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Abstract 
 

Faulty plastic bearing is an initial alarm for bearing failure that can cause massive losses in the production line. The 

losses include restarting of production, producing of defective products, and even human casualty. This paper therefore aims to 

propose an automated plastic bearing fault detection and classification system. The system begins by transforming the bearing 

vibration signals into coefficients with continuous wavelet transform. The coefficients are then filtered by coefficients reduction 

and smoothing thereafter. Then, the filtered coefficients are classified by two ANN classifiers i.e. feed forward backpropagation 

(FFB) and recurrent neural network (RNN). The performance of both classifiers are finally measured and compared. The best 

overall performance is 90% detection rate by FFB. This system prevents bearing failure by giving an early alarm for faults 

detection and making the corrective action easier. Also, the single stage data processing and single signal type increase the data 

processing efficiency. 

 

Keywords: bearing fault diagnosis, continuous wavelet transform, exponential moving average, neural network,  

                      principle component analysis 

 

 

1. Introduction 
 

Plastic bearing application is a common requirement 

in light weight products production line. Due to its lack of 

strength (Ning et al., 2015), it supports light weight products 

and is applied widely in electronic components, food 

processing, and medicine production industries. The bearing 

becomes industries preference because of its behaviors such as 

non-corrosion, light weight, non-magnetic, lubrication-free, 

good friction, and easily machined (Koike et al., 2011), which 

lessen product constrains in production line application. 

However, the major cause of breakdown in rotating machinery 

is bearing failure (Li et al., 1999). The failure may result in 

huge economy and human losses, e.g. restarting of production 

and producing defective products. Production line that cannot 

tolerate with sudden breakdown (Smadi & Kamrani, 2011)

 
e.g. cable production and wire-cut, needs to be restarted with a 

new preparatory production run.  
A major source of conveyor belt malfunction is due 

to bearing failure (Lodewijks, 2004). Unstable conveyor belt 

due to bearing faults may result in vibration that leads to 

defective electronic products. A production line that holds 

hazardous chemical or products at high points may fall on and 

endanger production workers due to the breakdown. Hence, 

early detection and classifying of the bearing faults system are 

needed to prevent bearing failure in production line. 

However, standard bearing monitoring in detection 

and classifying the faults are proven ineffective (Yang & 

Court, 2013). So an effective, consistent, and reliable system 

is required. The system must consider the behavior of the 

bearing critically. Plastic bearing behavior is more loosely 

assembled and easier to deform i.e. insufficient accuracy 

(Riahi & Stadlmayr, 2012). This complex behavior widens 

fault vibration beat characters and weakens fault beat signals. 

Consequently, this issue increases the difficulty in bearing 

faults traceability (He, Li, & Zu, 2012). To date, plastic 
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bearing faults diagnosis’ study attracted less researchers’ 

attention. Only a study of plastic bearing faults diagnosis (He 

et al., 2012) is recorded. Thus, plastic bearing fault diagnosis 

is the prime focus of this study. 

Between plastic and steel bearing faults diagnosis, 

the latter attracted extensive researchers’ attention. In previous 

researches, the initial main stage was extracting vibration 

signal features. Researchers extracted signal features by 

empirical-mode decomposition (Ali et al., 2015) and 

statistical analysis (Immovilli, Bellini, & Rubini, 

2009; Immovilli, Bianchini, Cocconcelli, Bellini, & Rubini, 

2012; Liang & Bozchalooi, 2010; Zarei, Tajeddin, & Karimi, 

2014). Packet wavelet used in this study line began by Eren 

and Devaney (2004); this then was followed by Peter & Wang 

(2013); Wu & Liu (2009); Pan, Chen, and Guo (2009), and 

Pan, Chen, and Li (2010). Continuous wavelet transform 

(CWT) was also used in similar studies (Immovilli, Rubini, & 

Tassoni, 2010; Konar & Cattopadhyay, 2011; Rafiee, Rafiee, 

& Tse, 2010).  

