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Abstract

This paper uses a fractional-order epidemic model to describe the transmission dynamics of the Ebola virus. The proposed
model uses the fractional-order derivative in Caputo-Fabrizio’s sense. It calculates the time-independent solutions of the proposed
model, and the next-generation matrix method is used to calculate the basic reproduction number. It provides the conditions for the
existence and uniqueness of solutions to the model. Further, the conditions for generalized Ulam-Hyers-Rassias stability of the
proposed model are obtained. Numerical simulations show how the proposed model’s approximate solution varies for integer and
fractional orders. They also show the behavior of the Ebola in terms of infections, deceased, and susceptible counts, for various
contact rates. To demonstrate efficiency while using less time, CPU times are given in tabular form.
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1. Introduction

The Filoviridae family member Ebola virus (EBOV)
causes an inflammatory, severe, potentially fatal disease known
as EVD for Ebola viral disease (while it used to be referred to
as the Ebola hemorrhagic fever), affecting both humans and
great apes. The first species of EBOV was discovered near the
Ebola River in the Democratic Republic of Congo in central
African continent, in 1976 (Bisimwa, Biamba, Aborode,
Cakwira, & Akilimali, 2022; Feldmann, Sprecher, & Geisbert,
2020). With mortality rates ranging from 50% to 90% in some
instances, death due to Ebola hemorrhagic fever can take place
as quickly as in a few days (Hammouch, Rasul, Ouakka, &
Elazzouzi, 2022). The illness requires between two and twenty-
one days (typically, six to ten days) to incubate and eight hours
to replicate (Feldmann et al., 2020). Humans can contract
EBOV through close physical contact with infected bodily
fluids; blood, faeces, or vomit (World Health Organization
[WHO], 2014). Over the past three decades, EBOV has been
responsible for a series of epidemics (Zhang & Jain, 2020). The
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outbreak of 2013-16 was categorized by WHO as a Public
Health Emergency of International Concern, which highlighted
the difficulties associated with treating Ebola virus infections
and raised concerns about society’s readiness to manage future
epidemics on scientific, clinical, and sociological levels.

1.1 Literature survey

Many researchers have created epidemic models to
better understand the EBOV virus’ disease mechanics. Some
models are of integer order, but there are also fractional-order
models. A fractional-order model, in contrast to the integer-
order models, provides more freedom to fit the real data, which
enhances the model’s coherence with actual data and
observations (Khajehsaeid, 2018). In Singh (2020), the author
used a fractional-order GL-derivative to form an iterative
numerical scheme to find numerical solutions of the epidemic
model based on EBOV, and reported the CPU time usage. In
Srivastava, and Saad (2020), the authors looked at three
potential kernel-based numerical solutions for a fractal-
fractional Ebola virus model. In Gao, Li, Li, and Zhou (2021),
Shaikh, and Nisar (2019), the authors used the fractional-order
CF-derivatives and a fixed-point theorem in the proposed
epidemic model to show the existence and uniqueness of the
governing system’s solution. In Shah, Patel, and Yeolekar
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(2019), the authors proposed an integral-order model that
discussed the vertical dynamics of Ebola with media impacts.
In Liu, Feckan, O’Regan, and Wang (2019), Nwajeri, Omame,
and Onyenegecha (2021), the authors derived generalized
UHR-stability results using fractional-order CF-derivatives in
their proposed models. Fractional calculus is currently the
focus of numerous studies on epidemic models. Multiple
numerical and analytical methods have been developed to solve
fractional calculus problems. Some other related models are

2. Preliminaries

discussed in Hussain, Baleanu, and Adeel (2020), Liu, Feckan,
and Wang (2020), Solis-Pérez, Gomez-Aguilar, and Atangana
(2018). In Singh, Srivastava, Hammouch, and Nisar (2021), the
authors analyzed the stability conditions and the numerical
results of the proposed fractional-order model on COVID-19.
In Singh, Baleanu, Singh, and Dutta (2021), the authors looked
at a non-integer order smoking model, utilized an iterative
technique to get numerical findings, and listed CPU times to
illustrate the efficiency of solutions.

