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Abstract

Our multimodal biometric system combines fingerprinting with a top-view finger image captured by a CCD camera
without user intervention. The greyscale image is preprocessed to enhance its edges, skin furrows, and the nail shape before
being manipulated by a bank of oriented filters. A square tessellation is applied to the filtered image to create a feature map,
called a NailCode, which is employed in Euclidean distance computations. The NailCode reduces system errors by 17.68%
in the verification mode, and by 6.82% in the identification mode.
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1. Introduction

Person recognition by fingerprinting is ubiquitous
because of its uniqueness and time invariance (Maltoni et al.,
2003). As a biometric feature, fingerprints offer high accu-
racy even when cheap sensors are utilized. However, finger-
print recognition accuracy has reached a limit which is
difficult to surpass. One approach is multimodal biometrics,
which combines multiple human features in the recognition
process. For example, Hong and Jain (1998) employs the
face in conjunction with fingerprints, Jain et al. (1999a) uses
speech, face, and fingerprints, Marcialis and Roli (2004)
utilize two different fingerprint sensors, while Prabhakar and
Jain (2002) examine two fingers. All these methods augment
recognition accuracy, with the drawback that the additional
features increase the complexity of user interaction with the
system.

Our approach rests on the idea that the skin wrinkles
and furrows on top of each person’s fingers are different,
along with the size and shape of the fingers and finger nails.
Utilizing these attributes will increase the accuracy of a
multimodal biometric system without requiring extra work
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by the user since the details can be captured with a small,
inexpensive camera positioned above the fingerprint sensor,
as shown in Figure 1. Top-view finger imaging also reduces
the possibility of fraud by having recognition relying on more
than one feature.

This paper is organized as follows: section 2 starts with
an overview of biometric operation modes. Section 3 describes
top-view finger image preprocessing, feature extraction, and
matching. Section 4 outlines implementations for the finger-
print matching algorithms used by the top-view feature, while
section 5 presents the decision fusion mechanism. Experi-
mental results are given in section 6, and section 7 concludes
the paper.

CCD
camera
/]
Fingerprint
Sensor

Figure 1. Top-view image and fingerprint recognition system.
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2. Biometric Operation Modes

There are three main operational modes in biometric
systems: classification, verification, and identification.
Classification partitions the input pattern into n separated
classes to reduce the search space in very large databases. For
example, Jain et al. (1999b) classify fingerprints into six
types: twin-loop, left-loop, right-loop, whorl, arch, and tented
arch.

The input pattern is verified against templates to
determine whether features come from the same individual
or not. Computation time is not an issue because only 1:1
comparison is required.

Identification evaluates the input features to find the
best matches with the templates in the database. The compu-
tation time must be as small as possible so that real time
response can be achieved.

A good biometric system should ideally combine high
accuracy with low computation time, though it is difficult to
satisfy both demands. In a multimodal biometric classifier,
the designer typically selects a low accuracy classifier with
low computation time to identify the most n-probable match
items from the database. Then the system switches to a high
accuracy classifier, with a larger computation time, to check
the n-candidate items to find the best match.

Our proposed multimodal biometric uses two features:
fingerprinting and NailCodes. A NailCode is a feature map
extracted from the top-view finger image using techniques
described in section 3. The NailCode matcher performs well
in both the verification and identification modes.

3. Top-view Finger Image Processing
3.1 Preprocessing

The greyscale top-view finger image obtained from
the CCD camera is T, and has size WxL (see Figure 3(a)).
Its preprocessing flowchart is shown in Figure 2. The main
steps include:

1) Smoothing. Due to the presence of noise and non-
uniform illumination in the image, a smoothing Gaussian
filter is applied to 7,

2) Binarization. The greyscale image is converted
into two color image (black = 0 and white = 255) using an
adaptive threshold (Gonzalez and Woods, 2002). The binar-
ized image is inverted before the next step, as shown in Fig-
ure 3(b).

3) Small Particle Deletion. Small particles made up
of white pixels less than the threshold value are deleted. The
resulting image, 7, is shown in Figure 3(c).

4) Background Deletion. The background of the
finger image is deleted using a parameter described in section
3.3. Figure 3(d) shows the resulting image.

5) Finger Inclination Correction. The image is
rotated to align it vertically with the x-axis of the image, as
shown in Figure 3(e).

6) Skeletonization. A thinning operation is applied to
the image to create a skeleton for the remaining lines in the
image, as shown in Figure 3(f).

