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Abstract 
 

Similarity measure plays an important role when estimating the degree of resemblance between two sets or objects. A 

variety of similarity measures are suggested in the literature in the context of fuzzy sets and their generalizations, but a similarity 

measure of q-rung orthopair fuzzy sets (q-ROFSs) based on below, above and centre fuzzy sets has not been considered so far. 

Therefore, in this paper, we propose a novel similarity measure based on the information carried by transforming q-rung 

orthopair fuzzy sets into their below, above and centre fuzzy sets to calculate the degree of similarity between two q-ROFSs. We 

also construct an axiomatic definition for the proposed similarity measure of q-ROFS. Furthermore, to show the competency, 

reliability and applicability of our proposed similarity measure, we present several examples related to pattern recognition and 

multicriteria decision making. Finally, we construct an algorithm for Orthopairian Portuguese interactive and multicriteria 

decision making (O-TODIM) based on our proposed similarity measure between q-ROFSs, to handle complex multicriteria 

decision making problems related to daily life. Our demonstration shows that the proposed method is reasonable and reliable in 

handling different problems related to daily life settings in the q-ROFSs environment. 

 

Keywords: fuzzy set, q-rung orthopair fuzzy sets, similarity measures, pattern recognition, O-TODIM,  

                multicriteria decision making  

 

 

1. Introduction  
 

Conventionally, two-way logic of yes-no type was 

used to model uncertain and incomplete information. For 

example, an assertion can either be true or false and nothing in 

between, and there is no place for even a little uncertainty. 

Fuzzy sets have been able to cope with these types of 

situations, give expert opinions and provide solution to many 

real world problems.  Fuzzy set theory provides a strict 

mathematical framework in which vague conceptual 

phenomena can be precisely and rigorously studied. The word

 
“fuzzy” means vague/ unclear/ imprecise/ ambiguous. In real 

world, there exists much fuzzy knowledge; knowledge that is 

vague, imprecise, uncertain, ambiguous, inexact or 

probabilistic in nature. Fuzzy set and its generalizations 

become an effective instrument to model incomplete 

information with elevated perfection. The first publications in 

fuzzy set theory by Zadeh (1965) and Goguen (1969) showed 

the intention of the authors to generalize the classical notion 

of a set and a proposition to accommodate fuzziness in the 

sense that it is contained in human language, that is, in human 

judgment, evaluation, and decisions. 

In fuzzy set theory, the characteristic function is 

generalized to a membership function that assigns every x in 

X a value from the unit interval [0,1] instead of being assigned 

from the two-element set {0,1}. The non-membership degree 
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is given by 1-membership. There are many situations in daily 

life where the non-membership degree is not considered the 

complement of membership but as some hesitancy degree. 

Therefore, Atanassov (1986) launched the concept of 

Intuitionistic fuzzy sets (IFSs), which includes a degree of 

belonging, a degree of non-belonging, and a degree of 

irresolution, to make this extension more applicable and 

useful. Intuitionistic fuzzy sets have numerous applications in 

many areas including pattern recognition (Hung & Yang, 

2004), group decision making (Xu & Wang, 2016), IFS multi-

objective mathematical programming (Mahapatra, 2006), an 

approach of IFS in medical diagnosis (De, 2001), and a 

clustering algorithm based on IFS (Xu, 2008). Similarity 

measure is an important tool to compare two objects. 

Similarity between two IFSs can be based on Sugeno integral 

with application to pattern recognition (Hung & Yang, 2004). 

A similarity measure is given by Kaufman and Rousseeuw 

(1991), and a new similarity/distance measure between 

intuitionistic fuzzy sets based on the transformed isosceles 

triangles and its applications to pattern recognition by Jiang 

and Jin (2019), relation between similarity measure is put 

forwarded by Liang and Shi (2003), similarity measure 

induced by Hausdorff distance is coined by Hung and Yang 

(2004), similarity between vague sets is given in He, Li, Qin, 

and Meng (2020); Hwang and Yang (2013), a possible and 

necessary inclusion of intuitionistic fuzzy sets is suggested 

(Grzegorzewski, 2011), a new construction for similarity 

measures between intuitionistic fuzzy sets based on lower, 

upper and middle fuzzy sets (Hwang & Yang, 2013), new 

similarity measures of intuitionistic fuzzy sets based on the 

Jaccard index with its application to clustering (Hwang, Yang 

& Hung, 2018) and similarity measures of intuitionistic fuzzy 

sets based on Hausdorff distance has been proposed (Hung & 

Yang, 2004). 