Definition 1. The fractional-order ¢-derivative with ¢ € (0,1] of function f € H'[a, b] in Caputo’s sense is defined as,

beery =
D) = r(1-¢)

L) (t-s)%ds , t>a (1)

A new derivative is introduced using an exponential kernel to avoid the singularity at t = s in the above expression (1).

Definition 2. (Losada & Nieto, 2015) The new fractional-order ¢-derivative of a function f in Caputo-Fabrizio’s sense can be

written as,

ToEFO) =54

¢)M(¢)ff() [ $t—>s)

—-s)
a-¢)

ds, t>a

where M (¢) is the normalizing constant functlon that depends upon ¢.

Definition 3. The Laplace transform of the fractional-order ¢-derivative of a function f in Caputo-Fabrizio’s sense is defined as,

sASf (1), s} - f(0)

¢ -
A DEf(1), s} = o )

s=0.

Definition 4. The fractional integral of order ¢ of a function f in Caputo-Fabrizio’s sense is defined as,

)

F 7P (£(D) =

@ @m@m”

3. Model Formulation

(2 ¢>)M (#)

t>a.

f f(r)dr,

The compartments of the model are defined as follows: Susceptible that are uninfected (S), exposed to Ebola infection
(E), infectious from the infection (I), Hospitalized (H), Deceased or critically sick (D), and Recovered from infection (R). The total
population (N) is the sum of all the compartments. At any instance of time ¢,

N(t) = S(t) + E(t) + I(t) + H(t) + D(t) + R(t)

The model has the following assumptions:

» Exposed individuals E(t), infectious individuals (I(t)), Hospitalized individuals (H(t)), and Deceased or critically sick
individuals (D(t)) are carriers of the EBOV at any instance of time t.
» Whenever any susceptible person (S) comes into touch with any deceased (D), hospitalized (H), exposed (E), or infectious (I)

person, it acquires EBOV at the rate ¢y (E + 1+ H + D)S/N .

The meaning of the parameters used in the model is given in Table 1. The governing system of the fractional-order non-linear
differential equations which describe the proposed epidemic model is as follows:

E@®)+I(t)+D()+H(t))S(t)
FDPE(E) = 2 L )

CFDPI(t) = ayE(t) — (as + ay + WI(E)
CFDPH(L) = asl(t) — (as + ag + wH(L)
FPPD(t) = asl(t) + asH(t) — uD(t)
CFDPR(t) = agH(t) — uR(t)

—(u+ a)E()

@

a1 (E@)+I1(©)+D(®)+H())S(t)

CFPPS(t) = B — uS(t) — o)

with non-negative initial condition, (S(0), £ (0),1(0), H(0), D(0), R(0)) € RE.
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Table 1. Meanings of parameters used in the proposed model.

Parameter Meaning
B The birth rate of the population
a, Contact rate of susceptible with EBOV carriers
a, The transmission rate of exposed getting infectious from the Ebola
as The transmission rate of infectious getting hospitalized
a, The transmission rate of infectious getting critically ill or deceased
as The transmission rate of hospitalized getting critically ill or deceased
ag The transmission rate of hospitalized getting recovered
u The death rate of the population

It can be rewritten in vector form as follows:

FDPP(E) = K (L E(E), 1(£), H(t), D(£), R(£), S()) @®)
for ¢ € (0,1], t €J = [0, b] with following initial condition, (@)
$(0) = Po = (E(0),1(0), H(0), D(0),R(0),S(0)” ®)

where %(t) = (E(0),1(t), H({®), D(), R(£), S(®))"
and K (£) = (K, (£), Kz (£), Kx (£), Ky (8), K5 (£), Ko (8))T

4. Analysis of Model
4.1 Equilibrium points

In this section, the equilibrium points of system (2) are evaluated. These points are the steady-state solutions of the system
(2). There are two equilibrium points of the proposed system to be analyzed. The Ebola-free equilibrium point, E? is given by:

E°={S=§,E=I=H=D=R=O}
The endemic equilibrium point E* is given by:

