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Abstract 
 

A sampling plan can help to determine the quality of products, monitor the goodness of materials, and validate whether 

the yields are free from defects. When the manufacturing process is precisely aligned, defects are minimized during sampling 

inspection. This study proposed a multiple dependent state (MDS) sampling plan under a zero-inflated Poisson quasi-Lindley 

(ZIPQL) distribution, denoted by MDSZIPQL to count zero-inflated data. A genetic algorithm with multi-objective optimization 

was used to estimate the optimal plan parameters to maximize the probability of accepting a lot (Pa) and minimize the total cost 

of inspection (TC) and the average sample number (ASN) simultaneously. A sensitivity analysis of the required sample size 

assessed the performance of the proposed MDSZIPQL as numerical examples compared to the MDS plan under a zero-inflated 

Poisson (MDSZIP) distribution. Simulation study results found that the required sample sizes and ASN of the MDSZIPQL plan were 

less than the MDSZIP plan, indicating that the MDSZIPQL plan performed better than the MDSZIP plan regarding the required 

sample size and ASN. Two real data sets were illustrated under the proposed MDSZIPQL plan and compared to the MDSZIP plan. 

Results showed that the MDSZIPQL plan had a smaller number of required sample sizes, ASN value and TC value than the 

MDSZIP plan (or maximum value of Pa). Therefore, the proposed MDSZIPQL plan was more efficient than the existing MDSZIP 

plan. 

 

Keywords: multiple dependent state sampling plan, multi-objective optimization, zero-inflated distribution, zero-inflated  

                Poisson quasi-Lindley distribution, over-dispersion 

 

 

1. Introduction  
 

 Count data are often encountered in real-world 

applications. Discrete distributions play an important role in 

count data analysis in many research fields such as actuarial, 

environmental, actuarial, engineering, and economic sciences. 

Many discrete distributions have been developed for count 

data analysis (Li et al., 2011). In practice, the Poisson 

distribution is usually used to fit count data. One important 

property of the Poisson distribution is that its mean and 

variance are equal (equidispersion). However, this property is 

often violated in real-life count data that is overdispersed 

 
when the variance is greater than the mean. For example, 

observed data on the number of claims often exhibit a 

variance that noticeably exceeds their mean, and the Poisson 

distribution is not appropriate in such a case. Copious 

researchers have developed distributions for counting data 

with many zeros. Mixed Poisson distributions have been 

applied to count data analyses with overdispersions, such as 

the Poisson-gamma distribution (Hilbe, 2011) and Poisson-

Lindley (PL) distribution (Sankaran, 1970). In 2017, Grine 

and Zeghdoudi proposed a mixed Poisson distribution called 

the Poisson quasi-Lindley (PQL) distribution. The PQL model 

was fitted to several real data sets of the number of errors per 

copying group compared to the Poisson and PL distributions. 

Results showed that the PQL distribution gave a better fit than 

the Poisson and PL distributions. Therefore, the PQL 

distribution can be considered a good alternative for modeling 
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count data by providing more accurate estimates with a better 

fit (Grine, & Zeghdoudi, 2017). 

Overdispersion in data can be caused by several 

factors depending on the situation, one of which is excess 

zeros in the data. The Poisson distribution cannot adequately 

accommodate the number of zeros in the sample. Zero-

inflated distributions are introduced to analyze count data with 

excess zeros (Wagner, Robertson, & Harris, 2011). Some 

researchers tried to modify the Poisson distribution to 

combine excess zeros as the zero-inflated Poisson (ZIP) 

distribution (Lambert, 1992). 

The ZIP distribution is often considered a 

probability distribution for overdispersed data consisting of 

many zeros (Lambert, 1992), and is applied in various fields 

including public health, economics, and production control. 

(Shalini & Abdullah, 2018). Ridout, Hinde, and Demétrio 

(2001) and Fang (2013) evaluated the performance between 

the ZIP model and the zero-inflated negative binomial (ZINB) 

model for count data with overdispersion. They concluded 

that the ZINB distribution was more flexible than the ZIP 

distribution. 

A multiple dependent state (MDS) sampling plan 

decides to accept or reject the current lot based on the 

acceptance of the previous lot. This plan also requires 

continuous samples from both the current and previous lots. 

As a result, the sample size and cost of inspection are reduced. 

