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Abstract 
 

Asynchronous or induction motors are commonly employed in industrial applications. Their precise accelerating or 

starting time is needed for setting their overcurrent protection devices against heating and for assessing power quality of electric 

utility distribution power system. The accelerating time is usually determined from a tedious time-domain dynamic simulation 

with commercial software tools, which basically require a full knowledge of the motor’s equivalent parameters. Often these 

parameters are not readily available to the end-users while other technical information is. Thus, this paper presents a novel 

analytical approach to calculate the motor accelerating time using standard technical data. The required speed-torque curve of 

induction motors is directly determined from the manufacturer-provided information, instead of requiring the conventional 

equivalent-circuit parameters. Accuracy of the proposed technique is validated by comparing the calculated accelerating times 

against those from time-domain dynamic simulations using a full fifth-order model of induction motor: the results mostly agree 

in a satisfactory manner. 
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1. Introduction 
 

Three-phase AC induction motors are primarily 

employed in commercial and industrial applications because 

of their simplicity, high reliability, and being almost free of 

maintenance. Provided a strong grid connection, the cheapest 

way to start up a high-voltage induction motor is by the direct-

on-line method (Vlad, Campeanu, Enache, & Enache, 2017). 

Due to a high sustained starting current, the motor must 

accelerate to full speed within the locked-rotor withstand time 

or safe stall time, irrespective of the type of load (Dsouza et 

al., 2019; Naik, 2017; Reimert, 2006; Rajendra, Finley, & 

Gaerke, 2017). Hence, the acceleration or starting times of 

induction motors are very important, affecting how to set their 

overcurrent protective devices against overheating (Kay & 

Padden, 2020; Kolosov, 2020; Rahmani, Niaki, & Sadeghi, 

 
2019). Furthermore, from a power-system planning point of 

view, it must be ensured that starting a large induction motor 

would not cause unacceptable voltage sags and flicker, 

according to the restrictions of the established power 

acceptability curve, such as that by the Computer & Business 

Equipment Manufacturers Association (CBEMA) (Wang et 

al., 2011). Since the voltage-sag duration is closely related to 

the motor’s accelerating time, it can play a significant role to 

power quality of a power distribution system. Hence, the 

accelerating time or the related sag duration due to the largest 

motor starting must be considered in a power quality 

assessment (Styvaktakis, 2002). 

Generally, the accelerating time of an induction 

motor can be accurately calculated using time-domain 

dynamic simulation. This approach is quite time-consuming 

and needs commercial software tools (Oputa, Obi, & Onwuka, 

2017; Patil & Porate, 2009). With these tools, the motor’s 

equivalent-circuit parameters are always required for the 

dynamic simulation. To avoid using the high-cost simulation 

tools for conducting dynamic simulations, and the problem of 

identifying the motor’s parameters, most of the manufacturers 

provide a simplified set of formulae to roughly estimate the 
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average value of motor’s electrical torque and driven-load 

torque, so that the accelerating time can be rapidly 

approximated using first-order dynamics for motion of the 

induction motor (ABB Motor Guide, 2014; Grundfos, 2004; 

Rockwell Automation, 2004). However, this simplified 

approach does not provide an exact value of the accelerating 

time, since the motor and driven-load torques are simply 

estimated. From the published technical guidance, this method 

is rather limited to only three types of mechanical load 

profiles (lifts, fans, or piston pumps). It cannot be applied with 

other reduced voltage starting techniques. 

To improve the accuracy of accelerating time 

computation, available torque curves of motor and mechanical 

load are plotted on a pair of axes in the same figure. Then, a 

net accelerating torque is calculated by dividing the area 

between the motor and load torque curves into small equal 

intervals over the entire range of speeds from standstill to its 

full running condition (Garg & Tomar, 2015; Rahmani, Niaki, 

& Sadeghi, 2019). The areas for all intervals are finally added 

up to get the average accelerating torque, allowing the 

accelerating time to be estimated. The selected step size or 

interval length directly determines accuracy of the 

computational result. 