Many extensions and generalizations of fuzzy sets 

have been made by researchers including Pythagorean fuzzy 

sets (PFSs) by (Yager, 2013) and (Yager & Abbasov, 2013), 

which are comparatively better than the IFSs. The 

characterization sof IFSs and PFSs are similar but they differ 

in the respective constraints μ(x) + ν(x) ≤ 1 and μ2(x) + ν2(x) ≤ 

1. Therefore, IFSs now become the subsets of PFSs and PFSs 

can model uncertain situation better than the IFSs. Distance 

and similarity measures of Pythagorean fuzzy sets based on 

the Hausdorff metric with application to fuzzy TOPSIS 

(Hussain & Yang, 2019), Pythagorean Fuzzy LINMAP 

Method Based on the Entropy Theory for Railway Project 

Investment Decision Making (Xue,  Xu, Zhang, & Tian, 2018) 

and Fuzzy entropy for Pythagorean fuzzy sets with application 

to multicriteria decision making (Yang & Hussain, 2018) have 

been reported. Most recently another amazing generalization 

of FS was coined by (Yager, 2017), q-rung orthopair fuzzy 

sets (q-ROFSs), which model uncertain and incomplete 

information better than either IFSs and PFSs with high 

accuracy. The constraint of q-ROFSs is μq(x) + νq(x) ≤ 1 and it 

covers a wider space than IFSs and PFSs. A q-rung Orthopair 

fuzzy multi-criteria group decision making method for 

supplier selection based on a novel distance measure is given 

(Adem & Boran, 2020) and information measures for 

q‐ROFSs in the International Journal of Intelligent Systems is 

put forwarded (Peng & Liu, 2019) while similarity measures 

between q-ROFSs based on cosine functions are given by 

(Ping, Jie, Guiwu, & Cun, 2019). Similarity measures between 

q-ROFSs based on below, above and center fuzzy sets have 

not been considered so far. Therefore, in this manuscript, we 

propose a novel way to construct similarity measures between 

q-ROFSs based on the below, above and center fuzzy sets 

with applications to pattern recognition and multicriteria 

decision making with Orthopairian TODIM. 

The rest of the paper is assembled as follows. In 

section 2, some basic concepts of intuitionistic fuzzy sets and 

Pythagorean fuzzy sets and q-ROFSs are briefly reviewed. We 

also concisely examine the q-ROFSs and an axiomatic 

definition of similarity measures. Section 3 is dedicated to 

construct new similarity measures of q-ROFSs based on the 

below, above and center fuzzy sets transmuted from the q-

ROFSs. Section 4 is devoted to exhibit some examples and 

comparison among several proposed similarity measures of q-

ROFSs. An application of the suggested methods in pattern 

recognition is also stated. In section 5, we construct 

Orthopairian fuzzy TODIM algorithm to apply our proposed 

similarity measure to solve complex daily life problems 

requiring multicriteria decision making. We wind up our 

investigation with a discussion in section 6. 

 

2. Preliminaries 
 

This section includes the review of basic notions of intuitionistic fuzzy sets, Pythagorean fuzzy sets and q-ROFSs. 

Definition 1. (Atanassov, 1986). Let X be a universe of discourse. An IFS I in X is given by 

    , , :
I I

I x x x x X    

where  : 0,1
I

X   denotes the degree of membership and  : 0,1
I

X   the degree of non-membership of the element 

x X  to the set I  with the condition that    0 1
I I

x x    . The degree of indeterminacy is 

     1
I I I

x x x     . 

 

Definition 2. (Yager, 2013). Let X be a universe of discourse. A Pythagorean fuzzy set (PFS) in X is given by  

    , , |
P P

P x x x x X    

where  : X 0,1
P

  denotes the degree of the membership and  :     0,1
P

X   denotes the degree of non-membership of 

the element x X  to the set P  respectively with the condition that    2 20 1
P P

x x    . 
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Definition 3. (Yager, 2017). Let X be a universe of discourse. A q-ROFS A  in X is given by 

    ,  ,  |  
A A

x x xA x X     

where    : 0,1
A

x X   represents the degree of membership and    : 0,1
A

x X   indicates the degree of non-membership 

of the element x X  to the set A  with the condition that    0 1q q

A A
x x    , 1.q  The degree of indeterminacy is 

      1- q q

A A A

q x xx   .  

The main difference between IFSs, PFSs and q-ROFSs is in their corresponding constraints. 

 

Definition 4. (Peng & Liu, 2019). Assume E  and F  be two q-ROFSs on universe of discourse X, then the following operations 

can be defined: 

         and , 1,2,..., .i i i iE F E F
i E F iff x x x x for i n        

         and , 1,2,..., .i i i iE F E F
ii E F iff x x x x for i n        

          , , : , 1,2,..., .i i i i i iE F E F
iii E F x x x x x x X i n          

          , , : , 1,2,..., .i i i i i iE F E F
iv E F x x x x x x X i n          

      , , : .c

i i i iE E
v E x x x x X    

Now, we give the axiomatic definition of similarity between q-ROFSs. 