The second main stage is defining the extracted 

features into their fault classes by classification methods. The 

methods include statistical model (Immovilli et al., 2010; Lau 

& Ngan, 2010; Peter & Wang, 2013; Rafiee et al., 2010), 

neural network (Ali et al., 2015; Wu & Liu, 2009; Zarei et al., 

2014), support vector machine (Konar & Chattopadhyay, 

2011; Shen et al., 2013), fuzzy c-means (Pan et al., 2010); 

vibration based envelope analysis (Peter & Wang, 2013), 

adaptive neuro-fuzzy (Zhang et al., 2010), and k-nearest 

neighbor (Huang, Hu, & Yang, 2011). 

In this paper, an automated plastic bearing faults 

diagnosis method shown in Figure 1 is proposed. This 

paragraph lists the different use of methods than the paper 

where the data is tapped (He et al., 2012). The obvious 

difference is, this paper uses only time-domain bearing fault 

signals. This signal is transformed by other approach, i.e. 

CWT, into wavelet coefficients. Also, the classification 

method is simplified into a single stage. These coefficients are 

classified by neural network (ANN) classifiers – FFB and 

RNN. In reducing coefficient dimensions and noises, two 

filters are applied before the classification stage. The filters 

are principle component analysis (PCA) and exponential 

moving average (EMA).  

The subsequent sections of this paper is presented as 

follows. Section 2 introduces CWT and justifies the need for 

CWT. Sections 3 and 4 highlight filters for dimension and 

noise reduction. Section 5 describes the ANN character 

selection and operation. Result, discussion, and conclusion 

can be found in Section 6 and 7. 

2. Continuous Wavelet Transform  
 

Plastic bearing vibration signals require signal 

transformation into coefficients in order to analyze the signals. 

Conventionally, the Fourier transform (FT) (Eren & Devaney, 

2004) is applied to transform the signal into coefficients. But 

FT is inefficient in analyzing spike shape vibration signal (He 

et al., 2012). It is also not a time-dependent analysis (Sadowsky, 

1994). As the used signals are in spike shape and this study 

requires a time indication of faults detection, thus other analysis 

is needed. According to Graps (1995), wavelet transform (WT) 

analysis is good in transforming the spike shape signal. The 

analysis also is time-dependent (Wu & Liu, 2009). Due to the 

used signal in continuous-time and the transformed signals, 

i.e., coefficients are required in the continuous periodic scale – 

CWT is suitable for these needs. 

 

                 (1) 

 

               (2) 

 

 
 

 

The CWT function (Konar & Cattopadhyay, 2011) 

is based on time x(t) and complex conjugate operation (*) as 

in equation (1). It is the summation of all signal times 

multiplied by scale. The scale in continuous function 

( ) with real number (R),  and  are used to adjust 

wavelet scale and position (2). The output is wavelet 

coefficients in multiple dimensions. Basically, the output is in 

classes and each class has subclasses, i.e. components. Each 

component contains a set of coefficients. The use of CWT is 

set to the highest class scale i.e. 32 classes. This is to cover the 

widest possible coefficients generation. Based on the scale, 

each class has five components and each component has 139 

coefficients. This also means the total number of components 

are 160 (32 × 5 = 160) and the total number of coefficients are 

22,240 (32 × 5 × 139 = 22,240). This high-dimensional data 

i.e. coefficients are hard to represent a system. Thus, 

coefficient’s dimensional reduction, i.e. classes are applied to 

simplify the data. 

 

 
 

Figure 1. Flowchart of the methodology
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3. Principal Component Analysis 
 

PCA is used to reduce high-dimensional data (Nie et 

al., 2011) that is generated by CWT. The analysis eliminates 

the redundancy of data (Jolliffe, 2011) i.e. coefficients’ 

classes. The redundancy is based on correlation distance or 

variance (Shlens, 2014) among coefficients’ classes. The low 

variance classes that represent high co01efficient patterns 

redundancy are eliminated, while classes with high variance 

are retained (Ringnér, 2008) for further study. Based on the 

analysis, this study selected classes with meaningful 

information systematically represented by high variance 

classes.  