A3

A A A A A
E1={S*=A_1’E*=A’I*=A_5'H*=A_7’D*=_9'R*=i}
2 4 6 8

A1o A1z

where,

Ay = Nu(u+as +ag)(u+ as + ag)(u+ az)

Ay = a (1P + (ap + a3 + ag + as + ag)u? + (a3 + ay + as + ag)ay + (a5 + ag)(az + a))p + ((as + ag)as + azas)ay)

A = —Np® = N(ay + as + a, + as + ag)u* + (—N(as + a, + as + ag)a, + Ba; — N(as + ag)(az + a,))u®
+ ((Boc1 — N(as + ag)(az + a4))a2 + Bay(as + ay + as + ag))u? + B((az + a, + as + ag)a, + (as
+ae)(az + ay))ap + ((as + ag)ay + azas)Bayay

A=+ a)(W® + (e +az+ag +as +ag)u® + ((a3 + ag + as + ag) + (as + ag)(az + a))u + ((as + ag)a,

+ azas)ay)a;

As = (=Np® — N(ap + a5 + ag + as + ag)u* + (=N(az + a, + as + ag)a, — N(as + ag)a, — N(as + ag)as + Ba)u’
+ ((=N(as + ag)a, — N(as + ag)az + Bay)ay, + Bay(az + a, + as + ag))u? + B((as + ay + as
+ ag)a; + (as + ag)(az + ay))ap + ((as + ag)ay + azas)Bazay)a;

Ag=(u+a)(u+as+a)W’+(az+as+a,+as+agw’ + ((as + ay + as + ag)ay + (as + a)(as + a))u + ((as
+ ag)ay + azas)az)a;

A; = (—Np® — N(a; + a5 + ay + as + ag)u* + (—N(az + a, + as + ag)a, — N(as + ag)ay, — Nazas — Nazag + Bay)ud
+ ((—N((as + ag)a, + azas + azag) + Bay)a, + Ba;(az + ay + as + ag))u? + B((as + a4 as
+ ag)a; + (as + ag)(az + ag))aip + ((as + ag)as + as)Baa,)azaz

Ag = (u+a)(u+az +a)(u+as +ag)(3 + (ay + a3 + ay + as + ag)p® + ((az + ay + as + ag)a, + (as + ag)(as
+ a))u + ((as + ag)ay + azas)az)a;

Ag = (=Nu® — N(ay + az + ay + as + ag)u* + (—N(az + a4 + as + ag)a, — N(as + ag)a, — N(as + ag)as + Ba)u®
+ ((=N(as + ag)a, — N(as + ag)as + Bay)a, + Bay(az + a, + as + ag))u? + B((as + ay + as
+ ag)a; + (as + ag)(az + ag))ap + ((as + ag)as + as)Baza)az (s + (a5 + ag)as + azas

Ay = pdg

Ay = (=Nu® — N(a; + az + ay + as + ag)u* + (—N(az + as + as + ag)a, — N(as + ag)ay, — Nagas — Nagag
+ Bay)u® + ((—N(as + ag)a, — Nasas — Nazag + Bay)a, + Bay(as + ay + as + ag))u? + B((as
+ayt+as +ag)ay + (as + ag)(az + a))ap + ((as + ag)ay + azas) aza1B)aa603
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Ay =p(u+a)(p+as +a)(u+as + ag) (W3 + (az + a3 + ay + as + adpu® + (a3 + ay + a5 + ag)ay + (as + ag)(as
+a))u+ ((as + ag)ag + azas)az)a;

4.2 Basic reproduction number

The next-generation matrix method (Diekmann, Heesterbeek, & Metz, 1990; Otunuga, 2021) is used to calculate the
basic reproduction number of the proposed model. The fractional-order system (2) can be rewritten as:

where,

E(t)

2o |H®)| 2.,y _
PO =|pp| fO =
R(t)

S(t)

are the column vectors with the initial condition, 1/7(0) =

£ and 3, respectively.
At the Ebola-free equilibrium point E°,

cocoo<

[
Fgo = F(E®) = |
I
|

-V

Vpo = V(E?) =

are a singular and a non-singular 6 x 6 matrix. The basic reproduction number is the spectral

free point E°.