 

Definition 5. Let E , F  and G  be any three q-ROFSs on a universal set X. A similarity measure  ,S E F  is called an 

Orthopairian similarity for q-ROFSs if it satisfies the following axioms: 

   1 0 , 1S S E F  ; 

   2 , 1,S S E F iff E F  ; 

     3 , ,S S E F S F E ; 

 4S If E F G   then    , ,S E G S E F  and    , ,S E G S F G ; 

   5 , 0 ,S S E F if E X F     or ,F X E   . 

Similarity between two IFSs E  and F  based on Lower, Upper and Middle fuzzy sets (LUMFSs) is given in (Hwang & Yang, 

2013). We utilize a similar notion to define the similarity measures between two q-ROFSs based on Below, Above and Centre 

fuzzy sets (BACFSs) in the following section. 

 

3. New Construction of Similarity Measures between q – ROFSs 
 

Similarity measures are very useful tools to determine the resemblance between two objects. First, we use the notion 

given by (Hwang & Yang, 2013) to construct similarity measures between q-ROFSs. Then, we define new constructs of 

similarity measures between q-ROFSs based on BACFSs. The extended similarity measures between two q-rung Orthopair fuzzy 

sets E  and F  are defined as follows. 

Suppose that E  and F  be any two q-ROFSs on a universal set X then, 

           
1

1
1

2
,

n
q q q q

iqR i iF F
i

C E E iS E F x x x
n

x   


    
                         (1) 

          
1

1
1

2
,

n
q q q q

iqR i iE F
i

H E F iS E F x x x
n

x   


    
                            (2) 

           

        

1

1

1
1

4

1

4

,
n

q q q q

qRL i i i i

i

n
q q q q

i i i

E E F F

E F E F i

i

S E F x x x x
n

n
x x x x

   

   





     

  





                (3) 

            
1

22 2

1

,
1

1
2

qRO i

n
q q

i i iE F

q q

E
i

F
S E F x x x

n
x   



 
 

   
 


                   (4) 

     
1

1
, 1

n
p

p
qRDC p E F

i

S E F m i m i
n 

  
                                           (5) 

             
1 1

1 1 ,
2 2

q q q q

i i i iE E E F F F
where m i x x and m i x x         1 .p   
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      1
, , ,

2

q q

qRHBS E F E F E F                                                              (6) 

where      
1

1
, 1 | |

n
q q q pp

i ip E F
i

E F x x
n

  


    and      
1

1
, 1 | |

n
q q q pp

i ip E F
i

E F x x
n

  


    

     
1

1
, 1 | |

n
p pp

qRe p tEF fEF
i

S E F i i
n

 


                                                                   (7) 

where              
1 1

, 1 1 1 .
2 2

q q q q

i i i itEF E F fEF E F
i x x i x x and p               

      1 2

1

1
, 1

n
pp p

qRs s sp
i

S E F i i
n

 


                                                                   (8) 

where 

                  1 21 1 2 2 1

1 1 1
,

2 2 2

q

s i i s i i iE F E F E E E
i m x m x and i m x m x with m i x m i         

                    2 1 2

1 1 1
1 , 1 .

2 2 2

q q q q

i i iE E E F F F F F F
m i m x i m i x m i and m i m x i           

   
3

1 1

1
, 1

p
n

p p
qRh mp

i m

S E F i
n

 
 

 
   

 
                                                                                  (9) 

where          1 1 2 2( ) , | |,s s i iE F
i i i i m x m x                  3 , ,

E F E F
i max l i l i min l i l i   with  

             
1 1 1

, 1 and 1 .
3 2 2

q q q q

m i i i iE E E F F F
l i x x l i x x            

Now, we construct a similarity between two q-ROFSs E  and F  based on below, above center fuzzy sets utilizing (1) - 

(9). Assume that     , , :
E E

E x x x x X    is a  q–ROFS with     1,q q

E E
x x   we first  establish the 

below fuzzy set 
bE  and the above fuzzy set 

aE  to the q – ROFS according to (Grzegorzewski, 2011) and (Hwang & Yang, 

2013) respectively as follows:  , ( ) : ,b

b

E
E x x x X  where ( ) ( )b

q

EE
x x   and  , ( ) :a

a

E
E x x x X   

with ( ) ( ) ( ) 1 ( ).a

q q q

E E EE
x x x x        Furthermore, we interpret a center fuzzy set cE   to the q–ROFS as follows: 

 , ( ) :c

c

E
E x x x X  where  

1
( ) ( ) 1 ( )

2
c

q q

E EE
x x x      

Now, we extend the above mentioned similarity measures (1)-(9) between two q-ROFSs to construct new similarity 

measures of q-ROFSs based on above, below and center fuzzy sets. Assume that the similarity measure  ,S E F
 
between any 

two q-ROFSs E  and F  satisfies the conditions of Definition 4 in section 2. We can build a new similarity measure 

 ,bacS E F based on the defined below, above and center fuzzy sets as follows: 

        1
, , , ,

3

b b a a c c

bacS E F S E F S E F S E F        (10) 

where  , ( ) :b

b

E
E x x x X 

 
and ( ) ( )b

q

EE
x x   and  , ( ) :a

a

E
E x x x X 

 

with ( ) ( ) ( ) 1 ( ).a

q q q

E E EE
x x x x        We next prove the suggested  ,bacS E F is a similarity measure between two q – 

ROFSs E  and F . 

