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Abstract 
 

An element a in a ring R is said to be of (m, k)-type if am = ak where m and k are positive integers with m > k ≥ 1. Let 

Xn(m, k) be the set of all (m, k)-type elements, X*
n(m, k) be the set of all nonzero (m, k)-type elements, and Sn(m, k) be the set of 

all nonunit (m, k)-type elements in the ring of integers modulo n. In this paper, we study the algebraic structures of Xn(m, k), 

X*
n(m, k) and Sn(m, k) and characterize all values of n, m, and k for which Xn(m, k) and Sn(m, k) are cyclic semigroups and X*

n(m, 

k) is a cyclic group. 
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1. Introduction  
 

In ring theory, units, m - potents, nilpotents and 

unipotents are very familiar and are one of the most 

extensively studied elements of rings, particularly in the ring 

of integers modulo n. There are many studies in the literature 

about those elements (Breaz & Cimpean, 2018; Cheraghpour 

& Ghosseiri, 2019; Hou, 2021; Hummadi & Muhammad, 

2010; Kanwar, Khatkar, & Sharma, 2017; MacHale, 1982; 

Mosic, 2015; Sibley, 2012; Zhou, 2018). In 1982, MacHale 

gave an upper bound value of idempotents in a finite ring 

(MacHale, 1982). Later, tripotents and idempotents in the ring 

of integers modulo n were studied by Hummadi and 

Muhammad (Hummadi & Muhammad, 2010) and Sibley 

(Sibley, 2012), respectively. In 2015, Mosic investigated 

several characterizations of m-potent elements in rings 

(Mosic, 2015).  

In 2017, Kanwar, Khatkar and Sharma studied 

idempotents and units in a certain matrix ring over polynomial 

rings (Kanwar, Khatkar, & Sharma, 2017). Later, Breaz and 

Cimpean studied the class of rings R with the property that for 

any x in R at least one of the elements x and 1+x is tripotent 

(Breaz & Cimpean, 2018). In the same year, Zhou determined 

the rings for which every element is a sum of a nilpotent, an 

idempotent and a tripotent (Zhou, 2018). 

 
Inspired by the work of these authors, we will 

introduce the (m, k)-type elements in the ring with identity and 

particularly investigate some of their properties in the certain 

ring, namely the ring ℤn of integers modulo n. 

Advantageously, such elements can be regarded as the 

generalization of units and m - potents. More precisely, the 

main purpose of this work is to study the algebraic structures 

of the set of all (m, k)-type elements, the set of all nonzero (m, 

k)-type elements, and the set of all nonunit (m, k)-type 

elements in ℤn. This paper is organized as follows: 
In Section 2, we provide some definitions, notations, 

and basic knowledge about elements in ℤn that will be used 

throughout this research. 

In Section 3, the main purpose is separated into two 

parts. Firstly, we state general properties of the set of all (m, 

k)-type elements in ℤn. In this subpart, we discover that in ℤn 

the set of all (m, k)-type elements is a subset of the set of all 

(r, s)-type elements if m – k divides r – s, where r and s are 

positive integers with r > s. Moreover, for any positive integer 

t, the set of all (m, k)-type elements and the set of all (m + t, k 

+ t)-type elements in ℤn coincide if n is a prime number. 

Secondly, we characterize all values of n, m, and k for which 

the set of all (m, k)-type elements and the set of all nonunit (m, 

k)-type elements in ℤn are cyclic semigroups. In this subpart, 

we prove that the set of all (m, k)-type elements in ℤn is a 

cyclic semigroup if and only if n = 1, and the set of all nonunit 

(m, k)-type elements in ℤn is a cyclic semigroup if and only if 

(n, m, k) is either one of the following triples: 
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1. (4, m, k), 

2. (8, m, 2),  

3. (p, m, k), where p is a prime, 

4. (pα, m, 1), where p is a prime and α ≥ 2.  

In Section 4, we determine the values of n, m, and k 

for which the set of all nonzero (m, k)-type elements in ℤn 

becomes a group and also a cyclic group. It turns out that the 

set of all nonzero (m, k)-type elements in ℤn is a group if and 

only if n is a prime number, and the set of all nonzero (m, 1)-

type elements in ℤn is a group if and only if n is a power of 

prime number. In the scenario when n is a prime number, we 

get that the set of all nonzero (m, k)-type elements in ℤn is a 

cyclic group of order r if and only if gcd(m-k, n-1) = r. In the 

case that n is a power of 2, the set of all nonzero (m, 1)-type 

elements in ℤn is a cyclic group if and only if m is even. In the 

more general case that n is a power of an odd prime number, 

the set of all nonzero (m, 1)-type elements in ℤn is a cyclic 

group of order r if and only if gcd(ϕ (n), m-1) = r. 