[ a,(E+1+ D+ H)S

FDPY(E) = £(t)

cococo=

a(E+1+D+H)S
N |

\% \% \ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-V —-v —=-Vv 0
,u+a2 0
—a, u+az;+a,
0 —Qa3
0 —Qy
0 0
0 0

—9(t)

and v(t) =

0
o
0
ol
0
ol
0
0
u+as+ag
—as
—a
0

(1 + az)E
[(M +az+ay)l — azEl

_|u+as+ag)H — asl|

uD — ayl — asH
UR — agH
uS —B

oox®T oo o

[=ia <IN eNeNeNe]

o

Po. Assume that F and V be the Jacobian matrices of the column vectors

(where V= Ba;Np)

T oOoooco

ius of the matrix FV~1 at Ebola-

B(u® + (ap + az + a, + as + ag)u® + ((az + as + as + ag)a, +
(as + ag)(az + ay))u + ((as + ag)as + azas)az)ay

Ry = p(FpoVpo') =

4.3 Invariant positive region

NQu+as+ag)(u + az + a)(u + ay)p?

Lemma 1. The proposed fractional-order model for Ebola infection (2) has the feasible domain of solution

0={(SELHDR ERSON sg}

that is positively invariant.

Proof. Adding all the equations in the fractional-order system (2),

This gives,

sHAN(t),s}—N(O) B

CFPPN(t) = B — uN(t)
Using the Laplace transform on each side of the previous equation,

2{ FDIN(), s} = AB — uN(2), 5}

provided s > 0.
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Solving for Z N (t), s} and taking inverse Laplace transform,

_ 1 L(__stp-s)
N(t) - N(O)Q_ {s+us+u¢(1—s)} +BZ {(1+;4—¢/,¢)sz+¢us}

|a- qb)fl{ =
| 1+u(1 P)

_ _N©O 1{ 1 }+ B
1+p—pd s+(#‘f_¢)) 1+p—pd | +opgt {

|

}
[

— e [- (225

[(1 = dyexp |- (22

Tu(1- ¢>)

S o P
P’ [1 exp

B
. |
Lhu-pd r 1+#(1 ) ]]

= S + [% - E] exp [_ (1+:Zt—¢))]

and because of the asymptotic decay characteristic of the inverse exponential function as time grows, }imN (t) < B/u. Therefore,
the fractional-order system has a positively oriented bounded region.

5. Existence and Uniqueness of the Solution

In this section, the existence and uniqueness of the solution of the proposed fractional-order model are shown. Applying
the fractional-integral operator ( ¢F g‘f) on both sides into the system of equations (2),

(E(E)+I(6)+D(t)+H(£))S(t
E(t) — E(0) :CFZ?(% @® ()N(tg) @® ()—(u+a2)E(t))

1(t) —1(0) =F gP(a,E(t) — (as + ay + wI(t))
H(t) = H(0) =CF g2 (a3I(t) — (as + ag + WH (L))

6
D(t) — D(0) =°F g?(a,I(t) + asH(t) — uD(t)) ©
R(t) = R(0) =°F g% (agH (t) — uR(1))
S(t) — S(0) _CF jttb (B —uS(t) - 011(E(t)‘”(t);éigt)"'l'l(t))s(t))
Solving the right-hand side of the system (6),
(1-¢)
E(t) = E(0) = Grgmttes B (6 Y(0) + Grasrs [y Ha(m ()
_2(1-9)
1(0) = 10) = Grgmts T (6, (D) + s fy Ha (T (D)
2(1-¢)
H(O) = H(0) = GE B3 (6 Y(0) + Gy Jo Ks (T (D) -
2(1-¢)
D() = D(0) = s Ha (6 Y(O) + Gy Jo Ka(T b (D)dr
2(1-¢)
R(®) = R(0) = Ao B s (6, (0) + Gmpariy Jo Ks (@ p()dr
2(1-¢)
S(0) = S(0) = st Ke (6. Y(0) + e Jy Ko (D)dr
where kernels Xy, 5, K3, K4, K5, and K are defined as:
%, (f,¢(f)) _ a1(E(t)+I(t);Z§t)+H(t))S(t) _ (ﬂ n az)E(t)
3 (6 (D)) = azE(t) — (as + ay +wI(t)
33 (6, 9(0) = azl(t) — (as + ag + wH() ®