 

Proposition 1.  0 , 1bacS E F  . 

 

Proof. Since    0 , 1, 0 , 1b b a aS E F S E F     and  0 , 1c cS E F  , apparently  

 0 , 1bacS E F  . Thus, the proposition is proved. □ 

 

Proposition 2.  , 1 .bacS E F iff E F   

 



442 Z. Hussain et al. / Songklanakarin J. Sci. Technol. 46 (5), 438-449, 2024 

 

Proof. Since  ,S E F  is a similarity measure between E and F, by (S2) in Definition 4, we have that 

 , 1 .S E F if E F  so,  , 1bacS E F  ,b b a aif E F E F   and c cE F if    q q

i iE F
x x   

   q q

i iE F
if x x  if E F . □ 

 

Proposition 3. ( , ) ( , )bac bacS E F S F E  

 

Proof. Since ( , ) ( , ), ( , ) ( , ) and ( , ) ( , )b a b b a a a a c c c cS E F S F E S E F S F E S E F S F E   , we have 

               1 1
, , , S , , , S ,

3 3

b b a a c c b b a a c c

bacS E F S E F S E F E F S F E S F E F E      ( , )bacS F E . □ 

 

Proposition 4.        , , and , , ifbac bac bac bacS E G S E F S E G S F G E F G    . 

 

Proof. If E F G   then for all X, we have      q q q

E F G
x x x     1 q

E
x    1 q

F
x  1 ,q

G
x   

     1 1 1q q q

E F G
x x x        and        1 1q q q q

E E F F
x x x x            1 q q

G G
x x    also 

              
1 1 1

1 1 1 ,
2 2 2

q q q q q q

E E F F G G
x x x x x x              

which follows ,b b b a a aE F G E F G     and .c c cE F G   Thus, 

( , ) ( , )b b b bS E G S E F ( ,G ) ( ,F ) and ( ,G ) ( ,F ). Hence S (E,G) S (E,F).a a a a c c c c

bac bacS E S E S E S E  
  

Similarly, we have ( , ) ( , )bac bacS E G S F G . □ 

 

Proposition 5. ( , ) 0bacS E F if E X  and F or E    and ,F X where X and φ are crisp sets. 

 

Proof. If E X   and F   then a b cE E E X     and a b cF F F     by  5S  of  Definition 4,  

since X and φ are crisps, we have ( , ) 0a aS E F  and ( , ) 0c cS E F  . Thus  

        1
, , , , 0

3

b b a a c c

bacS E F S E F S E F S E F    . Similarly, if E  and F X   then  

        1
, , , , 0

3

b b a a c c

bacS E F S E F S E F S E F    . On the other hand, if  , 0bacS E F   then 

( , ) 0, ( , ) 0b b a aS E F S E F  and ( , ) 0c cS E F  . This implies that 
a b cE F E X    and  

a b cF E F    or a b cE F E    and .a b cF E F X   Thus, we get E X  and F   or 

E   and F X .    □ 

Evidently, we acquire the following theorem from propositions 1 to 5. 

 

Theorem.  ,  bacS E F  is a similarity measure if   ,  S E F  is a similarity measure between q- ROFS E and .F  

Next, we extend the similarity measures (1) – (9) between two q-ROFSs E and F  to similarity measures between two q-ROFSs 

E and F  based on below, above and center fuzzy sets as follows: 

       

       

1

1
( , ) 1

3

1

2

n
q q q q

bacC i i i iE F E F
i

q q q q

i i i iE F F E

S E F x x x x
n

x x x x

   

   



     

  


   (11) 

       

       

1

1
( , ) 1

3

1

2

n
q q q q

bacH i i i iE F E F
i

q q q q

i i i iE F F E

S E F x x x x
n

x x x x

   

   



     

  


     (12) 
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1

1
( , ) 1

3

1

2

n
q q q q

bacL i i i iE F E F
i

q q q q

i i i iE F F E

S E F x x x x
n

x x x x

   

   



     

  


    (13) 

       

       

2
2

1 1

2

1

1 1 1
( , ) 1

3

1

4

n n
q q q q

bacO i i i iE F E F
i i

n
q q q q

i i i iE F F E
i

S E F x x x x
n n

x x x x
n

   

   

 




     




  



 



   (14) 

       

       

1 1

1

1 1 1
( , ) 1

3

1

2

p pn n
q q q qp p

bacDC i i i iE F E F
i i

pn
q q q qp

i i i ip E F F E
i

S E F x x x x
n n

x x x x
n

   