In 1976, Wortham and Baker were the first to introduce this 

plan (Wortham, & Baker, 1976). Later, Balamurali and Jun 

(2007) suggested an MDS sampling plan for variable data. 

They observed that the MDS sampling plan was more 

effective than the single sampling plan (SSP) because it 

provided the desired protection with a smaller required sample 

size. As a result, it was reasonable to conclude that the MDS 

plan gave a better performance. An MDS sampling plan for 

the ZIP distribution was created by Wang and Hailemariam 

(2018). The resubmitted SSP, repetitive group sampling and 

quick switching system have all been compared to the MDS 

sampling plan. The MDS sampling plan employs smaller 

required sample sizes and average sample numbers, and 

results show that it is more efficient than the other sampling 

plans. Many researchers proposed MDS sampling plans in 

different situations. For example, Aslam, Nazir, and Jun 

(2015) designed an attribute control chart based on the MDS 

sampling plan, while Nadi and Gildeh (2019) proposed a 

Weibull distribution-based group MDS sampling plan. They 

discovered that the actual mean lifetime of products was 

longer than the specified mean lifetime. Srinivasa, Rosaiah, 

and Naidu (2020) developed an MDS sampling plan for a time 

truncated life under exponentiated half logistic distribution, 

while Aslam et al., (2021) developed a modified version of 

the MDS sampling plan. They claimed that this was more 

flexible and efficient than the existing MDS plan in terms of 

sample size and inspection cost over a time truncated life. 

Increased technological developments showed that 

when the production process was well inspected, the number 

of defective items in the samples or products reduced to 

almost zero. Manufacturers can improve the acceptability of 

their sampling plans by decreasing the required sample size, 

as a larger required sample size increases inspection costs. 

Recently, many researchers have developed different types of 

acceptance sampling plans (ASPs) with ZIP distribution. For 

instance, Loganathan and Shalini (2014) constructed the SSP 

when the number of nonconforming items was under the 

condition of ZIP distribution. Uma and Ramya (2016) 

proposed a ZIP distribution with a quick switching system 

(QSS), while Rao and Aslam (2017) defined the number of 

nonconforming items under the ZIP distribution to construct 

the resubmitted sampling plan. Wang and Hailemariam (2018) 

suggested repetitive group sampling and MDS sampling under 

the ZIP distribution, while Charongrattanasakul and 

Bamrungsetthapong (2021) considered the double acceptance 

sampling plan under the ZIP distribution. 

A comprehensive literature review indicated that 

when the production process is well developed zero defects 

are generally discovered in sample inspections. Three 

important manufacturing objectives from an optimal ASP are 

minimal cost, smallest average sample number (ASN) and 

highest probability of acceptance. In this study, multi-

objective optimization was employed to determine the optimal 

ASP under the proposed process. 

As mentioned, the PQL distribution was used to 

analyze count data with overdispersion. However, this may 

not be suitable for count data with many zeros. Therefore, in 

this paper proposed a zero inflated version of the PQL 

distribution, called the zero-inflated Poisson quasi-Lindley 

(ZIPQL) distribution. The MDS sampling plan was designed 

under a ZIPQL distribution represented by the MDSZIPQL plan. 

Optimal plan parameters for the MDSZIPQL plan were 

determined to obtain the minimum and maximum values of 

the multi-objective function. Sensitivity analysis of the 

MDSZIPQL plan was discussed using various parameter values, 

while the MDSZIPQL plan was presented with two real data sets 

to demonstrate its application. Comparative performances 

between the MDSZIPQL and MDSZIP plans were considered, 

and conclusions were included. 

 

2. Methods 
 

2.1 The PQL distribution 
 

Let X be a random variable distributed as the PQL 

distribution with parameters θ and γ denoted by X~PQL(θ, γ), 

with a probability mass function (pmf) as (Grine and 

Zeghdoudi, 2017) 
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Where x = 0, 1, 2, . . . , θ > 0, γ > -1. The cumulative density 
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For γ = θ the PQL distribution reduces to the PL distribution (Sankaran, 1970). In 2019, re-parameterization of the 

PQL distribution was proposed by Altun (2019), by letting 2
,

(1 )




 





 and the pmf of the PQL distribution then becomes 
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where x = 0, 1, 2, . . . , γ > 0, μ > 0.  Its mean and variance are respectively 
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2.2 Zero inflated distributions 
 

Zero inflated distribution mixes two zero generating processes as a counting distribution under non-negative integers, 

using the pmf ( ; )ξg x  with vector parameters ξ . The pmf of the zero inflated distribution (Lambert, 1992) is given by  
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where x = 0, 1, 2, . . . , 0 < ϕ < 1, and  
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In 1992, Lambert proposed the zero inflated Poisson (ZIP) distribution with the pmf (Lambert, 1992) as 
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where ( ; , ) f x  is the pmf of the ZIP with parameters ϕ and λ, denoted by X~ZIP (ϕ, λ). Its mean and variance are (1 – ϕ)λ and  

λ (1 – ϕ) (1 + λ ϕ), respectively.  