 

            (3) 

 

              (4) 

 

The assumption is that some dimensions are 

correlated in patterns (Shlens, 2014). Thus, PCA deduces 

these patterns. Each coefficient has two covariance matrix (X) 

dimensions, as shown in (3). PCA is Eigen-decomposed of X 

multiplied by the transpose of X(XT). This resulted 

, which contained an eigenvector (W) and 

eigenvalues ( ) set. These eigenvalues are coefficients’ 

classes variance value in percentage. The variance value of the 

studied classes will be the base to pick cut-off variance value 

for classes selection (Demuth & Beale, 2009). Because there 

are classes with eigenvalues that reached above 90%, this 

variance value (above 90%) is set for this study. Based on this 

set, only five are selected out of the total 32 classes.  

 

4. Exponential Moving Average 
 

EMA ( ) is effective for pattern indicator 

(Klinker, 2011). Also, EMA corrects and removes noises in 

signal processing and data analysis (Grenbenkov & Serror, 

2014 Awheda & Schwartz, 2014). Nakano, Takahashi, and 

Takahashi (2017) applied EMA to simplify signal for 

classification operation. In this study, EMA extracts important 

information within the components that contained 139 

coefficients. It smoothens short series fluctuation and 

highlights longer series of coefficient trends. Here, EMA acts 

as a low pass filter on these trends and weakens high vibration 

readings that impart noises in the trends.  

 

            (5) 
 

New EMA calculated as in equation (5), from new 

sample of coefficient (Xn) and reused previous EMA ( ). 

As in simple moving average formulation, smoothing (S) that 

is set as two was used. The setting is to average two points of 

value – initial value at the beginning point and accumulative 

value at the end point. The number of distance in EMA (n) 

must consider the most effective distance for the data usage. 

Hence, trials are made between n = 2 up to n = 80. Here n = 

70 is the most effective for use by the ANN classifiers. The n 

determines the number of processed coefficients. n = 70 and 

initial coefficients of 139, resulted the processed coefficients 

of 69. PCA in the last stage reduces data into five classes and 

each class has five elements, thus 25 EMA operations are 

needed. 

 

5. Artificial Neural Network 
 

The proposed system must be designed to meet the 

selected classifiers’ requirements i.e. ANN. ANN classifiers 

perform well on any analytical operation that deduces a 

function (Ali et al., 2015) from the used data or coefficients. 

Thus, ANN works analytically well on linear or non-linear or 

even mixed-mode relationship system. By ANN the system 

analytical model design is not required (Zahran et al., 2013; 

Zain, Haron, & Sharif, 2010) which is impractical for this 

high-complexity data. Also, ANN is excellent with multi-

input and data fusion (Kumar, Natarajan, & Ananthan, 2012; 

Wu & Liu 2009), which are expected to deal well with the 

study coefficients. Furthermore, ANN is a non-parametric 

approach (Belkacem, Bouafia, & Chabani, 2017) which is 

independent to estimator parameters – fastens the classifiers 

modelling process. All of these features and previous studies 

in faults diagnosis (Ali et al., 2015; Kumar et al., 2012; Wu & 

Liu, 2009) make ANN classifiers’ requirements suitable for 

this study. The model is designed detecting and classifying 

inputs into plastic bearing faults, namely healthy bearing, 

outer-ring fault, inner-ring fault, ball fault, and cage fault. 

Based on PCA and EMA outputs, there are five faults i.e. five 

classes (each class has five components and each component 

contained 69 coefficients). The total of 1725 (5 × 5 × 69 = 

1,725) coefficients will be used to classify the two ANN 

classifier models i.e. FFB and RNN in this study.  

For ANN models’ prediction generalization 

purpose; composition of learning and testing dataset that set 

the generalization (Kant & Sangwan, 2015; Zain et al., 2010;) 

must be prepared. The datasets also must be organized so that 

the information pattern exists in the learning dataset must be 

existed in testing dataset (Ioannis & Dimitrious, 2010). For a 

guideline, learning and testing dataset are set to 70%:30% 

composition (Nahato, Harichandran, & Arputharaj, 2015; 

Zahran, et al., 2013). Hence, the 1,725 coefficients are set by 

this composition in learning and testing datasets through 25 

component turns.  