In order to get an accurate accelerating time, reliable 

speed-torque curves of induction motors are generally 

required. Conventionally, they can be calculated using a set of 

the motor’s standardized test parameters, mostly taken from 

field measurements or identifications. To avoid the difficulties 

with field tests, the motor’s parameters can be possibly 

determined from the manufacturer catalogue information 

using some nonlinear approach (Perez, Gomez-Gonzalez, & 

Jurado, 2013; Weiping, Zhang, & Zhou, 2018). However, they 

may not always converge with all sets of the catalog data 

(Pedra, 2008). In the same manner, this paper attempts to 

apply a novel analytical approach to determine the motor’s 

speed-torque curve directly from the available technical 

information, permitting an accelerating time assessment.  

Hence, this paper presents an analytical approach to 

determine the accelerating time without resorting to time-

domain dynamic simulations requiring commercial simulation 

tools. The analytical formulae are fully developed to compute 

the speed-torque curve of a motor using technical catalog 

information, without field-measurement of the equivalent-

circuit parameters.  This approach gives a rapid determination 

of the accelerating time. The proposed analytical technique is 

validated against time-domain dynamic simulations by 

comparing the accelerating times from both methods. 

 

2. Derivation of motor’s speed-torque curve from 

    technical catalog information  
 

In this section, a novel technique to determine the 

speed-torque curve of a single-cage induction motor is 

addressed.  The available catalog data, consisting of rated 

torque (Tn), break-down torque (Tb), starting torque (Tst), and 

rated slip (sn) are regarded as input data. To derive the 

expression of speed-torque curve, the motor equivalent circuit 

model in Figure 1 is used. It is convenient to convert the 

common T-form model into Thevenin’s circuit expressed in 

term of Thevenin’s voltage, resistance (Rth), and reactance 

(Xth). Then, the motor’s electrical torque Te in Nm can be 

sR lsjX

mjX

sI

rR

s

lrjX

V

rI thR thjX
rI lrjX

rR

s
thV

 
 

Figure 1. Equivalent circuit model of induction motor 
 

represented as a function of slip (s) with the following three 

coefficients: 

2
2 1 0( )eT s s s       (1) 

 

where, 

2 2 2
0 ( ( ))r th th lrR R X X      (2) 

 

1 02 th rR R     (3) 

 

2
2 03 ( )th sm rV R      (4) 

 
sm denotes the mechanical synchronous speed (rad/sec). 

Thevenin’s voltage, resistance, and reactance in Figure 1 can 

be expressed as, 

2 2 2 2 2( ( ) )th m n s m lsV X V R X X    (5) 

 

2 2 2( ( ) )th s m s m lsR R X R X X    (6) 

 

2

2 2

( )

( )

s m ls m m ls
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s m ls

R X X X X X
X

R X X

 


 
 (7) 

 

Vn in (5) indicates rated voltage. Rs and Rr correspond to stator 

and rotor resistances, respectively. Xls, Xlr, and Xm are related 

to stator leakage, rotor leakage, and mutual reactance, 

respectively. To determine the speed-torque curve from the 

motor’s catalog information, a pair of operating points related 

to break-down torque (Tb) at s=sb and starting torque (Tst) at 

s=1 are needed. Substituting s=1 into (1) gives, 

 2 1 01stT         (8) 

 

Rearranging (8) gives, 

 2 1 01stT        (9) 

 

Next, substituting s=sb into (1) gives, 

2
2 1 0( )b b b bT s s s       (10) 

 

By taking the derivative of the torque equation in (10) with 

respect to slip and setting it to zero, the coefficient 0 can be 

found in terms of breakdown slip (sb) as, 

2
0 bs      (11) 

 
Substituting (11) into (10) gives, 

 2 12b bT s      (12) 
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The coefficient 1 can be expressed by equating (8) and (12) 

as, 

2
1 ( (1 ) 2 ) ( )st b b b b stT s s T T T      (13) 

 

After substituting (11) and (13) into (9), the coefficient 2 can 

be rearranged to 

2
2 ( (1 ) ) ( )b st b b stT T s T T      (14) 

 

It is evident from (11), (13) and (14) that the toque 

coefficients in (1) can be determined from the technical data 

on rated, starting, and breakdown torques, as well as rated and 

breakdown slip. Because the breakdown slip is an unknown 

variable, it is also estimated from the technical information. 