 

3. Results and Discussion 
 

This section proposes a new zero-inflated distribution called the ZIPQL distribution. The MDS sampling plan was 

designed under the ZIPQL distribution and included some simulation and application studies. 

 

3.1 A new zero inflated distribution 
 

A new zero inflated distribution was obtained by mixing a process that generated zeros and the PQL distribution under 

non-negative integers, the so-called ZIPQL distribution. 

Let X~PQL (μ, γ), then the pmf of X under the zero inflated distribution is 
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where a parameter vector ( , , )  Θ  for 0 1,   0   and 0.   Let X be a random variable distributed as the ZIPQL 

distribution with parameters ϕ, μ, and γ, denoted as  X~ZIPQL (ϕ, μ, γ). Its mean and variance are respectively 
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If , (2 ) [(1 ) ]       and    then the ZIPQL distribution reduces to a zero-inflated Poisson Lindley (ZIPL) 

distribution (Xavier, Santos-Neto, Bourguignon, & Tomazella, 2017).  
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Some pmf plots of ZIPQL are shown in Figure 1. For fixed values of μ and γ, the proportion of zeros increases when 

the ϕ value increases; see Figure 1(a). For fixed values of ϕ and γ the proportion of zeros increases when the μ value decreases; 

see Figure 1(b). For fixed values of ϕ and μ the proportion of zeros increases when the γ value increases; see Figure 1(c). 
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Figure 1. Plots of pmf for ZIPQL with specified parameters ϕ, μ and γ 

 

3.2 Parameter estimation 
 

Let Xi be the independent and identically distributed  random variables of size n as Xi~ZIPQL ( , , ).    In this study, 

the maximum likelihood (ML) estimation was used to estimate the unknown parameters ϕ,  μ and γ.  From the pmf in (8), the log-

likelihood function for the parameter vector of  ( , , )  Θ  can be written as 
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To estimate the unknown parameters ϕ, μ and γ, the partial derivatives with respect to each parameter were equated to 

zero, i.e., 
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This equation cannot be derived in a closed form; therefore, solutions for the ML estimators of ϕ, μ and γ, were 

obtained using the nlm function on stats package in R program (R Core Team, 2020). 

 

3.3 Design of MDS sampling plan 
 

This section presents the MDS sampling plan, which defines the number of nonconforming items following the ZIPQL 

distribution, denoted by the MDSZIPQL plan. Implementation steps of the MDSZIPQL plan were described as follows (Wang & 

Hailemariam, 2018): 
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Step 1: Define two risk values (α and β) and two quality levels values (p1 and p2). 

Step 2: Define the plan parameters: the sample size n, the acceptance number ca, the rejection number cr, and the 

number of previously accepted lots m. 

Step 3: Draw a random sample of n items from the current lot and count the number of nonconforming items d. 

1) Accept the currently inspected lot if  . ad c  

2) Reject the currently inspected lot if  rd c . 

3) Accept the currently inspected lot if  a rc d c  and the number of nonconforming items from the m previous lots 

are less than or equal to ca.  

All the above steps are summarized in Figure 2. The probability of the acceptance function (Pa (p)) for the MDS plan 

from Wang and Hailemariam (2018) in (12) was considered.  
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Figure 2. Operating procedure of the MDS sampling plan 

 

Therefore, the Pa (p) of the MDSZIPQL plan under a ZIPQL (ϕ, μ, γ) is shown as (13). 
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where ,np   0,   0 1,   0   and p is the proportion of nonconforming items. 

 

The ASN function for the MDS plan from Wang and Hailemariam (2018) was also applied to create the ASN function 

for the MDSZIPQL plan as: 
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3.4 Economic design of the MDS sampling plan 
 

This section applies concepts from Charongrattanasakul and Bamrungsetthapong (2021) to design the total cost 

function for the inspection lot with the MDSZIPQL plan as shown in (15)-(18). 