 

Detection rate = 

Number of testing dataset 

with correctly detected 
X 100% (6) 

Total number of testing 

dataset 

 

The overall classifier performances are evaluated by 

detection rate (Kumar et al., 2012) as per equation (6). The 

performance of various function-combinations and 

architectures set to the models are based on this rate. Although 

the equation is directly unrelated to the use function-

combinations performance, the best classifiers overall 

performance pin-pointed the best function-combination. 

Moreover, this also pin-pointed the best classifier architecture. 

Thus, discussion of the two ANN classifiers, i.e. feed forward 

backpropagation (FFB) and recurrent neural network (RNN) 
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can be specifically compared. In applying full-factorial 

experiment, the aforementioned parameters must be fully 

tested and discussed in the following sections. 

 

5.1 Feed forward backpropagation network 
 

FFB neural networks demonstrated excellent 

detection rate which is above 90% by Belkacem et al. (2017); 

Kant and Sangwan (2015); and Kumar et al. (2012). 

FFB algorithm learns by evaluating output difference between 

generated and actual output. The difference propagates 

backward to input layer to modify the network’s weights and 

repeats until the smallest output variation is obtained (Zain et 

al., 2010). The best weights are reused to predict testing 

dataset.  

The selected four FFB network functions i.e. 

training, learning, performance, and transfer functions are 

shown in Table 1. In the learning process stage, neuron 

weights are updated by the learning function. In order to 

transfer outputs from one neuron to the following layer and 

neuron, transfer function is required. Then the final output is 

evaluated by performance function. All of these processes are 

repetitive tasks until the smallest variation between generated 

and actual output is obtained. Based on this construction, 

learning dataset is used to simulate and generate the needed 

weights and the testing dataset is used to test the FFB 

classifier with these weights. 

For the models prediction generalization purpose; 

composition of learning and testing dataset that sets the 

generalization (Kant & Sangwan, 2015; Zain et al., 2010), 

must be prepared. Researchers (Nahato et al., 2015; Zahran et 

al., 2013) suggest the ratio of learning and testing dataset for 

using ANN classifier is 70%:30% accordingly. Besides, 

testing dataset with sufficient information as in learning 

dataset is compulsory (Ioannis & Dimitrious, 2010; Kumar et 

al., 2012). Thus, the existence of logical association between 

the datasets ensure reasonable prediction result. In order to 

follow this guideline, every element with 69 coefficients is 

divided into 48 coefficients (70%) for learning dataset and 21 

coefficients (30%) for testing dataset. In addition, each dataset 

division is processed to ensure information in learning dataset 

exists in the testing dataset. 

In this paper, FFB network’s architecture is applied 

with a single hidden layer. Based on random tests of FFB 

classifier model simulation, seven to ten neurons in hidden 

layer are the most effective in generating good prediction rate. 

Thus, a model with seven to ten neurons in single hidden layer 

architecture is used to for the FFB simulation, represented by 

the symbols of 5–7–1, 5–8–1, 5–9–1, 5–10–1, and 5–7–1 

architecture pictured in Figure 2. Besides, the network’s 

neurons are set to five inputs and a single output. The five 

inputs are represented by five bearing faults and the single 

output represents the classified bearing fault. 

Data is generated in five class of faults with each 

class has five components and each component has five 69 

coefficients. Due to the structure of the data and to fit this data 

into ANN model, ANN simulation iteration is done by 

batches. Each batch is equivalent to component (containing all 

the 69 coefficients). By this, completing an epoch requires 

five iterations. Initially, epoch numbers are set to 3,000. 

However, this study takes an early stopping technique, hence 

termination will be based on mean square error (MSE) rate. 