 

2. Preliminaries 
 

Let R be an associative ring with identity. A nonzero 

element a of R is called a zero divisor if there is a nonzero 

element b in R such that either ab = 0 or ba = 0. An element u 

of R is called a unit in R if there is an element v in R such that 

uv = 1 = vu. For any positive integer m ≥ 2, an m-potent e in R 

is an element satisfying em = e. A 2-potent and a 3-potent are 

respectively called an idempotent and a tripotent. For a pair of 

positive integers m > k, we say that an element a in R is of (m, 

k)-type if it satisfies the equation am = ak. We can see from the 

definition that an idempotent is of (2,1)-type, a tripotent is of 

(3,1)-type and an m-potent is of (m, 1) -type. 

For a fixed positive integer n, denote the ring ℤn of 

integers modulo n by 

ℤn = {0, 1, 2, …, n – 1} 

with the usual addition and multiplication. For convenience, 

we often write a = b in ℤn or even a = b instead of a = b(mod 

n). It is well-known that ℤn is a commutative ring with 

identity. Every nonzero element in ℤn is either a unit or a zero 

divisor (Dummit & Foote, 2003). 

Throughout this paper, we let k, m, n be positive 

integers such that n ≥ 2 and m > k For any ring ℤn, the unit 

group of ℤn is denoted by U(ℤn) and ord(x) stands for the 

order of an element x in the group U(ℤn). The set of all (m, k)-

type elements in ℤn and the set of all nonzero (m, k)-type 

elements in ℤn are denoted by Xn(m, k) and X*
n(m, k),

 
respectively. In other words, we have 

Xn(m, k) = {x ∈ ℤn | xm = xk } 

and 

X*
n(m, k) = Xn(m, k)\{0}. 

We also define Sn(m, k) = Xn(m, k)\U(ℤn). 

We can easily observe that Xn(m, k), X*
n(m, k) and 

Sn(m, k) are nonempty subsets of ℤn as 1 is always an element 

of Xn(m, k) and  X*
n(m, k) and also 0 ∈ Sn(m, k). Moreover, 

Xn(m, k) and Sn(m, k) are semigroups under multiplication but 

X*
n(m, k) may or may not be a semigroup under 

multiplication. This leads us to explore the algebraic 

structures of Xn(m, k), X*
n(m, k), and Sn(m, k). 

Suppose that n = p1

α1 p2

α2 … pt
αt where pi are distinct 

prime numbers and αi ≥ 1 for all i = 1, 2, …, t. Let  

ξ : ℤn  ℤp1

α1 x ℤp2

α2 x … ℤpt
αt 

be defined by 

ξ(x) = (x1, x2, … , xt) 

for any x ∈ ℤn where x ≡ xi(mod pi
αi) and 0 ≤ xi ≤ pi

α-1 for all i 

= 1, 2, …, t. Then ξ is a ring isomorphism by the Chinese 

Remainder Theorem. For each i = 1, 2, …, t, we define ei in 

ℤp1

α1 x ℤp2

α2 x … ℤpt
αt by e0 = (0, 0,…, 0) and ei = (ei1, ei2,…, eit) 

where  

 
for i = 1, 2, …, t. The following lemma will be used as our 

fundamental facts throughout the paper. 

 

Lemma 1. (El-Kassar & Chehade, 2006) The group of units in 

ℤn when n is a power of prime number is given by 

1. U(ℤ2) ≅ {0}, 

2. U(ℤ4) ≅ ℤ2, 

3. U(ℤ2
α) ≅ ℤ2 x ℤ2

α-2 where α ≥ 3,  

4. U(ℤp
α) ≅ ℤp-1 x ℤp

α-1 where p is an odd prime.  

 

3. The Semigroup Structures of Xn(m, k), X*
n(m, k),  

    and Sn(m, k) 
 

Let p be a prime divisor of n. In this section, we will 

consider the semigroup structure of Xn(m, k), X*
n(m, k), and 

Sn(m, k). We begin by considering Xn(m, k). As ℤn is a 

commutative ring, (ab)m = (ab)k for all a, b ∈ Xn(m, k). Then 

Xn(m, k)  is a semigroup.  