 

First: let CI be the cost of inspection per lot as given below: 

 

  1 ( )I aC C N N n P p                      (15) 

where C1 represents the inspection cost per unit.  

 

Second: let CF be the cost of the internal failure per lot as  

 

  2 ( )F aC C N N n P p p                                     (16) 

where C2 represents the internal failure cost per unit.  

 

Third: let 
0C  be the cost of outgoing nonconforming per lot as  

 

 0 3 ( )aC C P p N n p                                                  (17) 

where C3 represents the cost of outgoing nonconforming per unit. 

 

Therefore, the total cost of the MDSZIPQL plan can be expressed as: 

 

       

0

1 2 3( ) ( ) ( ) .

  

       

I F

a a a

TC C C C

C N N n P p C N N n P p p C P p N n p
 (18) 

 

The optimal plan parameter (n, ca, cr, m)* of the MDSZIPQL plan was calculated to obtain the minimum values of ASN, 

total cost (TC) of inspection and the maximum values of Pa (p) simultaneously. The genetic algorithm (GA) technique with 

multi-objective optimization was applied in a simulation study using the R program. The optimal solution of the proposed plan 

was obtained by substituting the optimal values of n, ca, cr, and m in the multi-objective function. The constraints of the 

producer’s risk (α) and the consumer’s risk (β) are immediately satisfied with the acceptable quality level (AQL or p1) and the lot 

tolerance percent defective (LTPD or p2). The MDSZIPQL plan is practical with two points (AQL, 1-α) and (LTPD, β),
 
and 

considered for changes in the operating characteristic (OC) curve. The optimal solution was considered on three objective 

functions concurrently, as follows. 

 

Multi-objective function:  

Minimize ASN and TC                (19) 

Maximize Pa (p)         (20) 

 

Subject to:  1 1 1 1 ,   aP p np   2 2 2 ,  aP p np  1,n   1,m   and 0r ac c  . 

Assume that the following sets of input parameters are given: N=1000, α=0.05, β=0.01, p1=0.05, and p2=0.1, while the 

fixed value of cost in each status is given by Hsu and Hsu (2012) as
 
CI = 1, CF = 2, and C0 = 10, respectively. 

 

3.5 Simulation study 
 

Sensitivity analyses of optimal (n, ca, cr, m)* under the MDSZIPQL plan by considering changes of the four variables: ϕ, 

γ, m and p are shown in Table 1. By solving equations (19) and (20) under the two inequalities 
1 1 1( | ) 1   aP p np  and  

2 2 2( | )  aP p np , this simulation study applied the GA technique with multi-objective optimization to determine the 

maximum value of Pa (p) and minimum values of TC and ASN. 

Results in Table 1 give the optimal (n, ca, cr, m)* which can be considered as different zero-inflation parameter values 

(ϕ) for fixed values of p, γ and m. The results show that if ϕ increases, the required n decreases, causing  ASN and TC to decrease 
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Table 1. Optimal plan parameters (n, ca, cr, m)* for the multi-objective functions of the MDSZIPQL plan under different values of γ, ϕ, m and p 

 

p γ ϕ 

m = 1 m = 2 

n
 

ca
 

cr ASN TC Pa(p) n ca cr ASN TC Pa(p) 

               

0.01 1 0.0001 89 4 9 90.59 183 0.9972 76 4 10 76.84 171 0.9981 

0.001 85 4 8 86.29 180 0.9974 74 4 10 74.70 169 0.9989 
0.01 79 3 9 81.41 175 0.9974 74 4 8 74.74 169 0.9992 

0.10 77 3 9 79.15 173 0.9980 69 4 9 69.55 164 0.9998 

0.20 76 3 9 78.00 171 0.9984 64 3 8 65.11 160 0.9999 
5 0.0001 79 3 8 81.84 175 0.9950 64 3 8 65.38 161 0.9918 

0.001 70 2 9 74.77 169 0.9951 52 2 7 53.76 155 0.9922 

0.01 67 2 8 71.09 165 0.9956 51 2 8 52.70 153 0.9928 
0.10 63 2 9 66.48 162 0.9956 49 2 7 50.59 148 0.9952 