7) FilterBank. The skeletonized image is manipul-
ated by a filterbank holding eight different filtering directions.
The result is eight images ready for feature extraction. Details
are elaborated in section 3.5.

3.2 Finger image alignment parameter

When a finger is pressed on the fingerprint sensor, it
may be up to £30° away from the assumed vertical orienta-
tion. The inclination is detected, and the image is rotated as
follows:

1) The Canny algorithm (Canny, 1986) is applied to
the T, image, producing T, which is copied into two images
named 7, and 7T, using the conditions:

Top-view finger > gl Pa'mcles —»| Skeletonization
. Deletion
image 7,
T, l
A4

Image Background .

Smoothing Deletion S
| ,, [ ]
Finger 8 Filtered
Binarization — Inclination — images
Correction

Figure 2. Flowchart of the preprocessing algorithm.

Figure 3. Images obtained in each preprocessing step.
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T (o). [0Sx<W/2J

T,(x,y)= L/2<y<L @
0, otherwise
T. (59, [W/ZSx<WJ

T, (x,y)= L/2<5y<L @
0, otherwise.

2) The parameters for the left-edge of the finger are
obtained by letting C be the set of contours in 7, where C =
{ic,c,cC,.., C,} and k = number of contours. A line-fitting
algorithm (Bradski and Kachler, 2008) is applied to each
contour C, to find its straight-line parameter S. For each S,
we have:

S, =(V',V’ XY,

0>70

i=1.k 3)

where (V! Vi) is a normalized vector parallel to the fitted

line and (X 0> 4o Y))isa point on that line (Bradski and Kaehler,
2008).

3) The parameter S, of the left-edge finger is
selected from the set of S, usmg the condition:

S

left

abs(tan™' (V},’ /VY<m/6 and
=S, where ’ 4)

N, >N, forall j#i, i=1.k

where N, is the number of white pixels in each contour C..
4) The parameter S ., of theright-edge finger can be
derived by applying steps 3 4 toT,.

/cft = (V[,V[ X[ Y[) (5)
rtght = (V;r’Vr Xr Y") (6)

3.3 Background deletion

The CCD camera image includes the background
fingerprint sensor device which must be removed so that
only the finger image is processed. Background deletion is
achieved as follows:

1) Image M, which has the same size as T, is created
using the condition:

[ (m; <0and y >m,x+c,)
255 if
or (m;>0and y <mx+c)) (7)

M, (x,y)=

0 otherwise

4 VX
where m, =— and ¢, =¥ ————.,

2) Image M,, which has the same size as M, is
created using the condition:

555 ((m <0and y<m.x+c,)

M, (x,y)= or(m,>0and y>mx+c,) ®)
0 otherwise
er r Ver(:

where m, =——and ¢, = ¥ Tz

3) The background-deleted image, T, is created from
the operation:

T,=M,"\M,NT, ©)

where M is a pixelwise-intersection operation, applied to
equal-sized images.

3.4 Finger image inclination correction

1) Let pzand A be the angles of inclination of the left
and right edges of the finger respectively, defined by:

Vl Vr
p=tan" | = |, A=tan'| = |.
V. v

2) The rotation of the finger around the origin is
calculated using:

0.5(u+A2) if (uxA<0)
@=105(u+A1-rm) elseif (x>0and A >0)
0.5(u+A+m) otherwise.

3.5 Filterbank

The skeletonized top-view finger image is manipul-
ated using a bank of oriented filters, with eight different 6
values (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, and 157.5°)
with respect to the x-axis. The oriented filters enhance the
ridge lines along the specified 6 angles while blurring the
lines that lie in other directions (see Figure 4(a)).

3.6 Feature Extraction

Feature extraction is carried out as follows:

1) The top-view finger image reference point, which
is located in the middle of the nail base, is obtained using the
algorithm described in section 3.7, and shown in action in
Figure 4(a) and Figure 5(c).

2) 0 is the degree setting on the oriented filter. The
filtered image Q, is tessellated using the reference point
(x,y ) into HxV (10x15) square cells of size wxw (15x15),
as shown in Figure 4(c). p(x,y) denotes the pixel intensity
at location (x,y) of Q,. The variance for each square cell at
location (A,v) is calculated using (Chaikan and Karnjana-
decha, 2007):
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Figure 4. (a) Finger image filtered at 90° (b) Eight locations for reference point error compensation (¢) square tessellation on the filtered

image.