The software used in this study is neural network toolbox in 

MATLAB 2015. Here, the monitoring of MSE and iteration 

status is done through neural network training menu of the 

software. Based on MSE rate monitoring the converge starts at 

940 epochs for the best FFB model classifier. After 940 

epochs, MSE starts increasing and this indicates pattern 

replication overfitting. 

This study covers all the combination of possible 

FFB ANN aforementioned functions and architectures. The 

probability for four training functions are 24 (4 × 3 × 2 × 1 = 

24), two functions for each of the rest function is 2 (2 × 1 = 2). 

For four architectures setup the probability is 24 (4 × 3 × 2 × 1 

= 24). Thus, for full factorial experiment exercise the total 

number of combinations are 4,608 (24 × 2 × 2 × 2 × 24 = 

4,608). These combination numbers represent the required test 

numbers. 
 

 
 

 

Figure 2. Feed forward backpropagation network with 5-7-1 

architecture 

 
Table 1. Applied functions with symbols 

 

Training function Learning function Performance function Transfer function 

    

Levenberg-

Marquardt Backpropagation (LMF) 

Gradient Descent with 

Momentum Weight (GMB) 

Mean Squared Normalized 

Error Performance (MEP) 

Hyperbolic Tangent Sigmoid (HTS) 

Random order Incremental Training 

with Learning Functions (RLF) 

Bias Learning and Gradient 

Descent Weight and Bias 

Learning (GWB) 

Mean Squared Normalized 

Error Performance Function 

with Regularization 

Implemented (MRI) 

Linear Transfer (LTR) 

Scaled Conjugate 

Gradient Backpropagation (SCB) 

   

Resilient Backpropagation (RBP)    
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5.2 Recurrent neural network 
 

RNN network model is tested to compare it with 

FFB network model performance. Similar to FFB, RNN also 

has a feedback loop (Du, Wang, & Wang, 2015). However, in 

each layer, RNN has a recurrent connection and network delay 

which has infinite dynamic response to time series input data 

(Anbazhagan, & Kumarappan, 2012). Compared to FFB, 

RNN has several advantages which include better accuracy, 

faster training, and lesser training data required (Negnevitsky, 

2011). RNN has better accuracy because it runs classification 

operation in network’s input and internal (Guo et al., 2017). 

So, when two classification stages are applied, a more detailed 

classification can be obtained. In contrast, FFB only operates 

at network’s input that has lower accuracy. 

 

                              (7) 
 

                                                      (8)  

 

RNN network models a system based on temporal 

sequence (T). For the RNN network, let’s input x in sequence 

with recurrent hidden state h where 

. RNN output of , is 

based on two biases i.e. b0 and bh, also two transfer functions 

applied on RNN model at hidden  and output  

layers. Three required connection weights include weight 

between input layer to hidden layer (Wxh), the weight within 

hidden layer (Whh ), and the weight between hidden layer to 

output layer (Wh0 ). Based on these parameters, recurrent 

hidden state at specified temporal sequence (HT ) in equation 

(7) is used to generate output of RNN at specified temporal 

sequence (YT ) as in equation (8). 

For fair comparison, RNN setting parameters are set 

similar to FFB network. Network functions, architectures, and 

composition of training and testing datasets are the similar 

setting parameters which are applied to both network models. 

For full factorial experiment similar 4,608 tests are required. 

Based on MSE monitoring, the best RNN model classifier 

starts to converge at 1,080 epochs. MSE increases and 

indicates the condition of overfitting after 1,080 epochs.  

 

6. Results and Discussion 
 

In this study, five signals of bearing faults are 

monitored. The fault classes are healthy bearing, outer ring 

fault, inner ring fault, ball fault, and cage fault. Through CWT 

analysis, the fault classes are composed by 160 components, 

and each component has 139 coefficients. The high 

dimensions of data use PCA and EMA to reduce the 

components and amount of coefficients. By PCA the 160 

components are decreased into five components. EMA 

reduces the coefficient numbers from 139 to 69. The 

remaining components and coefficients are shown in Figure 

3(a) to (e). 