0.20 60 2 7 62.76 159 0.9958 48 2 8 49.37 147 0.9958 

10 0.0001 69 3 7 70.77 168 0.9946 65 3 8 66.49 162 0.9979 
0.001 67 2 8 71.12 167 0.9946 49 2 7 50.67 148 0.9982 

0.01 65 2 8 68.76 165 0.9960 42 2 9 43.06 140 0.9985 

0.10 64 2 9 67.58 162 0.9963 39 2 5 39.79 138 0.9986 
0.20 60 2 7 62.81 158 0.9966 36 2 6 36.59 134 0.9992 

0.05 1 0.0001 75 3 8 97.41 685 0.7446 75 4 9 92.46 670 0.7750 

0.001 71 3 8 91.14 673 0.7555 61 3 9 77.94 660 0.7809 
0.01 70 3 9 89.82 680 0.7572 67 3 8 70.99 649 0.7971 

0.10 63 2 8 86.22 677 0.7630 56 3 8 69.28 637 0.8171 

0.20 60 2 8 78.89 665 0.7717 52 3 6 60.51 635 0.8178 
5 0.0001 69 3 8 85.14 675 0.7616 63 3 8 78.85 670 0.7657 

0.001 57 2 9 76.33 661 0.7662 61 3 8 75.84 664 0.7735 

0.01 53 2 7 67.55 666 0.7743 60 3 9 75.70 651 0.7963 
0.10 50 2 7 64.82 638 0.8116 45 2 8 57.58 637 0.8077 

0.20 48 2 6 59.43 631 0.8206 42 2 6 51.37 630 0.8168 

10 0.0001 59 2 9 79.28 665 0.7704 46 2 8 58.41 658 0.7717 
0.001 54 2 7 70.61 657 0.7809 43 2 6 53.58 652 0.7802 

0.01 48 2 6 60.60 646 0.7955 39 2 5 46.86 643 0.7922 

0.10 47 2 6 58.77 634 0.8144 29 1 6 37.14 643 0.7947 

0.20 43 2 5 51.18 628 0.8218 27 1 5 33.44 634 0.7978 
               

 

while Pa(p) increases. Different values of γ occurred under 

fixed values of p, ϕ and m. Results showed that if γ increases, 

the required n decreases, causing TC, ASN and Pa(p) to 

decrease. Different values of m were considered under fixed 

values of p, ϕ, and γ. Results showed that if m increases, the 

required n decreases, causing TC, ASN and Pa(p) to decrease. 

Different values of p were considered under given values of ϕ 

γ, and m. Results showed that if p increases, the required n 

decreases, causing TC to increase while ASN and Pa(p) 

decrease. The optimal plan parameters under the MDSZIPQL 

plan provided maximum Pa(p) and minimum values of ASN 

and TC.  

Table 2 presents the effect of required sample sizes 

(n) on the efficiency of the MDSZIPQL plan with three different 

levels of γ, such as 1, 5, 20 and five different levels of ϕ such 

as 0.0001, 0.001, 0.01, 0.10 and 0.20 under given values of Ca 

= 0, Cr = 2, m = 2, and p = 0.01. These results suggested that 

larger values of γ provide smaller required n under the same 

value of ϕ, and ASN and TC decrease while Pa(p) increases. 

Larger values of ϕ also provide smaller required n under a 

fixed value of γ and ASN, TC and Pa(p) tend to decrease.  

Table 3 shows the performance of the MDSZIPQL 

plan in reducing the required sample sizes and ASN compared 

to the MDSZIP plan. The required sample sizes and ASN of the 

MDSZIP plan were obtained from Wang and Hailemariam 

(2018) and are shown in Table 3. The required sample sizes 

and ASN of the MDSZIPQL plan under different levels of ϕ = 

(0.001, 0.01, 0.04), p1 = (0.01, 0.05), p2 = [(0.05, 0.06, 0.09), 

(0.15, 0.17, 0.20)], α = 0.05, and β = 0.01 are given in Table 3. 

The required sample sizes and ASN of the MDSZIPQL plan 

were less than the MDSZIP plan. Results indicated that the 

MDSZIPQL plan performed better than the MDSZIP plan 

regarding the required sample size and ASN.  

 

3.6 Application study 
 

In this study, two real data sets were used to 

demonstrate the application of the ZIP and ZIPQL 

distributions, while the parameters in each distribution were 

estimated by the ML method. The Kolmogorov-Smirnov (KS) 

test, Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) were used for the goodness of fit 

test of each distribution. Models with smaller values of AIC, 

BIC and KS showed the best fit for the data.  