@7, b7,

Figure 5. Top-view finger images for each step of the reference
point detection algorithm.

) == plxy) -

x=c y=a

d b 2
[%ZZP(X,)’)j (10)
x=c y=a
where a =y +vw

b=y +w(v+l)

¢ =x + w(h-0.5H)

d=x_+wh-0.5H+1).

The tessellated area should cover the shape and the
width of the nail base while avoiding problems with finger
nail length variation. For that reason, we selected / to range
from 0,1,..., H-1 and v to range from -2,-1,0,...,/-3.

3) After applying step 2 to every filtered image, the
extracted feature, called a NailCode, and denoted by ¥ s
calculated. ¥'for the images using reference point R, is
defined by:

P = {5[/695[/;2.59Y’isaylélsaT;Osyllilz.ssyllgssyllisms} (11

where

v =

. N

4) Due to the possibility of a reference point detec-
tion error, a compensation technique is used. If R is the
reference point obtained by using the algorithm described in
section 3.7, then there are eight translated versions, R -R,,
each & (10) pixels from R, as shown in Figure 4(b). In the
enrollment module, only ¥° is extracted from the input
top-view finger image. In the authentication module, the
NailCode Y’z{.‘z”o,?z”l,.'z”z,...,‘l’g} is extracted from the

input top-view finger image.

2 2 2
{Gl 205,05 ...

3.7 Automatic detection of reference point location

The reference point of a top-view finger image is
located at the midpoint of the finger’s nail base. The steps
for its detection are:

1) Let M, U and ' denote the intersection, union and
inversion operations respectively. Image 7,, as shown in
Figure 3(c), is employed to create image T, using the condi-
tion:

T,=(M,AM NT,)V(M,NM) (12)

2) The image T,, as shown in Figure 5(a), is dilated
and inverted before being rotated to be exactly vertical,
resulting in 7,

3) Let £ be the set of contours found in the image
T,

L ={L,L,L,.,L}
where f'is the number of contours detected in the image. The
reference point location can be derived by applying the algo-
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num_loop=0
ref pt found = false
do

all values in - are deleted, giving L’ = {}
find contours from image T ,, putting all the results in L
for each contour L,
if (N>threshold and  ratio>r,)
ref pt found = true
else
remove L, from L

if (ref_pt_found =true)
select contour Lj from - with the largest ratio
else
perform erosion operation on image T,
num_loop++

}
while (num_loop<MAX LOOPS and ref pt found =false)

if (num_loop<MAX_LOOPS)
extract the reference point from the contour Lj
else
the reference point can not be found, and the image is rejected

Figure 6. Reference point detection algorithm.

rithm described in Figure 6 to image T, using the following
parameters in each iteration:
N, = The number of white pixels in each contour L,
BR = The bounding rectangle (Bradski and Kaehler
2008) of each contour L,. Each rectangle contains the para-
meters:

{xi ’y WBR hBR}

BR .
where ), =y coordinate of top most rectangle corner
xl.BR = x coordinate of left most rectangle corner

BR

w, = width of rectangle

h®* = height of rectangle.
N,

WIBR < hiBR :

As shown in Figure 5(b), our algorithm tries to find
the largest contours in the top-view finger image which are
expected to be the nail. To avoid the contours that are larger
than the nail, the ratio of the width and the length of the
bounding rectangle is calculated, and contours with a ratio
less than r,, (0.6) are thrown away.

4) L;is the selected contour obtained from the algo-
rithm in Figure 6. The reference point R(x,y) is computed on
L, with:

R(x,y)= (fo +0.5wfR,yfR + th)

ratiol. =

(13)

3.8 Matching

The Euclidean distance is computed as part of the
matching operation. Let ¥, be a NailCode template in the
database and ¥ = {S”?P,S”}P,SUIZP, ‘Ffp} be the NailCode
extracted from the input top-view ﬁnger image. Each E in
the Euclidean distance E = {E, E,,...., E,;} is the distance
between ¥, and ¥.,. The matchlng score between the
input and the template is:

=min(E, E, ..., E) (14)

matchingfscorewp
4. Fingerprint Matching Algorithms

Fingerprint matching algorithms can be classified as
minutiae-based and texture-based. We have developed two
fingerprint matching systems based on minutiae matching:
the first uses Hough transform-based matching while the
other uses our own algorithm. They are combined with the
top-view finger image matching system as described in
section 5.