According to (1)-(4), the ratio between breakdown and rated 

torque (Tb/Tn) can be expressed as,  

2 2 22 /

2 (1 / )

b n b n th r b

n b n b th r

T s s s R R s

T s s s R R

 



  (15) 

 

Referring to (15), the ratio between Thevenin’s and rotor 

resistances (Rth/Rr) is needed. It can be solved from the ratio 

of breakdown and starting torques (Tb/Tst), which can be 

derived from (1)-(4) as, 

2 2

2

1 (2 / )

2 (2 / )

b th r b b

st b th r b

T R R s s

T s R R s

 



  (16) 

 

After rearranging (16), the ratio Rth/Rr is given by, 

2

2

1 2 ( / )

2 ( / 1)

th b b b st

r b b st

R s s T T

R s T T

 



  (17) 

 

By substituting (17) into (15), the breakdown slip can be then 

expressed in terms of a quadratic equation  

2 2 1 0n b n n
b b

n b st b

T T T s
K s K s K

s T T T

     
          

     

 

(18) 

 

Here, 

   / 1 / 1n b b stK T T T T     (19) 

  

Finally, the break-down slip can be found from (18) using the 

given rated, breakdown, and starting torques, along with rated 

slip. The breakdown slip is required for determining the 

accurate speed-torque curve of a single-cage induction motor 

from its technical data. Since all coefficients in (1) are derived 

from the motor rated voltage (Vn), they cannot be used for 

predicting the performance curve under the reduced-voltage 

starting technique such as with autotransformer or star-delta 

starter. Hence, the torque equation in (1) can be further 

modified to 

 
22

2
1 0

e n

s
T V V

s s



 


 
  (20) 

where V is the applied voltage.  

 

 

3. Validation of Proposed Torque Model 
 

It is interesting to validate the proposed speed-

torque model with the given coefficients in (11), (13), and 

(14) against the exact T-form equivalent circuit in Figure 1. 

Let us consider the medium voltage induction motor, rated at 

4.16kV and 1000HP. A known set of the motor’s parameters 

with conventional equivalent circuit is initially employed to 

produce the required input technical data, which are starting, 

breakdown, and rated torques, as indicated in Table 1. The 

generated data are used instead of the actual technical 

specifications, because it is easy to check correctness of the 

proposed model against the exact equivalent-circuit model. 

Then, the data in Table 1 are applied to calculate the main 

coefficients 0, 1, and 2 shown in Table 2. The coefficients 

are further applied to evaluate the speed-torque curves under 

two different voltages as displayed in Figure 2. The true 

curves directly generated from the equivalent-circuit 

parameters are also displayed for comparison. It is noticed 

from Figure 2 that the speed-torque curves between the 

equivalent circuit approach and proposed torque model in (20) 

fully agree for all cases with 100% and 80% applied voltages. 

The model validation is further carried out using the published 

technical data of the 4.16kV and 1000HP motor (Ansuj, 

Shokooh, & Schinzinger, 1989). These technical data are 

initially employed to evaluate the coefficients 0, 1, 2 shown 

in Table 3. These coefficients are further applied to compute 

the speed-torque curve from (20), displayed in Figure 3a. The 

true curve published in (Ansuj, Shokooh, & Schinzinger, 

1989) is also given for comparison. A good agreement 

between them is found, in a satisfactory manner. 
 