 

Lemma 2. Let x ∈ Xn(m, k). Then xk+l(m-k) = xk for all positive 

integers l.  

 

Proof. We proceed by induction on l. Let x be an element in 

Xn(m, k). Clearly, xk+(m-k) = xk. Suppose that xk+l(m-k) = xk for 

any l ≥ 1. Then  

xk+(l+1)(m-k) = xk+l (m-k) xm-k = xk xm-k = xk. 

Hence, xk+l (m-k) = xk for all positive integers l. 
 

Theorem 1. Let m, k, r, s be positive integers such that m > k 

≥ 1 and r > s ≥ 1. If s ≥ k and m - k | r – s, then Xn(m, k) ⊆ 

Xn(r, s). 

  

Proof. Suppose that s ≥ k and m - k | r – s. Since m - k | r – s, 

there exists a natural number t such that r = s + t(m-k). Let x 

be an element in Xn(m, k). By Lemma 2, we have xk+t(m-k) = xk, 

and so 

xr = xs+t(m-k) = xs-k xk+t(m-k )= xs-k xk = xs. 

Hence, x is an element in Xn(r, s). Therefore, Xn(m, k) ⊆ Xn(r, 

s). 

 

Remark 1. It follows from s ≥ k and m - k | r – s that r ≥ m. 

This can be seen by noticing that r = s + l(m-k) for some l ∈ 

ℤ. Thus r ≥ s + (m-k) = m + (s-k) ≥ m. 

The following corollaries are immediate 

consequences of Theorem 1. 

 

Corollary 1. For any positive integer t, Xn(m, k) ⊆ Xn(m+t, 

k+t). 

 

Corollary 2. Xn(2, 1) ⊆ Xn(m, k) for all m > k  ≥ 1 and all n ≥ 

2. 
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The converse of Theorem 1 is not true in general 

because X5 (5,2) = {0, 1} = X5 (7,2) but (5−2)  (7−2). Next, 

we give conditions for the sets Xn(m, k) and Xn(r, s) to be 

identical as sets. The following theorem shows that Xn(m, k) 

and Xn(m+t,  k+t) coincide if n is a prime number. 

 

Theorem 2. Let p be a prime number. Then Xp(m, k) = Xp(m + 

t, k + t) for all positive integers t. 

  

Proof. Let t be any positive integer. We already have Xp(m, k) 

⊆  Xp(m + t, k + t) from Corollary 1. Let x be an element in 

Xp(m + t, k + t). For x = 0, we have x ∈ Xp(m, k) Suppose that 

x ≠ 0. Then xm+t = xk+t. Since ℤp is a field, x-1 exists. Then 

xm = x(m+t)-t = x(k+t)-t = xk.  

That is, x belongs to Xp(m, k)  as well. Therefore, Xp(m, k) = 

Xp(m+t, k+t).  

Next, we find an integer n with a pair (m, k) so that 

Xn(m, k) and Sn(m, k) are cyclic semigroups. A cyclic 

semigroup S is a semigroup generated by a single element. 

That is, S = {a, a2, a3,…} for some element a in S.  If S is 

finite, there is the smallest positive integer m such that am = at  

for some positive integer t ≠ m, and there is the smallest 

positive integer r such that am = am+r . The positive integers m 

and r are called the index and the period of a cyclic semigroup 

S, respectively. Clearly, if S is a cyclic semigroup with index 

1, then S is a cyclic group. Moreover, if x ∈ S is a unit or an 

m-potent for some positive integer m, then x is a cyclic 

semigroup with index 1. The next theorem follows directly 

from (Toth, 2008). 

 
Theorem 3. n is square-free if and only if every nonzero 

element in ℤn is either a unit or an m-potent for some m ∈ ℤ. In 

particular, 

xϕ(n)+1 ≡ x(modn) for all x ∈ ℤn. 

As a consequence of Theorem 3, we have the 

following corollary and theorem. 

 

Corollary 3. n is square-free if and only if x is a cyclic 

group for all x ∈ ℤn. 

 

Theorem 4. There is an element a in ℤn such that a is a 

cyclic semigroup with index 2 if and only if n is not square-

free. 