4.1 Hough transform-based minutiae matching (Algo-
rithm Hough)

This algorithm tries to find the best transformation
parameter (i.e. translation and rotation) between the input
and the template minutiae. Each discretized transformation
estimation is stored in an accumulator array, and the transla-
tion and rotation parameter are obtained by detecting the
highest peak in the array. Since this algorithm uses an accu-
mulator array in a similar way to a typical Hough transform,
this algorithm is called Hough transform minutiae matching.
The details of this algorithm can be found in Maltoni ef al.,
2003.

Hough transform-based minutiae matching executes
quickly but with low accuracy tolerances (compared to the
other minutiae matching algorithms). Work by Prabhakar and
Jain (2002) confirm these characteristics.

4.2 Our proposed minutiae-based fingerprint matching
(Algorithm Simple)

Minutiae matching can be summarized by the follow-
ing steps:

1) Let Zand R be the minutiae sets for the template
and the input fingerprint,

:{(xlz’ylz’glz)’"-s(xzzsyzzvgzz)}

= {2,001, 01}

2) A score table of size zxr is created, with all its
values set to zero. z and r stand for the number of minutiae
in Zand R.

3) Execute the algorithm (shown in Figure 7).
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for i=1to z
for /=1 to r
{
find the translation vector (Ax, Ay)"
T
Ax X; xj
z R

Ay |=|y |-y
0 0 0

translate all minutiae in R , storing the result in 4

A R r T

X X A_x
v =100 |+ Ay
4| |or| |0

for (A0=-O; AG<D; AO+=]L)
R’ is the rotated version of all minutiae in 4 using;

X cosAf —sinAf 0] |x*
y* |=|sinA@ cosAl 0| |
0% | |0 0 1 0"
Let SPA,Z,, be the number of paired minutiae between R* and Z

A0
pair

score_table[i,j] =arg max S
A

}

matching _score,, = arg max score fableli, j]
iy

Figure 7. Our Simple minutiae matching algorithm.

Two minutiae are paired if and only if their direction
distance and spatial distance are less than the threshold
values. The derived matching score is the number of matched
minutiae between the input fingerprint and the templates.
Because of its simplicity, this algorithm is called Simple.

5. Decision Fusion

Decision fusion derives an improvement in matching
accuracy when the top-view matcher gives the wrong result
while the bottom-view matcher gives the right one, or vice
versa.

Suppose that an input feature can be a member of two
possible classes, ®, and @,, where the first is the imposter
and the other is the genuine class.

Define X = { x, x,, .., x, } as the matching score used
in biometric verification. To make a final decision between
the classes, the likelihood ratio L (Duda et al., 2000;
Prabhakar and Jain, 2002) is:

L=P(X|o)/ P(X|o) (15)

If L is high, then the input data is more likely to come
from the genuine class. We decide that the input comes from
the genuine class if L>f, where [ is an empirically determ-
ined threshold value. The joint probability in equation 15 is
difficult to obtain directly from training data, but by assum-
ing that each x, is statistically independent of each other, the
joint probability density can be estimated using: (Duda et
al., 2000)

P(x;,%y,..., X, |a)_l.)=£IlP(xl. |®;) (16)

6. Experimental Results

The system hardware is a Creative VF0080 CCD
camera in a light controlled environment, combined with a
Digital Persona UareU4000B fingerprint sensor. C++ soft-
ware using the OpenCV library captures the top-view finger
image whenever the fingerprint sensor is pressed. The test
database holds details on 800 different fingers. A snapshot of
a finger comprises both top and bottom-views. Eight snap-
shots were collected for each finger: one was added to the
database while the other seven were used to test system per-
formance.

Three matchers were implemented: (1) a Hough
matcher using the Hough transform-based minutiae matching
technique, (2) a Simple matcher utilizing our matching
algorithm, and (3) a TopView matcher which employs the
NailCode feature. The scores from these three matchers were
combined to make a multimodal biometric system using the
algorithm described in section 5.

6.1 Performance in the verification mode

The FAR (False Acceptance Rate) and FRR (False
Rejection Rate) values were plotted on a Receiver Operating
Characteristic (ROC) curve (Prabhakar and Jain, 2002) to
judge the performance of the system. The genuine accept-
ance rate can be obtained from ROC as 1-FRR. For the FAR,
4,474,400 (800*799*7) matches were evaluated, and 5,600
(800*7) matches were examined to find the FRR.