Ky (£, 9(0) = @yl (£) + asH () — uD(t)

Hs(t, Y (@) = agH(t) — uR(t)

E(6)+I(0)+D()+H(1))S(t)
Ke(t, (@) =B —uS(t) — o N(t) :
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Lemma 2. The kernels X, X, X5, K4, K5, and K satisfy Lipschitz condition if

0 <L =sup{Lly,Ly Ls Ly Lg, L} < 1
where Ly = |ags; — (u+ ax)l, Ly = |+ as + ayl, Ly = |u + as + agl, Ly = Ls = p, Lg = |ay (1 — 5o — 19) — ],
So = inf S(t)/N(t) < sup S(t)/N(t) = s, and ry = inf R(t)/N(t).
¢ t ¢

Proof. Let E;, E, be corresponding functions for the kernel X,. Let I, I, be corresponding functions for the kernel X,. Let H;, H,
be corresponding functions for the kernel ¥5. Let D,, D, be corresponding functions for the kernel X,, R,, R, be corresponding
functions for the kernel K5 and S;, S, be corresponding functions for the kernel K. Then,

196 (6 E1(6) = (6, B (0) = [|(%202 = (i + a2 ) (B (©) = Bo(0)| ©
< sup [550 = G+ )| 1By () =~ B 0 (10)
Similarly, "
I 9658, 1, (8)) = Ko (£, 1, (0) 1= I (— @ + a3 + @) (13 (©) — L) ay
Slutaz+ay @) - LOI (12
Ly
I 55 (6, Ha (6)) = 55 (8 Ho () 1= 1(=(u + a5 + a6))(Hy (6) = Hy (D) (13)
< |1+ as + ag| [1Hy (6) = Hy (@)l (14)
Ly

I 54 (t, Dy (£)) = K (£, D,(0) = (=) (D1 (8) = Do)l (15)
< |1/ ID1(6) = Do (O (16)

Ly
I 5 (t, Ry (£)) = K (&, Ry(0)) 1= (=) Ry (£) = Ry (0)) an
< |1 IRy (6) = R (B (18)

Ls
Il Ko (L, S1.(£)) — Ko (t, So (D) lI= | a1(E(t)+1(f)+D(2zrtI;1(t))(51(t)—Sz(f)) || (19)
< sup |y (1- 33 - 7|11 - 5201 (20)

Le
For each n € N, we can get the following system of recursive relations using Picard’s iteration,

En(t) = =525, (6, Epy (1)) + e [ %, (7, By ()t

@-¢)M(@) @-¢)M(@)
In(6) = s Ko (6 a1 (D) + G fy Ko (0, s () dT
Hy(8) = ot s 3 (6 o1 (0)) + g fy (T Hyoy (0) e
Da(6) = gt K (6, Dnmy (D) + s [y Ka(T, Do (1))de
Rn(t) = Gt s (£, Ry -1 () + s fy 35T, Ryoa (1)t
Sn(t) = gt K (6 St (D) + G [y Ko (1, Sper ()T (21)
Now, using the Lipschitz inequalities and above recursive equations (21),
Il AE, (8) I=1l Ep(£) — Epeq (8) (22)
< % 85,101+ o fo WAE, 1 (D) I dr (23)
< (Hoaa) IAE,+ O (24)
Similarly,
1AL 1 =11 (©) = la (©) NS (2288 1o, 0 (25)
I AH(E) 1= 1 Ha(®) = Hooa(8) 1< (=288 i, o) (26)
I AD(E) I = 1 D () = Dpa () < (2 Zo) 1D, ) @)
I ARu(6) I =1l Ru(8) = Ruoa(6) 1< (520 AR, (0 (28)

2L6(1_¢+¢Tsup)

I AS2(0) =1 $2(8) = S-1(0) < (5,220

)1AS, 5 @) (29)
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Further, it can be observed by telescoping sums that,

m(t) - EO +Zn 1 AEn(t) Im(t) - IO +Z =1 Aln(t)
Hp(t) = Ho + Xp=1 AHp(8) Dy () = Do + Xty ADy(0)
Ry (t) =Ry + ZZ”=1 AR, (8), Sin(t) = Sp + szl AS,(t)
This proves the result.