Table 1. Parameters of a 1000HP motor and technical data 
 

Parameters of 1000HP, 60Hz, 4.16kV motor 

 

Rs,  Rr,  Xls,  Xlr,  Xm,  Nr, rpm J, kg.m2 

0.47 0.63 2.37 3.42 65.22 3510 21 
       

Manufacturer data generated from above set of the parameters 

 

Nr, rpm Tn, Nm Tb, Nm Tst, Nm 

3510 1561 3466 798 
       

 

Table 2. Computed coefficients 
 

0 1 2 

   

1.2102×10-2 1.6812×10-2 8.2104×102 
   

 

 
 

Figure 2. Speed-torque curves for two applied voltages 
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Table 3. Motor technical data and computed coefficients 

 

 

 

 

 

 

 

 

 

 

Moreover, a validation of speed-torque curves is 

conducted. The computed torque curves are compared against 

those generated from the equivalent-circuit parameters that are 

fully obtained from a modified shuffled frog-leaping (MSFL) 

algorithm (Perez, Gomez-Gonzalez, & Jurado, 2013). The 

published technical information for 40HP and 5HP single-

cage motors as shown in Table 3 is employed. The plots of 

speed-torque curves from the proposed and the published 

MSFL method are exhibited in Figures 3b and 3c, 

respectively. It is found that the torque curves are relatively 

close to each other. According to the presented results, the 

model proposed in (20) could be applied to estimate the 

speed-torque curves of single-cage induction motors with 

sufficient accuracy, using available catalogue data in the 

accelerating-time calculation. 

 

4. Analytical Solution of Accelerating Time 
  

 The accelerating time of induction motor can be 

determined from first-order dynamic motion equation (Tooley, 

2010), 

 

2

60

s r
acc

N dn
J T

dt


     (21) 

 

where J is total inertia in kg.m2, which is sum of motor Jm and 

driven-load JL inertias. nr is per-unit speed, which is the ratio 

of actual rotor speed Nr to synchronous speed Ns (both in 

rpm). The acceleration torque Tacc is the difference between 

motor and driven-load torques, 

( )acc e mT T T     (22) 

 

According to the IEEE standard (IEEE Task Force, 1995), the 

driven-load torque can be expressed as 

   
2

0 ( 1 1 )m mT T A s B s C      (23) 

 

where  

(1 )rs n      (24) 

 

Tm0 in (23) is torque at synchronous speed. The characteristic 

of motor driven load can be adjusted to be proportional to 

speed squared, to speed, or a constant, by choice of the 

coefficients A, B, and C. By substituting (20) and (23) into 

(22), the acceleration torque can be expressed in terms of per-

unit speed (nr) as, 

4 3 2
3 2 1 0

2
2 1 0

r r r r
acc

r r

n b n b n b n b
T

a n a n a

   


 
 (25) 

 
 

(a) 1000HP motor 

 
 

(b) 40HP motor 

 
 

(c) 5HP motor 
 

Figure 3. Comparative speed-torque curves 

 

The coefficients in (25) are listed in Appendix A. After 

substituting (25) into (21) and re-arranging, the time tacc 

required for motor to accelerate from rest to any given speed 

(nhi) can be found as 

2
2 1 0

4 3 2
3 2 1 00

2

60

nhi
s r r

acc r

r r r r

JN a n a n a
t dn

n b n b n b n b

   
       

  

(26) 

HP 
Motor manufacturer data Computed coefficients 

f kV sn Tn Tst Tb 0 1 2 
   

1000 60 4.16 0.015 2008.4 622.6 4317.8 0.00427 0.0164 0.06354 
40 50 0.4 0.09 190 260 370 0.13834 0.18844 344.96 

5 50 0.4 0.07 25 15 42 0.04003 0.04467 14.93 
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This can be expressed as a partial fraction  

31 2 4

1 2 3 40
30

nhi
s

acc r

r r r r

JN kk k k
t dn

n n n n n n n n

  
    

    


     (27) 

where 

   

2
2 1 1 1 0

1
1 2 1 3 1 4

a n a n a
k

n n n n n n

 


  
  (28) 

 

   

2
2 2 1 2 0

2
2 1 2 3 2 4

a n a n a
k

n n n n n n

 