Example 1: Real data sets of numbers of read-write 

errors found in a computer hard disk in a production process 

(Xie et al., 2001) were considered. This data set included 208 

samples with a mean of 1.16 and a standard deviation of 1.20 

as count data with overdispersion. Parameter estimates and the 

goodness of fit test for these data sets are given in Table 4. 

The ZIPQL distribution gave lower AIC, BIC and KS values 

than the ZIP distribution. Thus, the ZIPQL distribution was 

appropriate to fit this data. 
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Table 2. The effect of γ on optimal required sample sizes (n) of the MDSZIPQL plan under given values Ca = 0, Cr = 2, m =2, and p = 0.01  

 

ϕ  
γ = 1 γ = 5 γ = 20 

n ASN TC Pa(p) n ASN TC Pa(p) n ASN TC Pa(p) 
             

0.0001 25 29.86 209 0.9040 18 20.72 172 0.9389 16 18.16 159 0.9508 
0.001 18 20.69 169 0.9421 17 17.71 150 0.9596 15 16.73 148 0.9621 

0.01 15 15.68 148 0.9618 14 14.47 144 0.9653 13 13.52 143 0.9662 

0.10 13 14.42 141 0.9677 12 12.97 135 0.9775 11 11.14 131 0.9739 
0.20 11 12.04 132 0.9757 10 10.81 127 0.9809 9 9.66 123 0.9841 

             

 
Table 3. Comparison of the required sample sizes and ASN of the MDSZIPQL plan and the MDSZIP plan under m = 2 

 

ϕ p1 p2 Ca  Cr  
MDSZIP* MDSZIPQL 

n ASN n ASN 
         

0.001 0.01 0.05 1 3 79 90.2 58 63.67 
 0.01 0.06 0 2 39 47.8 36 61.04 

 0.01 0.09 0 2 26 31.2 26 30.66 
0.01 0.01 0.05 1 3 81 92.5 58 63.62 

 0.01 0.06 0 2 41 49.5 41 49.40 

 0.01 0.09 0 2 27 32.5 25 29.31 
0.04 0.01 0.05 1 3 90 99.7 78 85.59 

 0.01 0.06 0 2 47 54.6 42 47.79 

 0.01 0.09 0 2 32 37.0 29 32.83 
0.001 0.05 0.15 4 6 54 58.3 40 42.55 

 0.05 0.17 3 5 40 43.6 32 34.52 

 0.05 0.20 2 4 27 29.9 21 22.81 
0.01 0.05 0.15 4 6 55 59.5 36 37.91 

 0.05 0.17 3 5 41 44.8 39 42.81 

 0.05 0.20 2 4 28 31.0 28 30.80 
0.04 0.05 0.15 5 7 68 71.8 62 66.18 

 0.05 0.17 4 6 52 55.3 36 37.85 

 0.05 0.20 2 4 31 33.4 31 33.01 
 

 

* The result from Wang and Hailemariam (2018). 

 

Table 4. Summary of goodness of fit test of ZIP and ZIPQL distributions for the number of errors 
 

Number of errors Observed frequency 

Expected frequency of distributions 

ZIP ZIPQL 

    

0 180 180.01 180.00 

1 11 0.04 3.24 

2 5 0.18 2.86 
3 2 0.53 2.53 

4 1 1.15 2.24 
5 1 1.99 1.98 

6 2 2.86 1.75 

9 2 3.66 1.21 
11 1 2.49 0.95 

15 1 0.42 0.58 

75 2 0.00 0.00 
    

    

 ML estimators ˆ 0.8654,  ˆ 8.6413   ˆ 0.8478,  ˆ 7.6429,  ˆ 871.37    

 - log L 405.20 168.88 
 AIC 814.40 343.76 

 BIC 821.08 353.77 

 KS test (p-value) 0.7745 (0.4430) 0.7740 (0.4490) 
   

 

The number of read-write errors from real data was 

used to determine the optimal (n, ca, cr, m)* under the 

MDSZIPQL plan. The input parameters were assigned as 

follows: N = 208, ϕ=0.8478, γ=871.37, p1=0.05, p1=0.10, α = 

0.05, β = 0.10, CI = 1, CF = 2, and C0 = 10. The optimal (n, ca, 

cr, m)*, as shown in Table 6, was obtained by substituting 

input parameters in nonlinear multi-objective optimization.  
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Table 6 shows various optimal plan parameters 

based on values of p and m under given values ϕ =0.8478, γ 

=871.37, and ca = 0. For example, if the producer knows that 

the proportion of read-write errors per lot is p = 0.001 and the 

number of previously accepted lots is m = 1, then the optimal 

plan parameter is (50, 0, 4, 1)*. Whereas if the producer needs 

to reduce ASN and TC, then the value of m should be 

increased, such as m = 4, and the optimal plan parameter is 

(30, 0, 3, 4)*. 