Theorem 1. (Existence of solution) There exists a solution of the fractional system (2) provided 0 < 6 < 1. where 6 =

ZL(1_¢‘+¢'Tsup) —
() and L = sup{Ly, Ly, Ls, La,Ls, Le}:

Proof. The functions E(t), I(t), H(t), D(t), R(t), S(t) are bounded and respective kernels satisfy the Lipschitz conditions. Using
the recursive formula for the inequalities (22) - (29),

2L, (1-¢+@Teup)\" 1
I AE, (&) Il < (W)

<O AE () |l
n—-owo

—0,as 0<60 <1
Similarly, it can be observed for the following sequences that

IAE, (DI

n—-owo
I AL, () Il I AHR () I, I ADy (8) I, I ARy (8) Il I AS,(8) I—0, as 0 <6 < 1.
This proves the solutions of the fractional system exist and are of the form mentioned in (7).

Lemma 3. (Nwajeri, Panle, Omame, Obi, & Onyenegecha, 2022) Consider the initial value problem CFlpf’(t) =K (t, Y1),
Y (0) = 1, and suppose that there exists a Lipschitz constant L = 0 such that

[FC(E, 1 (8)) — K (t, Y2 ()] < L1 (1) — P2(0)], (30)
for all t € J =[0,b] and ¥4,y, € C(J,R). If L(%) < 1, Then, there exists a unique solution of the initial value
problemon J = [0, b].

Proof. The uniqueness of the solution to this initial value problem is a consequence of the Banach fixed point theorem. Let C(J, R)
denote the Banach space of all the continuous functions from J to R with infinity norm.

I fll,= Slgp{lf(f)llt €/ =1[0,b]}, VfeCUR)
Consider the mapping w: C?(J,R) — €?(J,R) defined by,

_ 2(1-¢) _
wP(t) = o + - KO = K(O0) + —~r = ¢)M(¢)f K(r)dr
Assume 1,9, € C9(J,R) and foreach t € J,
_ _2(1-¢)
D) 19 (t,1(£)) = K (&, 2 (O))
+(2 ¢)M(¢)f |:}C(T 11[)1(1-)) ]C(T 11[)2 (T))IdT
Using inequality (30) and for each t € J,
w1 (1) — wP (D) < R ¢)M(¢)|1/’1(t) A
(- ;l)‘;;(d))f |11[)1(T) lpz(r)ld‘[
2(1-9) 2¢Tsu
=L ((2—¢)M<¢) * (2—¢)M§¢)) l1.(6) = w2 (0]
Taking supremum over t € J,
_ 2(1_¢)+2¢Tsup _
s = oy, < L(FTEE) |y, —y, 1,

2(1_¢)+2¢Tsup
2-¢)M($)
has a fixed point say (y) i.e. (wy = ) which is the required unique solution of the initial value problem on C(J, R).

Thus, w is a contraction mapping if 0 < L ( ) < 1. Consequently, by the Banach fixed point theorem, the operator w

Theorem 2. (Uniqueness of solution) The solution (as provided by system 7) of the fractional system (2) is unique.
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Proof. We use Lemma 3 to show the uniqueness of the solution (as mentioned in system 7) for the fractional system (2). By Lemma
2, kernels K1, K,, K5, K4, K5, and K, satisfies the Lipschitz conditions with constants Ly, L, L3, L4, Ls, and L, respectively. Let
L =sup{Ly,L,, L3, Ly, Ls,Lg}and 6 = (%) Since a solution exists if 0 < 8 < 1 (hypothesis of existence Theorem 1),
the hypothesis of Lemma 3 is satisfied for each of the equations (with initial values) of the fractional-order system (2). Hence,
using Lemma 3, we conclude that the fractional-order system (2) has a unique solution if 0 < 6 < 1.

