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Abstract 
 

The Quantization Process is having a huge and effective influence a wide range of mechanics problems. The influence 

of quantization doesn't only eases mechanical problems but also enlarges the cybersecurity standards. Quantization and 

cryptography are two sorts of quantum processing that utilize the concept of qubits rather than bits. The thought of fast 

computations with quite one difficulty stage is more practical within the era of quantum information. The advancement of 

quantization processes has given rise to the science of utilizing quantum mechanical properties to hold out cryptographic 

norms within the field of cybersecurity. In the present paper, we attempt to utilize the concepts of quantization in image 

encryption which ends up in quantum cryptography. We plan a state-of-the-art image encryption scheme for digital data-

supported quantum spinning and rotation matrices. As an easy practice, we use a matrix-supported two-dimension rotation matrix 

with real entries. This rotation matrix together with Trigonometric Chaotic Map (TCM) is implanted further into a desired 

sizeable matrix to implement for image encryption. The benchmark images are employed for encryption alongside a rotation 

matrix of the specified size and rotation angle. Results are displayed for analysis. 
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1. Introduction  
 

 Transfer of huge data, financial transactions, secure 

defense-related messages, secure bank communications, and 

other public and private information are now freely possible 

on fast computing machines. The transfer of data and 

knowledge by any mode brings significant harm to any 

organization. The world of communication has enormous 

issues which have been tremendously reduced by the 

invention of fast computing machines and improvement in 

various applications. That is why the secrecy and 

confidentiality of digital information have become one of the 

foremost unavoidable matters within this world; it is a 

neighborhood of continuous computer images. These images 

 
have a crucial role in our daily working environment. 

Computer images have properties like repetition and various 

connectivity in between neighboring cells. This property 

makes it crucial for the traditional crypto algorithms to 

manage the online enciphering, thanks to necessarily high 

computational efficiency. Various methods have been 

developed to store many of these computer images; a number 

of them use chaotic theory to rearrange full crypto schemes 

with images that comprise confusion/diffusion through TCM 

and matric manipulations (Bano, Saleem, Shah, Thammarat, 

& Ronnason, 2020; Bano, Shah, & Shah, 2016a, 2016b, 2017; 

Hamza, & Titouna, 2016; Orawit, Thammarat, & Bano, 2021; 

Tong, Zhang, & Wang, 2016). A large number of innovative 

schemes have been developed to deal with the nonlinear part 

of block ciphers for the confusion within the blocks. The 

concept of quantum computers has been much enhanced 

which may be undermined to plain crypto algorithms. The 

essential rule of quantum computers is to re-addressed the 



K. Sirikantisophon et al. / Songklanakarin J. Sci. Technol. 44 (4), 1000-1007, 2022  1001 

input information condition that may be done by a linear 

combination of varied related inputs to conforming various 

related outputs. Quantum schemes are almost a kind of a 

circuit consisting of quantum gates that perform on qubits 

(Barranco, Bennett, Cleve, DiVincenzo, Margolus, Shor, 

Sleator, Smolin, & Weinfurter, 1995; Deutsch, 1985; Iliyasu, 

Dong, & Hirota, 2011). The applications of qubits and their 

related schemes are widely discussed (Monz, Kim, Hansel, 

Riebe, Villar, Schindler, Chawalla, Hennrich, & Blatt, 2009; 

Nielsen, & Chuang, 2000). At times, a quantum calculation 

has been attached with various branches of science and 

innovation, for example image processing, pattern 

recognition, speech recognition, and quantum games. The 

quantum machines, weaken the traditional cryptosystem. This 

utilizes mechanical characteristics as an example of 

superposition and entanglement. Quantum cryptography plans 

are likely to be helpful to the sole downsides of the 

traditional cryptosystem. This has given quantum physical 

standards a bit like the no-cloning hypothesis and Heisenberg 

theoretic (Trugenberger, 2002a, 2002b; Venegas-Andrea, & 

Bose, 2003a, 2003b; Yang, Xia, Jia, & Zhang, 2013). 