ANN model performance is tested with full factorial 

experiment to demonstrate the best overall classifiers 

effectiveness in plastic bearing faults classification, the best 

used functions, and the best architecture setups. The top ten 

highest detection rate test results are tabled by the classifier 

networks, Table 2 for FFB and Table 3 for RNN. These tables
 

  
 

Figure 3. (a) Coefficient value – healthy bearing coefficient number  

                  (Class 1) 

 

Figure 3  (b) Coefficient value – inner ring fault coefficient number      

                   (Class 2) 
  

 
 

 

Figure 3.   (c) Coefficient value – cage fault coefficient number  
                   (Class 3) 

 

Figure 3.   (d) Coefficient value – ball fault coefficient number  
                   (Class 4) 

  

 
 

Figure 3.   (e) Coefficient value – outer ring fault coefficient number (Class 5) 
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Table 2. Top 10 highest overall FFB detection rate 

 

Sym 
Archi- 

tecture 

Function DR 
Sym 

Archi- 

tecture 

Function DR 

TR LR PR TF (%) TR LR PR TF (%) 
              

A 5-7-1 LMF GMB MEP HTS 83 F 5-9-1 RLF GMB MEP LTR 87 

B 5-7-1 RLF GMB MEP HTS 83 G 5-9-1 RLF GMB MRI HTS 87 

C 5-8-1 LMF GMB MEP HTS 83 H 5-9-1 RLF GMB MEP HTS 90 
D 5-8-1 RLF GMB MEP HTS 87 I 5-10-1 RLF GMB MEP HTS 87 

E 5-9-1 LMF GMB MEP HTS 87 J 5-10-1 LMF GMB MEP HTS 83 
              

 

Note: Sym – Symbol; TR – Training; LR – Learning; PR – Performance; TF – Transfer; DR – Detection Rate; RLF – Random order Incremental 

Training with Learning Functions; LMF – Levenberg-Marquardt Backpropagation; GMB – Gradient Descent with Momentum Weight and Bias 

Learning; MEP – Mean Squared Normalized Error Performance; MRI – Mean Squared Normalized Error Performance Function with 
Regularization Implemented; HTS – Hyperbolic Tangent Sigmoid; LTR – Linear Transfer 

 

Table 3. Top 10 highest overall RNN detection rate 

 

Sym 
Archi- 

tecture 

Function DR 
Sym 

Archi- 

tecture 

Function DR 

TR LR PR TF (%) TR LR PR TF (%) 
              

A 5-10-1 LMF GMB MEP HTS 60 F 5-7-1 RBP GMB MEP HTS 40 

B 5-9-1 LMF GMB MEP HTS 60 G 5-10-1 RLF GMB MEP HTS 40 
C 5-8-1 LMF GMB MEP HTS 60 H 5-7-1 SCB GMB MEP HTS 40 

D 5-7-1 LMF GMB MEP HTS 70 I 5-10-1 LMF GMB MRI HTS 40 

E 5-7-1 RLF GMB MEP HTS 60 J 5-10-1 LMF GMB MEP HTS 40 
              

 

Note: Sym – Symbol; TR – Training; LR – Learning; PR – Performance; TF – Transfer; DR – Detection Rate; RLF – Random order Incremental 

Training with Learning Functions; LMF – Levenberg-Marquardt Backpropagation; RBP – Resilient Backpropagation; SCB – Scaled Conjugate 

Gradient Backpropagation; GMB – Gradient Descent with Momentum Weight and Bias Learning; MEP – Mean Squared Normalized Error 
Performance; MRI – Mean Squared Normalized Error Performance Function with Regularization Implemented; HTS – Hyperbolic Tangent 

Sigmoid 

 

list setup architectures, four-function combinations, and 

overall detection rates. Based on the tables, histograms are 

projected as in Figure 4(a) and Figure 5(a). These figures 

show the overall performance by detection rate value. The 

overall highest classifier score for FFB is 90% and 70% for 

RNN. These highest scores reflect the most effective 

architecture and function-combination used in this study. 