6. Stability

This section obtains the appropriate stability conditions for the generalized Ulam-Hyers-Rassias stability of the proposed
fractional-order model.

6.1. Generalized Ulam-Hyers-Rassias stability

Definition 5. (Nwajeri et al., 2021, 2022; Liu, Feckan, O’Regan, & Wang, 2019) The fractional-order model CFD?t,b(t) =
K (t,p(t)) is generalized Ulam-Hyers-Rassias (UHR) stable in accordance with Y (t) € H[J,R*] if there exists a positive real
value g4 (depending upon ¢) such that for every solution i of the following inequality,

| F D) - % (6w ()] < Y(©,

there exists a solution ¢ € H'(J,R™) of the model with
MGEMGIES Y@ for eacht € J.

Lemma 4. The fractional-order model CFD;”I/)(t) = K (t,(t)) (satisfying Lipschitz condition with Lipschitz constant L
depending upon kernel %) is generalized UHR-stable in accordance with non-decreasing positive function Y if,

ZL((1_¢)+¢Tsup)
<f=—F—7-—""-2

06 M) <1 (31)
Proof. We let Y (t) represent any arbitrary positive function, then there exists a positive real number » such that,

(201 - 9)y(® + 29 f; Y(@dr) <Y (). (32)
Since the kernel of the fractional-order model satisfies Lipschitz condition with Lipschitz constant L (depending upon kernel X)
ie

|7 (6, p () = K (& P©)| < LIw(e) — o) 3 (33)
So, using the existence and uniqueness theorem of the model, there exists a unique solution say (1) of the fractional-order model
of the following form,

B() = Po + =250 (£, () + ——t— [ K (7, (0))de (34)

_ ) RIS (- ¢)M(¢)
Assume that v is the solution of the following inequality,

| F D) - 3t p(en| <Y, (35)
Applying fractional-order integral operator,
nYy (@)
Iw(t)—”f"ﬂf(zt Ip(t))l S ) (36)
[(©) = o — s K (LY (O)) = Gaiees o K@ (@)de] .
_m® G
— (2-9)M($)

Now, consider the following,

(6 = P®)] = [(®) = Po — 22Kt (1)) — o [+ Kz, (D) d1|

(2- ¢)M2(g) ) (2- ¢)M(¢)
Y(O) — o — G K, w(t)) = i b K@ P
= + 282050 (£, (1)) + ——t— [ K (7,9 (0))de

2-p)M(d) (2- ¢)M(¢)

_M:}C(t l,[)(t)) —_

Vi d
@-o M) Tl K@ @)
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< [(0) = Po — LA P() — e [ K (5, (D)) |

a1 2-Pp)M(p) 2- ¢)M(¢)
2029 31, 9(£)) — K (&, YD)

(2— ¢)M(¢)
Tl [ @ (@) = K (@ Pp)|de
Using Lipschitz inequality (33), we get the following:
lw(@©) - b)) -
~ 2(1-
S|1/1(2t31—1/)0 K, w(;)) T Jy K@ p@)dr]
e WO = BO| + ot f |¢(r) P(0)|de
= W) = o - S50 P(©) — o [y K (@ Y(1)dr |

2=p)M(9) (2= ¢)M(¢)
+ ZL((1_¢‘)+¢'Tsup)
2=-p)M(¢)

Using (31) and (37), we get,

[w() — B

Y
[W(® = DO] < 52 T v ©® - d)

< nY) —
S Toe-pmeg - YO
7. Numerical Scheme

In this section, a new numerical scheme is obtained to solve numerically the fractional-order system representing the

proposed model. Consider the fractional-order equation ¢F Df’ Y(t) = K (t,P(t)), applying the fundamental theorem of fractional
calculus an iterative scheme is obtained as follows:

_ 2(1-9) 20 rten
Y(tn+1) —P(0) = = ¢)M(¢):}C(tn'¢(tn)) T ¢)M(¢)f K(z,¥())dr (38)
Replacing value of ¥ (t,,), we get,

Y(tns1) = Y(t) + ot [K (b, Y (6)) = K (tnet, Y (tn-1))]