   

 




     




  



 



 (15) 

       

       

1 1

1

1 1 1
( , ) 1

3

1

2

p pn n
q q q qp p

bacHB i i i iE F E F
i i

pn
q q q qp

i i i ip E F F E
i

S E F x x x x
n n

x x x x
n

   

   

 




     




  



 



  (16) 

       

       

1 1

1

1 1 1
( , ) 1

3

1

2

p pn n
p q q q qp p

bace i i i iE F E F
i i

pn
q q q qp

i i i ip E F F E
i

S E F x x x x
n n

x x x x
n

   

   

 




     




  



 



      (17) 

       

       

1 1

1

1 1 1
( , ) 1

3

1

2

p pn n
p q q q qp p

bacs i i i iE F E F
i i

pn
q q q qp

i i i ip E F F E
i

S E F x x x x
n n

x x x x
n

   

   

 




     




  



 



  (18)

 

       

       

1 1

1

1 2 2
( , ) 1

3 3 3

1

3

p pn n
p p

p q q q qp p
bach i i i ip pE F E F

i i

pn
q q q q

p
i i i ip E F F E

i

S E F x x x x
n n

x x x x
n

   

   

 




     





   



 



         (19) 

 

4. Numerical Results and Applications 
 

In this section, we first give some numerical examples to show the validity of our proposed similarity measures (1) – 

(9) between q-ROFSs. Then, we present a few numerical examples to demonstrate our new construction of similarity measures 

(11) - (19) between q-ROFSs based on above, below and center fuzzy sets. 

 

Example 1. Let us take six q-ROFSs. The numerical analysis results of similarity measures of q-ROFSs are shown in the Table 1 

that demonstrates the similarity measure (1) – (9) of six different q-ROFSs. Clearly, the numerical simulations results in Table 1 

show that there is no conflict in measuring similarity utilizing (2) – (7) between q-ROFSs except for (1), (8) and (9) having a 

little differences in a few places.  
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Table 1. Results of similarity measures (1) – (9) of q-ROFSs 

 

 1 2 3 4 5 6 

       

E
 

(x, 0.8, 0.7) (x, 0.9, 0.5) (x, 0.4, 0.9) (x, 0.5, 0.4) (x, 0.6, 0.6) (x, 0.8, 0.5) 

F
 

(x, 0.6, 0.9) (x, 0.7, 0.8) (x, 0.6, 0.8) (x, 0.7, 0.3) (x, 0.8, 0.5) (x, 0.9, 0.4) 

qRCS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

qRHS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

qRLS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

qROS  0.6590 0.6135 0.8127 0.8436 0.7810 0.8406 

qRDCS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

qRHBS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

p

qReS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8510 

p

qRsS  0.6590 0.6135 0.8155 0.8725 0.8065 0.8510 

p

qRhS  0.7576 0.7275 0.8533 0.8848 0.8368 0.8813 
       

 

Next, we utilize our newly proposed methods of calculating similarity between q-ROFSs to check the reliability and 

reasonability applying on exhibit the numerical results of newly constructed similarity measures (11) - (19) of q-ROPFSs based 

on below, above and center fuzzy sets. The numerically calculated results show the reliability and suitability of our proposed 

method in Table 2 that shows the similarity measures (11) – (19) of q-ROFSs based on below, above and center fuzzy sets. There 

is no conflict in measuring the degree of similarity using (12), (13), (15) – (18) except for a little difference in similarity 

measures (11), (14) and (19) in a few places. The numerical analysis results show the validity and suitability of our proposed 

similarity measures (11) – (19). 

 
Table 2. Similarity measures (11)–(19) of q-ROFS based on below, above and center fuzzy sets 

 

 1 2 3 4 5 6 

       

E
 

(x, 0.8, 0.7) (x, 0.9, 0.5) (x, 0.4, 0.9) (x, 0.5, 0.4) (x, 0.6, 0.6) (x, 0.8, 0.5) 

F
 

(x, 0.6, 0.9) (x, 0.7, 0.8) (x, 0.6, 0.8) (x, 0.7, 0.3) (x, 0.8, 0.5) (x, 0.9, 0.4) 

bacCS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

bacHS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

bacLS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

bacOS
 

0.6590 0.6135 0.8126 0.8436 0.7810 0.8406 

bacDCS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

bacHBS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

p

baceS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

p

bacsS
 

0.6590 0.6135 0.8155 0.8725 0.8065 0.8610 

p

bachS
 

0.7727 0.7423 0.9734 0.9314 0.9114 0.9344 
       

 

4.1 Application to pattern recognition 
 

In this subsection, we utilize our proposed similarity measures (1) – (9) and (11) - (19) between q-ROFSs in pattern 

recognition to check the suitability and practical applicability of our proposed method. 