Quantum computers due to scientific theory are friendly to 

brute force attacks, so it's easily predictable. This creates an 

enormous threat to the national security level. Cryptography 

provides major and fixes standards of physics. These 

machines are supported by the 2 simple rules of practical 

physics, the Heisenberg uncertainty standard and thus the 

photon polarization. The sunshine photons can have 

enraptured especially ways. A Photon channel with the 

right value of polarization is typically segregated as captivated 

photons, and the Heisenberg uncertainty principle guideline 

gives rise to quantum cryptosystem. This is often a 

substitute to form sure security and overcome secret intruders 

(Branson, 2013a, 2013b; Man, 2017; Sravan, Suneetha, & 

Sekhar, 2010; Sudha, Sekhar, & Reddy, 2007; Waseem, & 

Khan, 2018). Particles like electrons, neutrinos, and quarks 

which have half inner momentum are called spin. In 

the present paper, we develop half-spin matrices to support 

cryptography by the utilization of rotational operators of 

quantum electrodynamics. The half-rotating matrices are 

often used for input keys encryption also for encoding the 

digital images. The encryption process would be retrieved by 

decoding the keys first followed by utilizing stage data then 

by making use of keys with stage data of the knowledge to 

revive the message. If anybody gets one among the variables 

(keys or period of keys or period of the message), he would 

not be able to restore the message without knowing other 

components. The remaining sections comprise the quantum 

rotation matrices and TCM, an algorithm for the encryption, 

an experimental model, security and performance analysis, 

and differential analysis intrusions followed by a conclusion. 

 

2. Rotation Matrices for Quantization 
 

The most important linear transformations on R2 

and R3 are people who produce Reflections, Projections, and 

Rotations. An operator that rotates each vector in R2 by an 

angle α is named a Rotation operator. A detailed functional 

differential within the sort of angular spinning is given in 

Sudha, Sekhar, and Reddy (2007). A simplified form for 

angular operators that helps design in image encryption is 

considered below. 
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3. Proposed Image Encryption Technique based on Rotation Operator 
 

Consider the matrices a, b, c, d are the defining parameters to be utilized in rotation matrices followed by a global 

matrix for encryption purposes. 
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We obtained 24 matrices M = {M1, M2, M3, . . . , M24}. 

The flow chart for the image encryption technique is explained in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Flow chart for image encryption 

 

3.1 Image encryption using fixed rotation matrices 
 

- Consider a target image as layers, then convert 

these layers of the image (RGB) into a 4×n 

order array. 

- Select the phase for encryption that is 

understood by both the sender and the receiver. 

- To obtain sub-matrices Mi from the set of 

matrices, M, we substitute the chosen phase 

above into Equation 5 and apply TCM. 

- Select a key of any length [s, t, u, v, …]  with 

modulus 24 and consider it a matrix from a 

series of M in Equation (5). 

- Apply encryption algorithm to every row layer 

of the target image like selected rotational 

matrices. 

- After encryption is applied, change the size of 

the matrix layers to the first. 

- Collect all the matrix layers into a matrix then 

extended into an encrypted image in RGB. 

- Prescribe criteria to encrypt the key to be used 

for global encryption is given in Tong, Zhang, 

and Wang (2016). 

 

3.2 Decryption processing using inverse rotation 

matrices 
 

Decryption may be a reverse process started by 

employing the encrypted image within the previous section. 
- Get the RGB encrypted image from previous 

steps and transform it into a matrix of size 

order. 

Secret phase equation 

Rotation matrices and TCM as 

described 

Select some secret key of a 

prescribed length 

 

Modular length of key together 

with rotation matrices and TCM 

encrypt with an arbitrary random 

matrix 

 

Target color image 

Red Green Blue 

Encrypted 

Red 
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- Convert the matrix into layers. Choose all 

colored layers from them. 

- Evaluate the phase data using Equation (5) and 

place them in a worldwide setting. 

- Original keys as used for encryption should be 

decrypted using inverse matrices from the 

worldwide series M. Each matrix must have its 

inverses. 

- On using these inverse matrices, decrypt each 

layer array. 

- Transform the array layer’s dimensions 

because it had been received in an encrypted 

image. 

- Combine these layers to form a matrix image 

because it had been within the first image. 

 

4. Application of the proposed algorithm into target  

    images 
 

The suggested algorithm is successfully 

implemented to the target images of ’Lena’ and ’Fruits’ for 

dimension 512×512 and produced corresponding encrypted 

images as it was done in our previous papers (Bano, Saleem, 

Shah, Thammarat, & Ronnason, 2020; Bano, Shah, & Shah, 

2016a, 2016b, 2017; Orawit, Thammarat, & Bano, 2021). 

Extended performance analyses are administered (Fig.2a, 2b). 