 

Proof. Let n ≥ 2 be a positive integer. The necessity is 

obtained by Corollary 3. For the sufficiency, suppose that n is 

not square-free. Then n = p2k where p is prime and k ∈ ℤ. 

Choose an a = pk. Then al = 0 for all l ≥ 2. Thus a is a cyclic 

semigroup with index 2. 

 

Theorem 5. Xn(m, k)  is not a cyclic semigroup for all positive 

integers n ≥ 2. 

 

Proof. It is clear that 0, 1, ∈ Xn(m, k). Suppose that Xn(m, k) = 

x for some x ∈ Xn(m, k). Then there are distinct i, j such that 

xi = 0 and xj = 1. If i < j, then xt = 0 for all t ≥ i and hence 0 = 

xj= 1, a contradiction. Then i ≥ j. So there are integers r, s 

such that i =  js + r where 0 ≤ r < j. Thus 0 = xi = xjs+r = xr. 

Since j > r, 1 = xj = 0, a contradiction. Hence, Xn(m, k)  is not 

a cyclic semigroup. 

Theorem 6. Sn(m, k) is a semigroup for all positive integers n 

≥ 2. 

 
Proof. Let x, y ∈ Sn(m, k). Clearly, xy ∈ Sn(m, k) if xy = 0 

Suppose that xy ≠ 0. Since x, y ∈ Xn(m, k),  

(xy)m = xm ym = xk yk = (xy)k. 

Then xy ∈ Xn(m, k). As x is a zero divisor in ℤn, there is z ∈ ℤn 

such that xz = 0. So (xy)z = (xz)y = 0. Thus xy is a zero divisor 

in ℤn. Hence, xy ∈ Sn(m, k).   

It is clear that S4(m, k) = {0} or {0, 2}, S8(m, 1) = 

{0}, S8(m, 2) = {0, 4}, and Sp(m, k) = {0}. 

 
Theorem 7. Let n = pα, where α is an integer greater than 1. 

Then Sn(m, 1) = {0}. 
 

Proof. Suppose that x ∈ Sn(m, 1) where x ≠ 0. Then x = pls for 

some positive integers l and s where l < α and gcd(p, s) = 1. 

Let q = .
l

 
 
 

 Then x,  x2, …, xq are distinct and xt = 0 for all t 

> q. Thus x ∉ Xn(m, 1), a contradiction. Therefore, Sn(m, 1) = 

{0}, as required. 

We note that Sp(m, k), S4(m, k), S8(m, 1), S8(m, 2)  

and Sn(m, 1) where n = pα are cyclic semigroups. In fact, these 

are the only cases that Sn(m, k) forms a cyclic semigroup. We 

prove this observation below. 

First we observe that S8(m, k) = {0, 2, 4, 6} is not a 

cyclic semigroup for any k ≥ 3. 

 

Theorem 8. Let k and α be positive integers greater than 1. 

Suppose n = pα. If n ≥ 9, then Sn(m, k) is not a cyclic 

semigroup.  

 

Proof. Let k, α ≥ 2. Suppose that n = pα ≥ 9. Then (pα-1)2 = 0 in 

ℤn and hence pα-1 ∈ Sn(m, k). Choose y = 3(pα/2) for p = 2 and 

y = 2(pα/2) for p ≥ 3. Then y2 = 0 Since n ≥ 9, y ∈ ℤn \ {0}. 

This implies that y ∈ Sn(m, k) \ {0}. Suppose that Sn(m, k) = 

a for some a ∈ Sn(m, k). Then pα-1 = ai and y = aj for some 

positive integers i, j. Thus a = pr for some 1 ≤ r ≤ α -1. Hence, 

y = aj = prj, a contradiction. Therefore, Sn(m, k) is not a cyclic 

semigroup. 

 

Theorem 9. If n has at least two different prime divisors, then 

Sn(m, k) is not a cyclic semigroup. 

 

Proof. Let n = p1

α1 p2

α2 … pt
αt for some integer t such that t ≥ 2. 

Let x = ξ-1(e1). Clearly, e0 and e1 are not units in ℤp1

α1 x ℤp2

α2 x 

… ℤpt
αt. Moreover, em

0 = ek
0 and em

1 = ek
1. Thus there are 0, x ∈ 

ℤn such that ξ-1(e0) = 0 and ξ-1(e1) = x. Hence, it follows that 0, 

x ∈ Sn(m, k). 