Hence, the most effective FFB architecture is 5-9-1 while for 

RNN is 5-7-1. Besides, the most effective FFB and RNN 

function-combinations are RLF-GMB-MEP-HTS and LMF-

GMB-MEP-HTS. 

In addition, based on these ANN classifier model 

simulations, each bearing fault detection rate is gathered. The 

performance of FFB classifier model in Figure 4(b) shows 

healthy bearing, cage fault, and inner ring fault are excellent 

for FFB. However, Figure 5(b) shows RNN classifier model is 

excellent for ball fault and outer ring fault. These figures also 

show the inefficient performance of faults detection rate for 

the classifier networks. Ball fault and outer ring fault are 

inefficient FFB classification performance. Healthy bearing, 

cage fault, and inner ring fault are inefficient for RNN 

classifier. The summary of detection rate by function-

combination and bearing fault is presented in Table 4. 

 

7. Conclusions 
 

The performance at 90% detection rate demonstrates 

that this study has successfully proposed an effective 

automated plastic bearing fault detection and classification 

system. CWT is used for signal transformation, CPA reduces 

the coefficient classes, EMA smoothens the coefficients, and 

 
 
Figure 4. FFB Detection rate: (a) Overall; (b) Each Bearing 

Condition 

 

 
 

Figure 5. RNN Detection rate: (a) Overall; (b) Each Bearing 

Condition 

 

these coefficients are classified by FFB and RNN. These set 

of sequence methods are well combined for an effective 

system of this study.  
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Table 4. Summary of FFB and RNN detection rate 
 

 FFB RNN 

 Symbol or Bearing Fault DR (%) Symbol or Bearing Fault DR (%) 
     

DR by function-combination H 90 D 70 

D, E, F, G, & I 87 A, B, C, & E 60 
A, B, C, & J 83 F, G, H, I, & J 40 

DR by bearing fault Healthy 100 Healthy 53 

Cage Fault 100 Cage Fault 57 
Ball Fault 66 Ball Fault 100 

Outer-Ring Fault 84 Outer-Ring Fault 100 

Inner-Ring Fault 100 Inner-Ring Fault 40 
     

 

Note: DR – Detection Rate; Please refer to table 2 and table 3 for the symbols usage 

 

ANN classifier tests point a few number of 

thoughts. First, the two classifiers, i.e. FFB and RNN, show a 

classification of capable divergence. FFB classifies healthy 

bearing, cage fault, and inner ring fault effectively, while 

RNN classifies efficiently ball fault and outer ring fault. 

Second, architecture-wise, a more complex architecture does 

not necessarily reflect a better bearing faults classification. 

Moderate hidden-layer neurons are better classifier 

architecture. In this study, the best architectures are seven and 

nine neurons in hidden-layer. Third, ANN function-

combination shows a significant point. The best function-

combination for FFB is RLF-GMB-MEP-HTS and RNN is 

LMF-GMB-MEP-HTS. This also shows that the three 

functions, i.e. GMB-MEP-HTS are excellent for both 

classifiers. The functions represent class function of learning, 

performance, and transfer functions. For training function, 

certain function is effective for certain network. Industrial-

wise, the findings suggest a new automated plastic bearing 

faults diagnosis system. 

The used of the proposed system is significant for 

production line using machines installed with plastic bearing. 

The system with 90% detection rate is expected to detect and 

classify plastic bearing faults that occur in production line 

machines effectively. In line with this, early prevention action 

of machine losses can be taken by the faults detection. 

Corrective action is easier with the classified faults. 

Based on the results, some recommendations can be 

made. For future study two stages of ANN classification are 

more effective. The successive stages can be a combination of 

FFB and RNN. This is because both networks are effective 

classifier on particular and contrast faults. Foregoing features 

are accountable for future model design such as the use of 

other functions and filters. Besides, deep learning 

classification approach is suggested because of the cascading 

data through multiple processing layer for classification. This 

feature is required for the proposed method for classification 

operation. 
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