, and the remaining elements of TZ are multiplied 

with the broadcasted kernel before being accumulated in the 

out_vect variables. The FMA intrinsic function is called R 

times to complete the multiply-accumulate operation for the

 
 

Figure 2. Two examples of data decomposition among four 
processing threads 

 

 
 

Figure 3. The general form of our AVX512 convolution utilizing 

unrolling 

 

 
 

Figure 4. The general form of our algorithm using unrolling 
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remaining data loaded from TZ, kept in x_vect, and the kernel. 

The value of R is defined by: 

 

  _ % / .x sz SZ SZR T UF SIMD SIMD      (7) 

   

Figure 5 shows the dataflow of our AVX512 

convolution algorithm utilizing unrolling. In each i-loop, UF 

independently fused multiply-add operations are fed to the 

FMA pipelines of each CPU core.  

 

 
 
Figure 5. Dataflow graph of our AVX512 convolution with 

unrolling 

 

3.3 Hybrid 2D convolution using assembly  

      language 
  

The 2D convolution algorithms proposed in section 

3.1 and 3.2 are written in C, with the utilization of AVX512 

intrinsic functions carried out by the C compiler. Calling 

intrinsic functions in C gives better performance than 

automatic vectorization, as confirmed by Amiri and 

Shahbahrami (2017). However, there are two other ways to 

augment the performance of the AVX512 intrinsics C code: 

(1) employing inline assembly language, or (2) 

reimplementing the entire algorithm in assembly. Since some 

compilers do not support inline assembly for 64-bit 

applications, we chose to rewrite the algorithm.  

 Writing a convolution algorithm in assembly using 

the AVX512 machine instructions for a multi-core 

architecture is both cumbersome and error prone. We decided 

on a compromise method which offered the performance of 

assembly, but supported the multi-core architecture using 

OpenMP.  

 Figure 6 shows C code for calling a function named 

ASM_AVX512_CONV inside an OpenMP directive. This 

function is implemented using assembly, but most C 

compilers allow an .asm file to be added to a project as an 

"extern" statement, such as: 

extern "C" { void ASM_AVX512_CONV(type 

argument1, type argument2, ....);  }.  

The "pragma omp" statement in Figure 6 creates 

NUM_THREADS parallel threads, which will each call the 

ASM_AVX512_CONV function. Each thread will determine 

which segment of data to process based on the thread ID that 

it receives as an argument, as shown in Figure 2.  

For ASM_AVX512_CONV, the values for the 

algorithm's TZ, KF, OP, and the thread ID are passed via the 

registers RCX, RDX, R8, and R9, while the other parameters 

are passed using the stack. The length of the assembly source 

(over 250 lines) means that only key parts are shown in Figure 

7. 

 

 
 

Figure 6. Calling an assembly language function inside an OpenMP 
directive 

 

 
 
Figure 7. Part of the ASM_AVX512_CONV function 

 

4. Experimental Results  
 

The performance of our algorithm was tested with C 

code written using Microsoft Visual Studio C++ 2017. The 

test machine was a 3.3GHz Core i9-7900X with 

hyperthreading turned on. The test template was fixed at 

10240×10240, with a convolution kernel of K×K, with twelve 

different K values, starting from 3, incremented by 2, until 

equal to 25. To find the best unrolling factor, we evaluated our 

algorithm across 99 UF values, ranging from 2 to 100. The 

performance results are shown in Figures 8 and 9.  

Figure 8(a) shows the performance of our algorithm 

when the kernel size was between 3×3 and 9×9. As the 

unrolling factor increased, performance improved, but stopped 

when the factor exceeded 35. As a consequence, we fixed the 

factor at 35 for kernel sizes between 3×3 and 9×9, and only 

the performance of unrolling factors between 2 and 64 are 

shown in Figure 8(a).  
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Figure 8. Performance of our single precision algorithm for various 

unrolling factors, tested with (a) kernel sizes smaller than 
11×11, and (b) kernel sizes between 11×11 and 25×25 

 

For kernel sizes between 11×11 and 25×25, the 

relationship between performance and the unrolling factor 

trended in the same direction, but the best performance point 

changed, as shown in Figure 8(b). For kernel sizes between 

11×11 and 21×21, the best performance was reached when the 

factor was 62, and there was no significant improvement with 

larger values. An unrolling factor of 93 gave the optimum 

performance for kernel sizes of 23×23 and 25×25.  

Figure 9 illustrates the performance of our double 

precision algorithm. The optimum unrolling factors for 

different kernel sizes are shown in Table 1.  

The performance of our algorithm was compared 

with three well known libraries: Intel's MKL (version 2019, 

update 5), Intel's IPP (version 2019, update 5), and OpenCV 

(version 4.2.0). In addition, we also compared the 

performance with the algorithm developed by Baziotis (2018). 

The performance was evaluated on a template of size 

10240×10240. As before, these algorithms and libraries were 

tested using 12 different kernel sizes, and the performance 

results are shown in Figures 10 to 13.  

Figure 10(a) shows that our algorithm is faster than 

the MKL library for all kernel sizes. OpenCV is also slower 

than our algorithm, but by a smaller amount even though it 

also utilizes AVX512 instructions. Baziotis's algorithm is 

slower than OpenCV for almost every configurations because 

it only supports AVX2, which is theoretically slower than 

AVX512. 

Our algorithm outperforms IPP for kernel sizes of 

5×5 or larger, but an IPP kernel size of 3×3 is 5 percent faster 

than our algorithm. Figure 10(b) shows the speed-up ratios of 

our algorithm compared to MKL, IPP, and OpenCV when 

performing single precision convolution. Our algorithm is on 

average 2.30, 3.88, 5.75, and 19.95 times faster than IPP, 

OpenCV, Baziotis's algorithm, and MKL respectively.  