 

Example 2. Let L1 and L2 be two patterns in the finite universe of discourse X = {x} 

     1 2,0.75,0.75 ,0.85,0.65L x and L x   

The sample K is represented by the q-ROFS as follows K = {(x, 0.95, 0.50)}. Our main objective is to classify the pattern K in 

one of the classes L1 and L2. According to the principle of maximum degree of similarity between q-ROFSs, the process of 

allocating the sample K to Lm
 
is defined by the following relation 

  ,
1 2

,q ROFS m q ROFS j
j

S argmax S L K 
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Utilizing the proposed similarity measures (1) – (9) and (11) - (19) between q-ROFSs to show the practical 

applicability in pattern recognition as follows: 

       1 2 1 2, 0.6338, , 0.8035, , 0.6338, , 0.8035C C bacC bacCS L K S L K S L K S L K   

       1 2 1 2, 0.6338, , 0.8035, , 0.6338, , 0.8035,qRH qRH bacH bacHS L K S L K S L K S L K   

       1 2 1 2, 0.6338, , 0.8035, , 0.6338, , 0.8035,qRL qRL bacL bacLS L K S L K S L K S L K   

       1 2 1 2, 0.6273, , 0.7980, , 0.6338, , 0.8035,qRO qRO bacO bacOS L K S L K S L K S L K   

       1 2 1 2, 0.6338, , 0.8035, , 0.6338, , 0.8035,qRDC qRDC bacDC bacDCS L K S L K S L K S L K   

       1 2 1 2, 0.6338, , 0.8035, , 0.6338, , 0.8035,qRHB qRHB bacHB bacHBS L K S L K S L K S L K   

       1 2 1 2, 0.6338, , 0.8035, , 0.6338, , 0.8035,p p p p

qRe qRe bace baceS L K S L K S L K S L K   

       1 2 1 2, 0.4680, , 0.7170, , 0.6338, , 0.8035,p p p p

qRs qRs bacs bacsS L K S L K S L K S L K   

       1 2 1 2, 0.6775, , 0.8245, , 0.7558, , 0.8690.p p p p

qRh qRh bach bachS L K S L K S L K S L K     

The above numerically computed results reflect intuitively that the pattern K belong to the sample L2 according to the 

principle of maximum degree of similarity between q-ROFSs. All suggested similarity measures (1) – (9) and (11) - (19) between 

q-ROFSs unanimously agreed that the pattern K belongs to the pattern L2. 

 

5. q-Rung Orthopair Fuzzy TODIM Approach to Multi-Criteria Decision Making  
 

Step 1: Let  1 2, ,..., iA A A A  represent the set of alternatives and the set of criteria is represented by  1 2, ,..., .jC C C C  

Identify the q-Rung Orthopair fuzzy decision matrix  rij m n
R


 given by the DM in the MCDM problems, where rij is a q-

ROFN. The decision matrix is constructed as follow: 

 

1 2

1 11 12 1

2 21 22 2

1 2

. . .

r r . . . r

r r . . . r

r . . . . .

. . . . .

. . . . .

r r . . . r

j

j

j

ij m n

i i i ij

C C C

A

A

R

A


 

 

Step 2: Transform the decision matrix  rij m n
R


 into a normalized q-ROFF decision matrix  

 
 

beneficialattribute

cost attribute

ij

cij m n

ij

r for
L l

r for




  


 

In this step, we transform the decision matrix  rij m n
R


 into a normalized decision matrix. If the criteria are benefits then we 

write the original matrix, but if the criterion is a cost then we take its complement  ijr
c
. 

Step 3: Calculate the relative weight of each criterion 
jC  using /jr j rw w w where 

jw is weight of criterion 
jC .  In TODIM 

method, we choose the highest weight 
rw  as a reference weight and divide the reference weight to all weights 

jw . 

: 1,2,3,..., 0 1r j jrw max w j n and w     
 

Step 4: Calculate the dominance degree of each alternative
iA over each alternative

tA  with respect to the criterion by
jC  using  

 

 

 

1

1

,

, 0

,
1

rj ij tj

ij tjn

jr

j

j i t ij tj

n

rj ij tj

j

ij tj

jr

w d I I
if I I

w

A A if I I

w d I I

if I I
w
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Here,  ,j i tA A signifies dominance degree of the alternative 
iA  over individually alternative A  with respect to the criterion by 

jC and equating alternatives i with alternatives t.   represent the attenuation factor of the loss. If 0ij tj ij tjI I or I I    then we 

says it is the dominance degree of gain and  (I , I )ij tjd  represent the distance of q-ROFF and 
jrw  is relative weight of each 

criterion 
jC . If 0ij tj ij tjI I or I I     then it represents the dominance degree of loss. If the interval is gain we use 