Next, suppose that e0, e1 ∈ (x1, x2, . . ., xt,) for some 

xi ∈ ℤp1

α1. Then it is clear that 0, 1 ∈ x1. By mimicking the 

proof of Theorem 5, we have a contradiction. Hence, there is 

no element a ∈ ℤn such that 0, x ∈ a. This implies that Sn(m, 

k) is not a cyclic semigroup. 

In conclusion, we have the following result. 

 

Theorem 10. Sn(m, k) is a cyclic semigroup if and only if one 

of the following conditions holds: 

1. n = 4. 

2. n = 8 and k ∈ {1, 2}. 
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3. n is a prime. 

4. n = pα where p ∈ is a prime, α ≥ 1 and k = 1. 
 

4. The Group Structures of X*
n(m, k)  

 

In this section, we determine conditions on n and 

pairs (m, k) for which the set X*
n(m, k) is a group.  

 
Theorem 11. Let p be a prime number. Then X*

p(m, k) is a 

group.  

 

Proof. Since X*
n(m, k) ⊆ ℤp \ {0} = U(ℤp), which is a finite 

group, it is sufficient to show only that X*
p(m, k) is closed. Let 

a and b be elements in X*
p(m, k). Then am = ak and bm = bk. 

Since U(ℤp) is an abelian group, 

(ab)m = ambm = akbk = (ab)k 

This implies that ab belongs to X*
p(m, k). Hence, X*

p(m, k) is a 

subgroup of U(ℤp) and X*
p(m, k) is a group, as desired. 

 Note that if G is a group, then the identity element 

of G is the only idempotent element in G 
 

Theorem 12. If n has at least two different prime divisors, 

then X*
n(m, k) is not a group. 

 

Proof. Suppose that n has at least two different prime divisors. 

Applying Theorem 2 in (Sibley, 2012), we have | Xn(2, 1) | ≥ 

22  = 4. By Corollary 2, Xn(2, 1) ⊆ Xn(m, k). Then X*
n(m, k) 

contains at least three nonzero idempotent elements. 

Therefore, X*
n(m, k) is not a group. 

 

Corollary 4. If X*
n(m, k) is a group, then n = pα where α ≥ 1. 

The above corollary gives a necessary condition for 

X*
n(m, k) to be a group. It is clear that X*

n(m, k) is a group 

when n is a prime number. Now, we assume that n = pα where 

α ≥ 2 in the following theorem. 

 

Theorem 13. The following statements are equivalent. 

1. X*
n(m, k) is a group. 

2. X*
n(m, k) is a subset of the unit group U(ℤn). 

3. k = 1 

 

Proof. For the direction (1) ⇒ (3), suppose that k ≥ 2. Then    

pα-1 belongs to ℤn \ {0} and (pα-1)2 = 0 in ℤn. It is easy to see 

that pα-1 ∈ X*
n(m, k). Thus X*

n(m, k) is not a group as pα-1 has 

no inverse. As a consequence of Theorem 7, the direction (3) 

⇒ (2) is done. For the other direction, suppose X*
n(m, k) ⊆ 

U(ℤn). Since U(ℤn) is a finite group, it suffices to show only 

that X*
n(m, k) is closed. Let  x, y ∈ X*

n(m, k). Then Xm = Xk 

and ym = yk. Since U(ℤn) is an abelian group, 

(xy)m = xmym = xkyk = (xy)k. 

This implies X*
n(m, k) is closed. Then X*

n(m, k) is a group. 

 

Example 1. Consider in ℤ8. Then we have X*
8(3, 1) = {1, 3, 5, 

7} and X*
8(4, 1) = {1}, which are groups. Observe further that 

X*
8(4, 1) is cyclic but X*

8(3, 1) is not cyclic.  

Here is the necessary and sufficient condition of 

X*
n(m, k) for being a cyclic group. 

 

Theorem 14. Let p be an odd prime. Then X*
p(m, k) is a cyclic 

group of order r if and only if gcd(m-k, p-1) = r. 

 

Proof. Let p be an odd prime. Assume that X*
p(m, k) = a for 

some element a of order r in X*
p(m, k).  Since am = ak and 

X*
p(m, k)  is a group, a-1  exists and am-k = 1. Then r is a 

divisor of m-k. We know that U(ℤp) ≅ ℤp-1. Since X*
p(m, k)  is 

a subgroup of U(ℤp), r is a divisor of p-1. Thus r | gcd(m – k, 

p-1). Suppose there exists an integer q > r such that q is a 

divisor of both m-k and p-1. Then m = qs+k for some positive 

integer .s  Since U(ℤp) is a cyclic group of order p-1 and q | 

p-1, there is an element y in U(ℤp) such that ord(y) = q. Then  

 (yi)m = (yi)qs+k = yiqs+ik = (yi) k for all 0 ≤ i < q. 