Table 7 shows the performance comparison of our 

proposed MDSZIPQL plan and the MDSZIP plan proposed by 

Wang and Hailemariam (2018). Performances of both 

sampling plans were considered based on optimal required 

sample sizes n under four different levels of m and given 

values ca = 0, and cr = 2. At m = 1 the MDSZIPQL plan used 

only the required sample size of 26, which was smaller than 

the MDSZIP plan, with the required sample size of 35. As m 

increased, both sampling plans used equal required sample 

sizes n. Results showed that the MDSZIPQL plan gave lower 

ASN and TC and higher Pa(p) than the MDSZIP plan.  

Example 2: Data on the number of defective LEDs 

within a lot (He et al., 2012; Alevizakos & Koukouvinos, 

2020) are presented in Table 7. This data set included 200 

samples with a mean of 1.38 and a standard deviation of 3.57 

as count data with overdispersion. Parameter estimates and the 

goodness of fit test for these data sets are illustrated in Table 

5. The ZIPQL distribution gave lower AIC, BIC and KS 

values than the ZIP distribution. Therefore, the ZIPQL 

distribution was appropriate to fit this data. 

  
 
Table 5. Summary of goodness of fit tests of ZIP and ZIPQL distributions for the number of defective LEDs 
 

Number of defective 

LEDs 
Observed frequency 

Expected frequency of distributions 

ZIP ZIPQL 

    

0 162 162.01 162.01 

1 1 0.19 5.23 
2 6 0.71 4.51 

3 2 1.71 3.89 

4 3 3.10 3.35 
5 4 4.50 2.89 

6 5 5.44 2.49 
7 2 5.64 2.15 

8 4 5.11 1.85 

9 3 4.13 1.60 
10 1 2.99 1.38 

12 2 1.20 1.03 

16 2 0.08 0.57 

18 1 0.01 0.42 

0.3619 2 0.00 0.36 
    
    

 ML estimators ˆ 0.8099,  ˆ 7.2580   ˆ 0.7797,  ˆ 6.2631,  ˆ 2346.1106   

 - log L 224.66 207.85 
 AIC 453.32 421.70 

 BIC 459.92 431.60 

 KS test (p-value) 0.7440 (0.2144) 0.7434 (0.3793) 
   

 
Table 6. Optimal plan parameters (n,ca,cr,m)* of the MDSZIPQL plan to inspect the example data sets 
 

m 
Data of example 1 Data of example 2 

p n cr ASN TC Pa(p) p n cr ASN TC Pa(p) 

             

1 

 
 

 

0.001 50 4 51.38 52.68 0.9999 0.001 57 5 57.68 58 0.9999 

0.005 51 4 52.57 59.54 0.9988 0.005 59 5 61.99 67 0.9973 
0.01 51 4 53.59 68.37 0.9955 0.01 59 5 63.88 75 0.9919 

0.05 52 4 56.16 139.78 0.9511 0.05 61 5 68.85 143 0.9265 

2 
 

 

 

0.001 35 3 35.79 44.25 0.9985 0.001 31 3 31.21 33 0.9999 
0.005 46 4 46.31 47.73 0.9999 0.005 32 3 32.98 41 0.9977 

0.01 48 4 50.34 65.88 0.9937 0.01 34 3 34.80 52 0.9913 

0.05 40 4 54.02 139.10 0.9462 0.05 40 4 44.85 131 0.9268 
3 

 

 
 

0.001 32 3 32.67 41.40 0.9983 0.001 28 3 28.17 30 0.9999 

0.005 41 4 42.06 50.09 0.9979 0.005 32 3 32.98 41 0.9968 

0.01 42 4 44.79 79.51 0.9812 0.01 35 4 37.02 54 0.9898 
0.05 45 4 48.65 136.37 0.9450 0.05 41 4 45.97 133 0.9137 