Performance analysis of RGB layers of such images is also 

carried out and reported. The key equation to settle on the 

phase at each side is selected as: 

 

y = 330 x (2M-1)mod 720, 

where M ϵ [1, 24] and θ = mean (y). 
(6) 

 

The symmetric cryptography algorithm can be 

obtained by taking θ = 380.5 in the above equation. A class of 

modular operations applied on selective matrices from the 

series M are changed regarding the size of a key by merging 

zeros and using the calculated phase. The encryption with 

selective keys is given in (Table 1, and Figures 3a, 3b). 

 

5.  Efficiency of the Proposed Algorithm 
 

To test the efficiency of the proposed algorithm for 

strength and security, a series of conventional tests have been 

performed over encrypted images which contain sensibility, 

irregularity, and actual experiment. These are described here. 

 

5.1 Random test on cipher images 
 

The efficacy of any algorithm to a prescribed 

cryptosystem must have several assertions, like productivity, 

      
 

Figure 2. Target images of the Lena and fruits 
 

a  

b  
 

Figure 3. a, Encrypted images of the Lena and b, Random mixing in 
picture (Lena641*Lena64) 

 

acute intricacy, and smooth distribution. To test these, we 

used the quality NIST test for randomness of digital images, 

just like the Lena. The results of these tests are obtained and 

presented in Table 2. It is observed, given the achieved 

results, that the ciphers in our encryption algorithm are often 

asserted to be very irregular in their output. 

 

5.2 Smoothness of pixels 
 

To test the smoothness of the digital images, we 

evaluated the histograms of both cipher and plain images as 

given in (Trugenberger, 2002) and reported in Table 2. 
 

Table 1. Cipher images obtained using fixed spinning operators 

 

Key Key Matrices Cipher images 

   

1 mod 24 = 1 M1 C1 M1 x (IR, IG, IB)  
3 mod 24 = 3 M3 C2 M3 x C1  

7 mod 24 = 7 M7 C3 M7 x C2 

14 mod 24 = 14 M14 C4 M14 x C3 
29 mod 24 = 5 M5 C4 M5 x C4  

59 mod 24 = 11 M11 C5 M11 x C5  
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Table 2. NIST results for the encrypted image 

 

Test 
P-values of encrypted images 

Results 
Red  Green Blue 

     

Frequency distribution  0.18410           0.45703 0.24495 Success 
The rank of the matrix  0.28191 0.28191 0.28191 Success 

Iterations (M = 10,000)   0.21762 0.90595 0.54043 Success 

Long iterations of ones  0.67514 0.71270 0.71270 Success 
Overlapping templates  0.85988 0.85988 0.85988 Success 

No overlapping templates  0.92285 0.54825 0.99989 Success 

Radial DFT  0.88464 0.38399 0.029523 Success 
Entropy  0.16074 0.33744 0.69469 Success 

Universal  0.99445 0.99292 0.99659 Success 

Serial P values 1 0.17143 0.039989 0.65972 Success 
Serial P values 2 0.87464 0.006063 0.98104 Success 

Cumulative sums forward  0.3647 0.34767 0.35256 Success 
Cumulative sums reverse  0.35221 0.89099 0.77967 Success 

Random excursions X = -4 0.57183 0.0001427 0.97465 Success 

 X = -3 0.15716 0.40359 0.95603 Success 
 X = -2 0.099872 0.54469 0.89146 Success 

 X = -1 0.29907 0.47837 0.88326 Success 

 X = 1 0.0037788 0.75769 0.85692 Success 
 X = 2 0.0027926 0.43307 0.082712 Success 

 X = 3 0.10337 0.67278 0.68683 Success 

 X = 4 0.2619 0.66907 0.1332 Success 
      

 

We have computed the histograms of 3 256 digital 

images of size 256×256. These images have various verifiable 

attributes. In Figures 3a and 3b, the histograms of plain 

pictures contain very sharp gradients thus the histograms of all 

encrypted images under the proposed scheme are genuinely 

smooth as compared to the primary image, which makes 

quantifiable assaults troublesome. Subsequently, it does not 

give any insight to be utilized during a test assault on the 

enciphered images (Figures 4a, 4b).   

a  

b  

 
Figures 4. a, Histograms of original images Lena and b, histograms of 

original images fruits 

5.3 Pixels correlation test 
 

Neighboring pixels of any picture must be 

exceedingly associated either in horizontal, vertical, or corner 

to corner directions. Hence, a protected encrypted plan should 

evaluate this relationship to extend obstruction against 

measurable interrogation. To determine the connection 

between neighboring pixels during a transparent and 

encrypted image, the accompanying method has been 

completed. Initial, 10000 sets of two nearby pixels from the 

plain and encrypted image were chosen (Trugenberger, 2002). 