This implies that y ⊆ X*
p(m, k), a contradiction. 

Conversely, we assume that gcd(m – k, p-1) = r. 

Then m = rt + k for some positive integer t. Since U(ℤp) is a 

cyclic group of order p-1 and r | p-1, there exists an element a 

in U(ℤp) such that ord(a)= r. Thus  

(ai)m = (ai)rt+k = airt+ik = (ai)k for all 0 ≤ i < r. 

This implies a ⊆ X*
p(m, k). Let x be an element in X*

p(m, k). 

Then xm = xk, and hence xm-k = 1 as x-1 exists. Thus ord(x) | m-

k. Since X*
p(m, k) is a subgroup of U(ℤp), ord(x) | p-1. Hence, 

ord(x) | r. Then ord( )
r

x
s

  for some positive integer S. 

Since U(ℤp) is a cyclic group, there is y ∈ U(ℤp) such that 

U(ℤp) = y. Let 
1

1

ord( )

p

x



  and 

2

1
.

p

r



  Then x = yγ1 

and a = yγ2. Hence x = (yγ2) = as. This implies that x ∈ a. 

Therefore, X*
p(m, k) = a. 

Immediate consequences of Theorem 14 are the 

following corollaries, assuming p is an odd prime. 

 
Corollary 5. X*

p(m, k) = {1} if and only if gcd(m-k, p-1) = 1. 

 

Corollary 6. X*
p(m, k) = {-1, 1} if and only if gcd(m-k, p-1) = 

2. 

 

Corollary 7. X*
p(m, k) = U(ℤp) if and only if p-1 divides m – 

k.   

 We note that Corollary 7 gives an alternative proof 

of the famous Fermat’s Little. Theorem as we also get xpt ≡ 

x(mod p) for all x ∈ ℤp and t ∈ ℤp. Next, we assume that k = 1 

and turn our attention to the case that n is a power of prime 

number. We start with a power of 2 by observing that X*
2(m, 

1) = {1}, X*
4(2s + 1, 1) = U(ℤ4) = {-1, 1} and X*

4(2s, 1) = {1} 

which are all cyclic groups. Let n = 2α where α ≥ 2. Then 

X*
n(m, 1) is an abelian group. We consider necessary and 

sufficient conditions for X*
n(m, 1)  to be a cyclic group. 

 

Theorem 15. X*
n(m, 1) = {1} if and only if m is even. 

 

Proof. Assume that X*
n(m, 1) = {1}. Suppose that m = 2s + 1 

for some positive integer s. Since X*
4(2s + 1, 1) = {-1, 1}, we 

have α ≥ 3. By Lemma 1, U(ℤn) ≅ ℤ2 x ℤ2
α+2, which implies 

that U(ℤn) contains an element of order 2, say x. Then xm = 

x2s+1 = x and hence x belongs to X*
n(m, 1), a contradiction. 

Therefore, m is even. 

Conversely, suppose that m = 2t for some positive 

integer t. Let x ∈ X*
n(m, 1). By Theorem 13, x ∈ U(ℤn). Then 

x2t-1 ≡ 1(mod n) and hence ord(x) is odd. This implies x = 1, a 

contradiction.
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Theorem 16. X*
n(m, 1) = {-1, 1} if and only if n = 4 and m is 

odd. 

 

Proof. Assume that X*
n(m, 1) = {-1, 1}. Since -1 ∈ X*

n(m, 1), 

(-1m) = -1. This implies that m is odd. Suppose that α ≥ 3. 

Then U(ℤn) ≅ ℤ2 x ℤ2
α-2. Since (1, 0) and (1, 2α-3) are elements 

of order 2 in ℤ2 x ℤ2
α-2 there is an element x of order 2 in U(ℤn) 

\ {-1, 1}. Then xm-1 = 1 as m - 1 is even and ord(x) = 2. Thus 

xm = x and hence x ∈ X*
n(m, 1), a contradiction. This 

concludes that α = 2 and hence n = 4. 