  
 (29) 

 

   

2
2 3 1 3 0

3
3 1 3 2 3 4

a n a n a
k

n n n n n n

 


  
 (30)  

 

   

2
2 4 1 4 0

4
4 1 4 2 4 3

a n a n a
k

n n n n n n

 


  
 (31) 

 

After integrating (27), the total accelerating time (tacc) of the 

motor is 

 
4

1

ln 1 /
30

s
acc j hi j

j

JN
t k n n





   (32) 

 

The accelerating time in (32) can be computed once a set of 

solutions (n1, n2, n3, and n4) of the fourth-order polynomial in 

the denominator of (26) is found. Let nf denote the per-unit 

full-load speed (stable equilibrium point) which is in the set 

{n1, n2, n3, n4}. Equation (32) is not valid to compute the 

accelerating time when the upper speed nhi is exactly equal to 

the full-load speed nf since it will go to infinity. To avoid this 

problem, an upper bound of the integral should not reach the 

exact value of speed nf but rather be in the neighborhood of nf 

by a factor . Thus, the time in which the induction motor 

accelerates from standstill to full-load speed can be modified 

to, 

 
4

1

ln 1 ( ) /
30

s
acc j f j

j

JN
t k n n






    (33)  

 

By trial-and-error it is found that a small value of  at about 

0.0002 is appropriate for computing the accelerating time with 

sufficient accuracy.  The accelerating time calculation of a 

three-phase single-cage induction motor can be achieved as 

long as the acceleration torque remains positive for the whole 

range of running speeds. 

 

5. Step-by-step Procedure of Accelerating Time 

Calculation 
 

 This section gives a step-by-step procedure for 

calculating the accelerating time. It can be summarized as 

follows: 

1) Preparing the required catalog information of induction 

motor such as rated, breakdown, and starting torques (Tn, Tb, 

Tst), rated slip (sn), as well as mechanical load-torque profile 

described by the coefficients (A, B, C) with the synchronous 

torque Tm0 in (23). 

2) Computing the break-down slip (sb) from (18) using the 

technical information. 

3) Computing the coefficients 0, 1, 2 from (11), (13), (14), 

respectively. 

4) Setting equation (25) to zero, then solving for a set of nr as 

solutions (n1, n2, n3, n4) with the aid of (A-1)-(A-7). 

5) Computing the accelerating time from (33) after evaluating 

the coefficients (k1-k4) from (28)-(31). 

 

6. Results and Discussion 
 

In this section, the accelerating times calculated 

from the analytical formula in (33) are compared against those 

accurately obtained from time-domain dynamic simulation, 

for validation. First of all, it is interesting to compare for 

accuracy the accelerating time obtained from a simplified 

approach (ABB Motor Guide, 2014) against the proposed 

method, and with time-domain dynamic simulation. Let us 

choose the simplest profile of the driven-load torque for the 

1000HP motor (Table 1) as a constant type with following 

parameters: Tm0=500Nm, A=B=0, C=1.0, for conducting the 

study. Referring to the manufacturer’s guidance material 

(ABB Motor Guide, 2014), the accelerating time is expressed 

by tacc=J×K1/Tacc, where the accelerating torque Tacc is simply 

approximated by 0.45×(Tst-Tb)-KLTm. The value of the 

constant K1 is 377 for a two pole motor, and the load 

coefficient KL is equal to 1.0 for a constant-torque type load. 