At that time correlation coefficients of every combined pair 

were ascertained utilizing the accompanying mathematical 

expression:  

,

,
2 2

x y

x y

x y

r


 


 
 

x and y are the two values of consecutive pixels 

within the image, σx, y is the covariance, σx
2 and σy

2 are 

variances of a random variant. The correlation coefficients of 

cipher and plain images have different values as represented 

in Table 3 associated with plain and cipher images given in 

Figures 2, 3a, and 3b.  

 

5.4 Intensity of plain and encrypted figures 
 

The color intensity of a picture was monitored by 

the adjacency pixels of the image. The variance of color 

values is often taken as color depths or bit depth. The amount 

of pixels concerning the intensity of a picture is given in 

Figures 6a, 6b, 6c, 7a, 7b, 7c. The histograms contain sharp 

peaks within the pixels distributions of encrypted figures; the 

color intensities were quite smooth in RGB distributions. The 

resulting images obtained from the proposed algorithm are the 

best and have no clue to the intruders. 
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Table 2. Coefficient of correlation of the plain and the cipher figures 

 

Images 

Plain Encrypted (present algorithm) Ref 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

          

Lena 0.9740 0.9868 0.9612 -0.0113 -0.0093 0.0027 0.041 0.0107 0.0097 

Fruits 0.9753 0.9757 0.9567 -0.0129 -0.0155 0.0012 - - - 
          

 

  
a b 

 
Figures 5. a, Histograms of encrypted images Lena and b, histograms of encrypted images fruits 

 

   
a b c 

 
Figures 6. a, b, c, RGB images of Lena 

 

   
a b c 

 

Figures 7. a, b, c, histograms of RGB images of Lena 

 

5.5 Entropy evaluation 
 

The leading characteristic of randomness is 

“entropy”. Entropy may be a statistical measure of 

randomness that will characterize the feel of the input image 

or an encrypted image. The entropy of the image is often 

calculated by independent random events from a gaggle of 

discrete events and its probabilities of happenings over the 

whole image, then the sum of the merchandise of events and 

its probabilities over the whole pixels of a picture is that the 
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entropy. The estimation of an ideal data entropy is 8. Different 

clear and encrypted image entropy obtained in Table 4 for the 

primary images of Figures 2. These entropies are on the verge 

of hypothetical estimation. In the encryption procedure 

leakage of data is not important because the method is 

protected from entropy intruders. A comparison of entropy of 

the proposed algorithm with those existing has for encrypted 

Lena image is better than the prevailing algorithm (Table 5). 

 
Table 5. Comparative entropy of the Lena picture of size 256 x 256 

 

Scheme Entropy 

  

Proposed algorithm 7.8988 
Sun algorithm 7.9965 

Baptista  algorithm 7.9260 

Wong algorithm 7.9690 
Xiang algorithm 7.9950 

  

 

5.6 Differential analysis  
 

Differential analyses are required to form an 

encryption scheme robust against any differential attacks. It 

was done and we found the present scheme has enough 

suitability to any clear image. The sensitive analysis as was 

wiped out (Tong, Zhang, & Wang, 2016) has been 

administered for 2 target images, the Lena and the Fruits, and 

results are reported in Table 6. 
Comparison of our proposed results with existing 

reported has been made and located a high resistance against 

differential and linear attacks. 

 

6. Conclusions 
 

A scheme was developed that supported quantum 

angular operators with TCM. Quantum half-spinning 

techniques were used for the encryption of both the key and 

therefore the target image. Different possible key operations 

are investigated and located and it was almost impossible to 

break the modified key and the text because nobody knows 

what matrices have been chosen for multiplication from the 

given set M, this could be 2 matrices or more than 2 matrices. 

The proposed technique is predicated on the semi-spinning of 

the system, therefore the points lying in between -2pi to +2pi 

have infinite possible permutations of the rotation matrices. 

The proposed algorithm's features are an honest contender for 

image encryption purposes reported after statistical analysis 

has been done (Table 7). 
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