1

(I , I ) /
n

jr ij tj jr

i

w d w


 but if the interval is loss we use  

1

1
(I , I ) /

n

jr ij tj jr

i

w d w
 

 
. When 

ij tjI I it is nil. n is number of criteria; 

j be any criteria for 1,2,...,j n ; 

rjw is equal to
jw  divided by 

rw , where r is reference criteria. 

ijI and 
tjI are respectively the performance of alternatives 

iA  and 
tA  in relation to j; 

Step 5: Calculate the overall dominance degree of 
iA  over each alternative 

tA  using 

     
1

, , ,
n

i t j i t

j

A A A A i t 


   

 ,i tA A  denotes the measurement of dominance of alternative 
iA  over alternative 

tA  

Step 6: Derive the overall value of each alternative 
iA by using  

   

 

1 1

1 1

, ,

( , ) ,

n m

i t i t
i

i i

i m m

i t i t
i i

i i

A A min A A

max A A min A A

 



 

 

 

 
  

 
   

   
   

 

 

 

Clearly, 0 1,i  and we select the greater value of 
i  that is considered as a better alternative 

iA . Thus, one can choose the 

appropriate alternative, in accordance with a descending order of the overall values of all the alternatives. 

Step 7: Determine the ranking of the alternatives according to the overall values. 

Now we apply our proposed method to deal with some daily life problems involving multicriteria decision making. 

 

Example 3. Selection of best ISP (Internet Service Provider) 

ISPs are essential in enabling user access to the internet and provide the infrastructure required for data transfer. To 

allow data to move between various devices and across the internet, they maintain networks of routers, switches, and other 

hardware. Comcast, AT&T, Verizon, Spectrum, Cox Communications, and many others are a few well-known ISPs. Our aim is 

to select the best ISP among the given ones. For this purpose, consider a customer who wants to choose an ISP for residential or 

commercial purposes. Suppose there are four types of an ISP (alternatives)  1,  2,  3,  4jA j   available. We need to look for 

the reliable offers at the most affordable price which would support long-term requirement. The customer considers four 

attributes to decide which ISP to choose. 

1C =Speed                    
2C = Consistency                   

3C  =Reliability                        
4C = Cost 

The brief descriptions of the above four criteria 
1C ,

1C ,
1C  and 

1C s are as follows: 

1C = Speed: The internet speed at which the data travels from the worldwide web to home computer, tablet and smart phone. 

2C =  Consistency: Steadiness or uniformity in an internet service. 

3C
 
= Reliability: The internet service is consistently good in quality and performance. 

4C = Cost: The payment of the installations and the devices of internet service. 

We notice that 
4C is cost attribute while the other three are benefit attributes. The values given by DM are displayed in Table 3.  

Since 
4C  is cost attribute, we have to convert it into benefit type by taking the complement as follows: 

        4 0.8,0.7 , 0.5,0.8 , 0.7,0.6 , 0.8,0.3cC   

Table 4 shows the normalized q-ROF decision matrix. Assume that the weights of criteria 
jC ,  1,2,3,4j   are known 

and the corresponding weight vector is  0.4,0.2,0.1,0.3w  . Since 1w  is maximum of all given weights so 
1C  is considered as 

reference criterion and the corresponding reference weight is denoted by 1w =0.4. Therefore, the relative weights of all the 

criteria  1,2,3,4jC j 
 
are as follow: 
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1

0.4
1,

0.4

j

r jr

r

w
w w

w

 
   

 

, 
2

0.2
0.5,

0.4
rw   3 4

0.1 0.3
0.25, 0.75

0.4 0.4
r rw w    ,

4

1

2.5jr

j

w


   

Utilizing step 4, we calculate the dominance degree of the alternative
iA  over each alternative 

tA  with respect to the 

criteria 
jC . Since  =2.5 for dominance degree, first we have to calculate the distance  ,ij tjI I  for each criterion, so we use the 

similarity given in Equation (11) 

               
1

1 1
( , ) 1

3 2

n
q q q q q q q q

bacC i i i i i i i iE F E F E F F E
i

S E F x x x x x x x x
n

       


          

Table 5 shows the matrix for criterion 
1C . Table 5 reflects the evaluation of the dominance degree of the 

alternatives
iA over each alternatives 

tA with respect to criterion 
1C .Table 6 shows the matrix for criterion 

2C . Table 6 shows the 

evaluation of the dominance degree of the alternatives
iA over each alternative 

tA with respect to criterion 
2C . Table 7 shows the 

matrix for criterion 
3C . Table 7 exhibits the evaluation of the dominance degree of the alternatives

iA over each alternative 

tA with respect to criterion 
3C . Table 8 shows the matrix for criterion 

4C . Table 8 denotes the evaluation of the dominance 

degree of the alternatives
iA over each alternative 

tA with respect to criterion 
4C . 