After evaluating the average accelerating torque using 

breakdown and starting torques from Table 1, the time 

required to accelerate the 1000HP motor up to full speed is 

estimated as 5.6 sec. For comparison with the proposed 

method, the main coefficients 0, 1, 2 in Table 2 are then 

employed to evaluate the coefficients in (27) as given in       

(A-1)-(A-7)  (Appendix A). These coefficients are applied to 

solve for all four possible roots (n1, n2, n3, n4) using the 

analytical approach in (Zwillinger, 2018). These roots permit 

calculation of the k-coefficients in (28)-(31) for accelerating 

time calculation as shown in Table 4 (column 2). It is evident 

that the analytical formula in (33) gives a solution of the 

accelerating time of about 10.4 sec. The difference in 

accelerating time estimates from manufacturer’s technical 

guidance and the proposed method is almost two-fold. Next, 

to compare with an accurate time-domain dynamic simulation, 

the fifth-order model of induction motor is employed to 

generate the speed response shown Figure 4a. It is clearly seen 

that the motor takes a total time of 10.5 sec to reach a steady-

state condition. The computed acceleration times obtained 

from the proposed method and time-domain simulation agree 

with each other very well.  Thus, the proposed method is far 

better than the simplified approach found in the 

manufacturer’s technical documentation. 
A comparison between the proposed method and 

dynamic simulation was further conducted with varied applied 

input voltages. In this study, a more complex mechanical load 

profile for the 1000HP motor was set via (23) with the 

following parameters: Tm0=700Nm, A=0.5, B=0.2, C=0.3. 

This profile is plotted in Figure 2. According to Table 4 

(columns 3 and 4), the root n1 is related to the stable 

equilibrium point. The times required for motor to accelerate 
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Table 4. Computed coefficients and accelerating times 

 

 
Tm0=500Nm, A=B=0, C=1 Tm0=700Nm, A=0.5, B=0.2, C=0.3 

100% voltage 100% voltage 80% voltage 
    

n1

 
0.9923 0.9895 0.9835 

n2

 
-0.6216 -0.9813 -0.7397 

n3

 
-0.6216+j9.9641 0.8042+j1.0644 0.6865+j0.8623 

n4

 
-0.6216-j9.9641 0.8042-j1.0644 0.6865-j0.8623 

k1

 
-1.52683×10-5 -1.5381×10-5 -2.5219×10-5 

k2

 
3.3016×10-3 1.3321×10-3 1.8311×10-3 

k3

 
-0.0016+j0.00987 -(6.5837-j2.2343)×10-4 -(9.0295+j1.3794)×10-4 

k4

 
-0.0016-j0.00987 -(6.5837+j2.2343)×10-4 -(9.0295-j1.3794)×10-3 

tacc

 
10.4sec 7.73sec 14.47sec 

    

 

 
 

(a) with constant torque load 

 
 

(b) with difference in voltage 
 

Figure 4. Speed responses with 100% and 80% applied voltages 

 

from rest to full speed (n1) are 7.73 sec and 14.47 sec for the 

cases with 100% and 80% applied voltages, respectively. To 

validate the proposed formula in (33), the comparative 

responses of motor speed taken from the time-domain 

dynamic simulation are shown in Figure 4b. It is evident that 

the motor takes 7.8 sec and 14.75 sec to reach the full-load 

speeds in the cases with 100% and 80% applied voltages, 

respectively. Thus, the accelerating times obtained from the 

analytical approach closely agree with those from the time-

domain simulations. 
            Next, validations are further carried out when the 

mechanical driven-load torque in (23) is increased via the 

parameter Tm0 until the motor is almost unable to accelerate. 

The accelerating time estimates from the analytical and time-

domain approaches are plotted against each other in Figure 5. 

It can be observed that the motor takes longer to accelerate as 

the mechanical load torque increases. The accelerating time 

begins to rise rapidly in a quadratic manner with the load 

torque. At the load-torque level corresponding to the point a, 

the motor acceleration torque is nearly insufficient to bring it 

up to full speed. For example, referring to Table 1, it is found 

that the 1000HP motor is capable of supplying the net starting 

torque of 798Nm. Because the mechanical load requires 

95.9% of 798Nm (point a), it should come as no surprise that 

the accelerating time is greatly increased due to a significant 

reduction in the acceleration torque at locked-rotor condition. 

At the point a, Figure 5 shows that the computing error (∆E) 

between the analytical and time-domain methods is about 

6.8%. As the mechanical load torque is increased further up to 

the critical level at point c (98.9% of 798Nm) until the 

acceleration torque at the starting condition is almost 

exhausted, the error (∆E) is much more pronounced. The 

growth of error is possibly due to an increase in the degree of 

motor nonlinearity, causing the simplified first-order model in 

(21) used for accelerating-time calculation to be inappropriate. 