Conversely, suppose that n = 4 and m is odd. It is 

obvious that 1 ∈ X*
n(m, 1). Since m is odd, (-1)m

 = -1). Thus -1 

∈ X*
n(m, 1). Since 22 =0, 2 ∉ U(ℤn). By Theorem 13, 2 ∉ 

X*
n(m, 1). Therefore, X*

n(m, 1) = {-1, 1}. 

Next, we let n = 2α  where α ≥ 3. 

 

Theorem 17. X*
n(m, 1) = U(ℤn) if and only if m ≡ 1 (mod2α-2). 

 

Proof. Assume that X*
n(m, 1) = U(ℤn). Since (0, 1) ∈ ℤ2 x ℤ2

α-2 

has order 2α-2, there is an element x in U(ℤn) \ {1} such that x 

has order 2α-2 Then x-1 exists as U(ℤn) is a group. Since xm = x, 

we have xm-1= 1. Thus 2α-2 | m-1. This means m-1 ≡ 1 (mod2α-

2).  

 Conversely, suppose that m ≡ 1 (mod2α-2).  Then 

there is a positive integer t such that m = 2α-2t+1. Let x ∈ 

U(ℤn). Note that y2α-2 = 1 for all y ∈ U(ℤn). Thus x2α-2 = 1 and 

xm = x2α-2t+1 = x. Hence, x ∈ X*
n(m, 1)  Therefore, U(ℤn) 

⊆ X*
n(m, 1). By Theorem 13, X*

n(m, 1) = U(ℤn). 

 

Theorem 18. X*
n(m, 1) is a cyclic group if and only if X*

n(m, 

1) = {1}. 

 

Proof. Suppose X*
n(m, 1) ≠  {1}. By Theorem 15, m is odd. 

Since U(ℤn) ≅ ℤ2 x ℤ2
α-2 and  H = {(0, 2α-3), (1, 2α-3), (1, 0) , 

(1, 0)} is not a cyclic subgroup of ℤ2 x ℤ2
α-2, there is a 

noncyclic subgroup H’ of U(ℤn) and H is a subgroup of 

X*
n(m, 1). Hence, X*

n(m, 1) is not a cyclic group. The converse 

is obvious. 

 

Theorem 19. Let t ∈ ℤ, α ≥ 4 and β be an integer such that 1 ≤ 

β ≤ α-3. Then X*
n(2t, +1, 1) ≅ ℤ2 x ℤ2

β if and only if t = 2β-1s 

where s is an odd integer. 

 

Proof. Let t ∈ ℤ. Suppose that X*
n(2t, +1, 1) ≅ ℤ2 x ℤ2

β where 

1 ≤ β ≤ α-3. Then there is an element α ∈ X*
n(2t, +1, 1) such 

that ord(a) = 2β. Thus a2t+1 = a and hence a2t = 1. This implies 

that 2β | 2t. Hence, t = 2β-1s for some positive integer s. 

Suppose that s is even. Then there is an element q = 2γ with β 

< γ ≤ α-2 such that q is a divisor of both 2t and 2α-2. Thus 2t = 

qr for some integer r. Note that U(ℤn) ≅ ℤ2 x ℤ2
α-2. There is an 

element x ∈ ℤ2
α-2 such that ord(x) = q. Then 

 (xi)2t+1 = (x2t+1)i = (xqr+1)i = xqri+I = xi for all 1 ≤ i < q. 

Hence, (0, xi) = (0, xi)2t+1 and (1, xi) = (1, xi)2t+1 for all 1 ≤ i < 

q. Thus there are at least 2q elements in U(ℤn) which belong 

to X*
n(2t, +1, 1). Then | X*

n(2t, +1, 1) | ≥ 2γ+1 > 2β+1, a 

contradiction. This concludes that s is a positive odd integer.
 

Conversely, suppose that t = 2β-1s where s is an odd 

positive integer. Note that U(ℤn) ≅ ℤ2 x ℤ2
α-2. There is an 

element x ∈ ℤ2
α-2 such that ord(x) = 2β. Then  

2 1( )i tx  
12 1 2(2 ) 1 2 1 2( ) ( ) ( )t i s i s i si i ix x x x x

          

for all 1 ≤ i < 2β. Thus (0, xi) = (0, xi)2t+1 and (1, xi) = (1, xi)2t+1 

for all 1 ≤ i < 2β in ℤ2 x ℤ2
α-2. Hence, there are at least 2β+1 

elements in U(ℤn) which belong to X*
n(2t, +1, 1). Therefore, 

X*
n(2t, +1, 1) | ≥ 2β+1. Suppose that | X*

n(2t, +1, 1) | > 2β+1. 