The overall dominance degree of 
iA  over each alternative 

tA  is determined using    
1

, ,
n

i t j i t

j

A A A A 


 . Table 9 

shows the evaluation of the dominance degree of the alternatives
iA over each alternative 

tA with respect to criterion 
jC . The 

overall dominance degree of 
iA  over each alternative 

tA  is determined using    
1

, ,
n

i t j i t

j

A A A A 


 . 

Table 3. Pythagorean fuzzy decision-making matrix 

 

 
1C  

2C  
3C  

4C  

     

1A
 

(0.8, 0.7) (0.6, 0.9) (0.9, 0.5) (0.7, 0.8) 

2A
 

(0.8, 0.6) (0.6, 0.8) (0.9, 0.4) (0.8, 0.5) 

3A
 

(0.6, 0.5) (0.7, 0.4) (0.5, 0.4) (0.6, 0.7) 

4A
 

(0.5, 0.8) (0.3, 0.7) (0.5, 0.7) (0.3, 0.8) 

     

Table 4. The normalized q-ROF decision matrix 

 

 
1C  

2C  
3C  

4C  

     

1A
 

(0.8, 0.7) (0.6, 0.9) (0.9, 0.5) (0.8, 0.7) 

2A
 

(0.8, 0.6) (0.6, 0.8) (0.9, 0.4) (0.5, 0.8) 

3A
 

(0.6, 0.5) (0.7, 0.4) (0.5, 0.4) (0.7, 0.6) 

4A
 

(0.5, 0.8) (0.3, 0.7) (0.5, 0.7) (0.8, 0.3) 

     

 

Table 5. The matrix for criterion 
1C  

 

 
1A
 2A

 3A
 4A

 
     

1A
 

0.0000 -0.6132 0.0000 0.5374 

2A
 

0.6132 0.0000 0.5692 0.5138 

3A
 

0.0000 -0.5692 0.0000 0.5517 

4A
 

-0.5374 -0.5138 -0.5517 0.0000 

     

Table 6. The matrix for criterion 
2C  

 

 
1A  

2A  
3A  

4A  
     

1A  0.0000 -0.8443 -0.6951 0.3768 

2A  0.4221 0.0000 -0.7537 0.4052 

3A  0.3476 0.3768 0.0000 0.3742 

4A  -0.7537 -0.8104 -0.7483 0.0000 
     

 

Table 7. The matrix for criterion 
3C  

 

 
1A  

2A  
3A  

4A  
     

1A  0.0000 -1.2458 0.2588 0.2427 

2A  0.3114 0.0000 0.2642 0.2362 

3A  -1,0354 -1.0568 0.0000 0.2933 

4A  -0.9708 -0.9449 -1.1730 0.0000 
     

Table 8. The matrix for criterion 
4C  

 

 
1A  

2A  
3A  

4A  
     

1A  0.0000 0.4648 0.5049 -0.6701 

2A  -0.6198 0.0000 -0.6282 -0.5465 

3A  -0.6733 0.4712 0.0000 -0.6613 

4A  0.5026 0.4099 0.4959 0.0000 
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Table 9. Overall dominance degree of 
iA  over each alternative 

tA  

 

 
1A  

2A  
3A  

4A   
4

1

,i t

i

A A



 

      

1A  0.0000 -1.2458 0.2588 0.2427 -1.6831 

2A  0.3114 0.0000 0.2642 0.2362 0.7871 

3A  -1,0354 -1.0568 0.0000 0.2933 -1.6385 

4A  -0.9708 -0.9449 -1.1730 0.0000 -5.5956 

      

 
Table 10. Ranking the alternatives 
 

 
1A  

2A  
3A  

4A  
     

1
 

0.6129 1 0.6199 0 
     

 

   

   

1

1 1

, ,

, ,

m

i t i t
i

i
i m m

i t i t
i i

i i

A A min A A

max A A min A A

 

 



 



 
 

 
 



 

.  

 

Table 10 shows the ranking of alternatives. From Table 10 we conclude that the best alternative is 
2A . The internet service 

provider 
2A

 
is the best among all considered alternatives. 

 

6. Conclusion and Future study 
 

In this paper, we proposed a novel similarity 

measure and its axiomatic definitions of q-rung orthopair 

fuzzy sets based on below, above and center fuzzy sets. We 

have converted q-ROFSs into their below, above and center 

fuzzy sets and suggested a new method of calculating 

similarity measures between q-ROFSs. Based on numerically 

computed results, we have found that our proposed similarity 

measures between q-ROFS are suitable and logically 

reasonable. In the end, O-TODIM method is proposed to rank 

internet service providers and selects the best one/ones. Final 

results show the effectiveness and reliability of our proposed 

O-TODIM to solve a complex multicriteria decision making 

problem. 

In the future, the proposed measures can be 

extended to Bipolar fuzzy sets, HFSs, and Picture fuzzy sets 

etc. The proposed measures can be applied to some more real-

life problems. 
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