It should be noted that the calculation errors are exhibited in 

the same way for the case of 80% applied voltage. The 

corresponding errors (∆E) in Figure 5 are displayed in Figure 

6. Most of them lie between 1% and 8% as long as the 

mechanical load torque does not approach the critical level. 

Based on the presented results, good agreement of the 

accelerating time between the proposed method and the time-

domain simulations was observed in a satisfactory manner.  
 

6. Conclusions 
 

This paper presented a novel comprehensive 

analytical approach for estimating the accelerating time, 

required for setting the overcurrent protective devices of a 

single-cage induction motor. This approach allows the motor’s 

speed-torque curve to be computed straightforwardly from 

commonly offered catalogue information, without the need for 

conventional equivalent-circuit parameters. With the 

presented analytical formulae, the calculation of a motor’s 

accelerating time is easily done without the conventional 

commercial simulation tools. According to the presented 

results, good agreement of the accelerating time estimates 

between the proposed analytical method and time-domain 

dynamic simulations was observed, in a satisfactory manner. 

Hence, the proposed method is useful for the rapid estimation 

of accelerating time, assisting engineers to set the protective 

overcurrent devices of induction motors, and to assess the 

power quality of power distribution system when affected by 

starting the motor. It should be noted that the proposed 

technique is capable of evaluating the accelerating time under 
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Figure 5. Accelerating times from analytical and time-domain 

approaches 

 

 
 

Figure 6. Errors in the computed accelerating times 

 
voltage sag produced by the motor starting, once the voltage 

magnitude at the point of common coupling is determined 

using the motor’s locked-rotor current before plugging it into 

the proposed torque formula. Moreover, for hot starts when a 

motor is restarted after reaching its normal operating 

temperature, the acceleration time may not be correctly 

estimated because the developed torque formula does not take 

into account temperature rise effects on rotor resistance. Also, 

this approach is not well suited for modern AC drives since 

the motor’s accelerating time is directly determined by the 

ramp-up control implemented in most V/F inverters. Finally, 

the developed analytical formula could be further employed to 

generate the speed-torque curve, offering a proper selection of 

single-cage motors to match their mechanical drive loads. 
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Appendix 

 
This appendix provides a list of coefficients in (26) 

0
2 1/( )ma AT                     (A-1) 

0
1 1(2 ) /( )ma AT                     (A-2) 

  0
0 0 11 /( )ma AT             (A-3) 

3 1 2/ /b a a B A           (A-4) 

2 0 2 1 2/ / /b a a a B a A C A                     (A-5) 

 2 0
1 0 2 1 2 2/ / / / ( )r mb a B a A a C a A V V AT   Vn  2 0
1 0 2 1 2 2/ / / / ( )r mb a B a A a C a A V V AT        (A-6) 

 2 0
0 0 2 2/ / / ( )r mb a C a A V V AT  Vn 2 0
0 0 2 2/ / / ( )r mb a C a A V V AT                    (A-7) 

 

Nomenclature 

Tn, Tb, Tst   rated, break-down, starting torque (Nm) 

Te, Tm, Tacc  electrical, mechanical, accelerating torque (Nm) 

sn, sb   rated, break-down slip 

Vn, Vth,   rated, Thevenin’s voltage (volt) 

Rth, Xth    Thevenin’s resistance, reactance (ohm) 

Rs, Rr    stator, rotor resistance (ohm) 

Xls, Xlr, Xm   stator leakage, rotor leakage, mutual reactance (ohm) 

J                                              inertia (kg.m2) 

Ns, Nr   synchronous, rotor speed (r.p.m.) 

nr   rotor speed (per unit) 

A, B, C   torque coefficients  

Tm0    mechanical torque at synchronous speed (Nm) 

 

 

 

 

 