Then there is an element a ∈ X*
n(2t, +1, 1) such that ord(a) = 

2γ for some γ such that β < γ ≤ α-2. Since a2t+1 = a, 2γ | 2t 

which is a contradiction. This implies that | X*
n(2t, +1, 1) | = 

2β+1. Since X*
n(2t, +1, 1) ⊆ U(ℤn) and U(ℤn) ≅ ℤ2 x ℤ2

α-2, we 

have X*
n(2t, +1, 1) ≅ H x K for some H ≤ ℤ2 and K ≤ ℤ2

α-2 

such that H x K ≤ ℤ2 x ℤ2
α-2. Since (0, xi) = (0, xi)2t+1 and (1, 

xi) = (1, xi)2t+1 in ℤ2 x ℤ2
α-2, H ≤ ℤ2. It follows from | X*

n(2t, 

+1, 1) | = 2β+1 that K = ℤ2
β Therefore, X*

n(2t, +1, 1) and ℤ2 x 

ℤ2
β are isomorphic as groups. 

Next, we consider the case that n = pα where p is an 

odd prime and α ≥ 2. It is known from Lemma 1 that U(ℤn) is 

isomorphic to the cyclic group ℤp-1 x ℤp
α-1. By Theorem 13, 

X*
n(m, 1)  is a cyclic group. 

 

Theorem 20. Let r be a positive integer. Then X*
n(m, 1) is a 

cyclic group of order r if and only if gcd((n), m-1) = r. 

 

Proof. The proof uses the same idea as in Theorem 14. 

 

Corollary 8. X*
n(m, 1) = {1} if and only if  gcd((n), m-1) = 

1. 

 

Corollary 9. X*
n(m, 1) = {-1,1} if and only if  gcd((n), m-1) 

= 2. 

 

Corollary 10. X*
n(m, 1) = U(ℤn) if and only if  (n) divides m-

1. 

In conclusion, we obtain the following result. 

 

Theorem 21. The following statements are equivalent: 

1. X*
n(m, k) is a cyclic group.  

2. X*
n(m, k) is a cyclic semigroup. 

3. (n, m, k) is either one of the following triples:  

   (i)   (2, m, k), 

   (ii)  (4, m, 1),  

   (iii) (2α, 2t, 1), where α ≥ 3 and t ≥ 1, 

   (iv) (p, m, k) where p is an odd prime, 

    (v)  (pα, m, 1), where p is an odd prime and α ≥ 2. 

 

5. Conclusions 
 

In this paper, we define (m, k)-type elements in a 

ring. This new notation can be considered as a generalization 

of units and m-potents. Some interesting properties of (m, k)-

type elements are particularly investigated in ℤn. The main 

task of this paper is to determine the algebraic structures of  

Xn(m, k),  X*
n(m, k), and Sn(m, k)  It turns out that Xn(m, k), and 

Sn(m, k)  are semigroups for all positive integers n ≥ 2 and m > 

k ≥ 1, while X*
n(m, k) is a group if and only if  (n, m, k) is 

either one of the following: 

(i)   (p, m, k) where p is prime, 

(ii)  (pα, m, 1), where p is prime and α ≥ 2. 

In addition, we characterize all values of n, m, and k 

for which those sets are cyclic semigroups or cyclic groups. 

Consequently, we also obtain an alternative proof of the 

Fermat Little Theorem as an extra gift. 
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In the general case that n = p1

α1 p2

α2 … pt
αt, where pi 

are distinct prime numbers and αi ≥ 1 for all i = 1, 2, . . ., t, the 

Chinese Remainder theorem may be applied via the 

isomorphism ξ to consider (m, k)-type elements in Xn(m, k), 

X*
n(m, k), and Sn(m, k): For any x ∈ ℤn, x is an element in 

Xn(m, k) if and only if xi is an element in Xpi
αi (m, k) where x ≡ 

x (modpi
αi) for all i = 1, 2, . . ., t. Furthermore, we can replace 

Xn(m, k)  in the previous statement by X*
n(m, k)  or Sn(m, k)  if 

the elements xi in ℤpi
αi are not all zeroes or not all units, 

respectively.  
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