 

 
 

Figure 9. Performance of our double precision algorithm for various 

unrolling factors, tested with kernel sizes between 3×3 and 
25×25 

 
Table 1. The optimum unrolling factors for our convolution 

algorithm 

 

Convolution type Kernel dimension 
Optimum unrolling 

factor (UF) 

   

Single precision 3, 5, 7, 9 35 
11, 13, 15, 17, 19, 21 62 

23, 25 93 

Double precision 3, 5, 7, 9 16 
11, 13, 15 40 

17, 19, 21, 23, 25 81 
   

 

 
 

Figure 10. Performance comparisons of a single precision 
convolution with our algorithm versus Baziotis's 

algorithm, MKL, IPP, and the OpenCV libraries: (a) 

execution time, and (b) speed-up 

 
Figure 11(a) shows the performance of our double 

precision convolution using our algorithm compared to MKL, 
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Figure 11. Performance comparisons of a double precision 

convolution with our algorithm versus MKL, Baziotis's 
algorithm, and the OpenCV libraries: (a) execution time, 

and (b) speed-up 

 

Baziotis's algorithm, and OpenCV. IPP was not included 

because its convolution function does not support double 

precision data. Our algorithm outperforms MKL in every 

configuration. When no unrolling was applied, our algorithm 

was faster than OpenCV for kernel sizes of 15×15 or larger, 

but slower for all smaller sizes. However, after unrolling was 

applied with the optimum factor shown in Table 1, our 

algorithm outperformed OpenCV, Baziotis's algorithm, and 

MKL in all configurations. On average, our algorithm with 

unrolling was 3.12, 5.10, and 16.95 times faster than OpenCV, 

Baziotis's algorithm, and MKL respectively. 

For single precision convolution, our algorithm was 

superior to both OpenCV and IPP with a kernel size of 5×5 or 

larger. However, for a kernel of size 3×3, our algorithm was 

still faster than OpenCV, but 5 percent slower than IPP. Since 

a kernel of size 3×3 is frequently used in image processing 

applications, we looked at ways to improve the performance 

of our algorithm at this size. We investigated two approaches: 

loop tiling and data decomposition. Although loop tiling has 

proved effective for some problems, such as matrix-vector 

multiplication (Hassan, Mahmoud, Hemeida & Saber, 2018), 

it made our algorithm slower. Similarly, different forms of 

data decomposition among the processing threads only 

degraded performance. 

Since the Microsoft Visual Studio 2017 does not 

support inline assembly for 64-bit applications, a complete 

rewrite in assembly was carried out.  

Figure 12 shows the modified single precision 

convolution optimized for a kernel size of 3×3. To reduce 

reading overheads, the kernel elements are read only once and 

then broadcasted to 9 variables of type __m512 before 

entering the main loop. This code was initially written in C, 

and ran a little faster than the previous code, but still slower 

than the IPP. When it was reimplemented in assembly, its 

performance exceeded the IPP. We fixed the kernel size at 

3×3, with a template of T×T, with ten different T values, 

 
 

Figure 12. The AVX512 convolution optimized for a kernel size of 
3×3 

 
starting from 1024, incremented by 1024, until it was equal to 

10240, and the performance is shown in Figure 13. Our 

assembly language convolution, optimized for kernel size of 

3×3, is 1.04, 1.84, 2.28, and 24.46 times faster than IPP, 

OpenCV, Baziotis' algorithm, and MKL respectively. 

Since our double precision convolution, which was 

written in C, already outperformed all the other algorithms, it 

was unnecessary to reimplement it in assembly. When tested 

with a kernel size of 3×3, with ten different template sizes, the 

performance results are illustrated in Figure 14. Our algorithm 

is 1.80, 2.10, and 18.08 times faster than Baziotis's algorithm, 

OpenCV, and MKL respectively. 

 

5. Conclusions 
 

Our 2D convolution algorithm achieves high 

performance,   not   only   from   the   utilization   of  AVX512 

 

 
 
Figure 13. Performance comparison of our single precision 

convolution algorithms — optimized for a kernel size of 

3×3 — versus MKL, Baziotis's algorithm, OpenCV, and 

IPP 
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Figure 14. Performance comparison of our double precision 
convolution algorithms — optimized for a kernel size of 

3×3 — versus MKL, Baziotis's algorithm, OpenCV, and 

IPP 

 
instructions, but also from an awareness of data 

decomposition between the processing cores, combined with 

an unrolling mechanism that aims to maximize the utilization 

of the FMA engines in each core. This means that our 

algorithm is faster than convolution carried out by the 

OpenCV, the IPP, and the MKL libraries even though they 

also utilize AVX512 instructions. The main reasons that our 

single precision convolution with a kernel size of 5×5 or 

larger, and our double precision convolution algorithms, 

outperform these libraries is due to a high unrolling factor, 

combined with an optimum unrolling selected for each kernel 

size. These features enable our algorithm to achieve higher 

parallelism than these libraries, even though it is implemented 

in C. For single precision convolution, our algorithm is on 

average 2.30, 3.88, 5.75, and 19.95 times faster than the IPP, 

OpenCV, Baziotis's algorithm, and MKL libraries. For double 

precision convolution, our algorithm is on average 3.12, 5.10, 

and 16.95 times faster than the OpenCV, Baziotis's algorithm, 

and MKL libraries. 

C with a high unrolling factor causes the compiler to 

use register spilling which requires data swapping between the 

AVX512 registers and memory. However, this situation does 

not occur in assembly code, so our assembly convolution is 

faster than the C version mainly because it reduces memory 

bottlenecks. The 3×3 kernel convolution in our assembly 

convolution is 1.04 times faster than IPP.     
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