T e K@ p(@)dr (39)
Considering uniform step-size / along the time axis, the integral can be approximated as in the classical two-step Adams-Bashforth

scheme as follows:

[ 36 p )T ~ L3t () ~ 2K (tamss (1)) 40

Substituting the value of approximated integral (40) into the above equation (39),

Y(tnsr) = P(t) + (ZZE;);’()@ [H (b (6)) = K (bt Y (tn-1))]

[ () — 4K (e, ()]
Since M(¢) is a normalizing function with M(0) = M(1) =1, Iet us assume M(¢) = (2 — $2)/(2 — $) which satisfies M(0) =
M(1) = 1. Thus,

2+(3h-2 2+(h-2
Yltnsn) = W(ta) + FEDLH (Y (t)) = EE2LH (b1, Y (tn1) (41)
Hence, the fractional-order model (3) has the following numerical scheme to obtain the numerical solutions.
nd e 2+(3h-2 2+(h-2
Pltnr) = Ptn) + ZZ2PH (b, (6)) = 522 Kot 1)) (42)

7.1. Numerical simulations

This section uses MATLAB software to perform the numerical simulations of the numerical scheme (42). The total initial
population is assumed to be N(0) = 100 and the initial values of the compartments are assumed to be S(0) = 80,E(0) =
10,1(0) = 5,H(0) = 3,D(0) = 2,R(0) = 0. The used values of the parameters are as follows: B = 10, u = 0.1, @; = 0.75, a, =
0.85, a3 = 0.425, a, = 0.2, a5 = 0.15, and g = 0.25.
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Figure 2 shows the transmission dynamics of each
compartment listed in the model over time. The behavior is
smooth, and it validates the theoretical results. Figure 3 shows
the behavior for different values of fractional order. For
relatively small values of the fractional order, the number of
infectious individuals reaches the peak of approximately 19
cases but takes a relatively long time.

Figure 4 shows the behavior of the Ebola infectious
cases over time for different values of the contact rate.
Increasing the contact rate of susceptibles with the pathogen
carriers will cause a surge in the number of Ebola infectious
individuals. The contact rate is the crucial parameter in this
model that directly influences the cases of Ebola. This shows
that the most efficient way to control the spread of EBOV
infection is to control the contact rate parameter.

Figure 5 and Figure 6 illustrate the behaviors of the
Susceptibles S(t) and the Deceased D(t) for various values of
contact rate ay, respectively.

In Table 2, the CPU time usage is listed for different
step sizes At and iterations n of the numerical scheme
proposed. The table makes it clear that the proposed strategy
increases efficiency while taking less time.
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Figure 1. Flow diagram of the proposed compartmental model
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Figure 2.

Effects of fractional order ¢ on infectious individuals I(t)
over time t.

Figure 3.

Figure 4. Effects of contact rate a; on infectious individuals I(t) over
time t with integer-order ¢ = 1

Figure 5. Effects of contact rate a; on susceptible individuals S¢t)
over time t with integer-order ¢ = 1

o 1 2 3 4 5 6 7

Figure 6. Effects of contact rate o, on deceased individuals D (t) over
time t with integer order ¢ = 1

Table 2. CPU time usage for various values of At and n
Step size (At) Number of iterations (1) CPU time (s)
0.1 100 0.29
0.01 1000 0.34
0.001 10* 0.41
0.0001 10° 131
0.00001 106 2.39

8. Conclusions

In this study, an epidemic model for the Ebola disease
was formulated using the Caputo-Fabrizio fractional derivative.
The basic reproduction number (2,) is calculated using the
next-generation matrix approach. We analyzed the conditions
for the existence and uniqueness of the solution using a fixed
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point theorem approach. Additionally, the stability conditions
for the generalized Ulam-Hyers-Rassias stability were found.
This illustrates how the approximate solution of the proposed
model differs for integer and fractional orders in numerical
simulations. Additionally, the behavior of Ebola infections in
deceased and vulnerable individuals at various contact rates
was simulated. In the future, the authors can study this approach
for other infectious diseases to get improved insights about the
transmission of diseases, and the study outcomes may help the
medical fraternity to work effectively.
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