4 

 
 

 

0.001 30 3 30.13 31.85 0.9980 0.001 25 3 25.13 27 0.9999 

0.005 35 4 35.79 44.34 0.9979 0.005 25 3 25.62 34 0.9974 
0.01 35 3 36.36 54.29 0.9919 0.01 32 3 33.71 51 0.9907 

0.05 37 4 40.01 131.48 0.9485 0.05 35 4 39.22 129 0.9147 
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Table 7. Optimal required sample sizes (n) with (n,0,cr,m)* under MDSZIPQL and MDSZIP plans to inspect the example data sets 

 

Data sets 

 MDSZIPQL plan MDSZIP plan 

m n ASN TC Pa(p) n ASN TC Pa(p) 

          

Example 1 1 26 26.10 28 0.9999 35 36.37 54 0.9921 

(n,0,2,m)* 2 25 25.09 27 0.9999 25 25.73 45 0.9949 
 3 23 23.08 25 0.9999 23 23.63 43 0.9950 

 4 22 22.07 24 0.9999 22 22.58 42 0.9948 

Example 2 1 36 38.10 54 0.9929 38 40.64 56 0.9917 
(n,0,3,m)* 2 31 32.62 50 0.9922 34 36.15 53 0.9912 

 3 28 29.35 47 0.9914 29 30.61 48 0.9907 

 4 25 26.11 44 0.9912 25 26.22 44 0.9908 
          

 

The number of defective LEDs was used to 

determine the optimal (n, ca, cr, m)* under the MDSZIPQL plan. 

The input parameters were N = 200, ϕ =0.7797, γ 

=2,346.1106, p1 = 0.05, p2 = 0.10, α = 0.05 and β = 0.10. The 

various optimal plan parameters (n, ca, cr, m)* based on p and 

m under fixed values ϕ = 0.7797, γ = 2,346.1106 and ca = 0 

are reported in Table 6. For example, if the proportion of 

defective LEDs per lot is p =0.05 and the number of 

previously accepted lots is m = 3, and the optimal plan 

parameter is (41, 0, 4, 3)*.  

Performance comparison of the proposed MDSZIPQL 

plan and the MDSZIP plan under the data set on number of 

defective LEDs is shown in Table 7. Performances of both 

sampling plans were considered based on optimal values of n 

and m for fixed values ca = 0, and cr = 3. Results showed that 

at m = 1 the MDSZIPQL plan used only the required sample size 

of 36, which was smaller than the MDSZIP plan with the 

required sample size of 38. As m increased, the MDSZIPQL 

plans used required sample sizes less than the MDSZIP plan. 

Therefore, the MDSZIPQL plan gave lower ASN and TC and 

higher Pa(p) than the MDSZIP plan. 

 

4. Conclusions 
 

This research proposed MDS sampling plans to 

inspect serially submitted lots in production. Most production 

processes have excellent quality control and inspection. With 

excellent quality control, the manufacturer can operate the 

production process with no or almost no defects. Excellent 

inspection results occur when a product is of good quality and 

there are often zero defects in the inspection process. Our 

proposed MDS sampling plan was designed under a new zero-

inflated distribution, called the ZIPQL distribution, denoted 

by the MDSZIPQL plan. The optimal plan parameter under the 

MDSZIPQL plan was calculated to obtain the maximum Pa(p)  

and minimum ASN and TC simultaneously. Sensitivity 

analysis of the MDSZIPQL plan indicated that different values 

of ϕ, γ, m, and p, affected the required sample size n, ASN, TC 

and Pa(p). The MDSZIPQL plan performed well when ϕ, γ, and 

m were large values, while p was close to zero. Finally, two 

real data sets were considered under the ZIPQL distribution 

which fitted this data. The optimal plan parameter under the 

MDSZIPQL plan was determined. These results were also 

compared with the MDSZIP plan under the same conditions. 

The MDSZIPQL plan showed better performance than the 

MDSZIP plan. In practice, the MDSZIPQL plan gave a good 

performance when p was small while ϕ was large. This allows 

producers to use a small sample size and save on costs using 

the MDSZIPQL plan. Inaccurate data in the production process 

leads to indecision about product quality. Neutrosophic 

statistics might be applied to the MDSZIPQL plan in future 

studies. 
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