We tested the verification performance against three
conditions, with each condition using only one score from its
respective matcher. There was no combination of these three
systems. Figure 8 shows that the Simple matcher gives better
accuracy than the other two matchers at every operating
point. At low FARs, the ToplView matcher gives higher
accuracy than the Hough matcher, but the Hough matcher
surpasses TopView at higher FAR values.

We combined the three matchers into pairs, and the
likelihood ratio was used to perform decision fusion. System
accuracy increased, as shown in Figure 9. The combination
TopView+Simple gives the best accuracy. Also, the Simple
matcher alone has better accuracy than a combination of
TopView+Hough at all operating points with FARs lower
than 7%. Since biometric system needs to operate at a low



P. Chaikan & M. Karnjanadecha / Songklanakarin J. Sci. Technol. 32 (1), 71-79, 2010 77

100
A
99 \(‘/
S 98 i
2 / \'\ /./
e N
[
g 9%
<
g f / \\
8 95
Q
P 94
(]
i/ ~
g 93 /7 —e— TopView
92 —=— Hough L
91 / —a— Simple L]
—— Equal Error line
90 T T T T
0 2 4 6 8 10

False Acceptance Rate (%)

Figure 8. Verification performance of individual matchers.
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Figure 9. Verification performance of all combinations.

FAR value, this made us decide to use our minutiae match-
ing algorithm to improve system accuracy in the identifica-
tion mode.

Finally, we combined the matching scores of all three
matchers, TopViewtHough+Simple. 1t outperformed all the
paired matcher combinations at low FAR values, but for
FARs greater than 2%, the Top View+Simple combination had
lower rejection rates.

The Equal Error Rate (EER) (Maltoni et al., 2003)
was used to measure the strength of performance gains. The
TopView, Hough and Simple matcher alone yield EERs of
3.91%, 3.80% and 1.86% respectively. The combinations of
TopView+Simple, Hough+Simple, TopView+Hough yield
EERs of 1.52%, 1.64% and 2.35% respectively. The combi-
nation of all three matchers gives the best EER of 1.35%.

As shown in Table 1, most of the computing time of
the top-view finger image processing is spent on the pre-
processing while the NailCode matching process requires
considerably low computation time. The average computing
time used to perform verification for NailCode matching and
Hough transform-based minutiae matching were 20 ms and
3.125 ms respectively. The average time for performing veri-
fication using our Simple minutiae matching algorithm was
135.8 ms. This reveals that Simple is not suitable for directly
searching the entire database because of its time-consuming
behavior. However, due to its higher accuracy compared to
TopView and Hough, we do use the Simple matcher to
improve personal identification accuracy.

6.2 Performance in the identification mode

To evaluate the performance of the identification
mode, the 800 finger details in our database were divided
into four databases of 200 details each. A total of 22,400
(800*7*4) identification operations were evaluated. When
the system used a Hough matcher alone its EER was 2.27%,
while the TopView matcher’s EER was 2.84%.

We combined the Hough and Simple matchers, but
the likelihood ratio was not utilized. Instead, the Hough
matcher was used to match the input feature against all the
templates in the database to find the best ten finger details.
The Simple matcher was then employed to re-verify these
ten details to find the best match. Figure 10 shows that this
combination had an EER of 1.76%.

Table 1. Average computing time for one test on a 2.4 GHz Pentium 4.

Source Process Computing time (ms)

Preprocessing 193.95

Top-view Feature Extraction 4.01
fingerimage  Matching 0.02
Reference point detection 19.05

Preprocessing 119.64

Feature Extraction 1.68

Fingerprint ~ Post Processing 281.45
Matching (Algorithm Hough) 3.13

Matching (Algorithm Simple) 135.80
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Figure 10. Performance in the identification mode.

Table 2. Equal Error Rate of the tested configurations.

Mode of Operation Test Configuration EER(%)

TopView 3.91

Hough 3.80

Simple 1.86

Verification Hough+Simple 1.64
TopView+Simple 1.52

TopView+Hough 2.35
TopView+Hough~+Simple 1.35

Hough 2.27

Identification TopView 2.84
Hough+Simple 1.76
TopView+Hough+Simple 1.64

When we combined the three matchers, we used the
TopView matcher to verify the extracted input feature against
all the templates in the database. The five best finger details
from the TopView matcher were obtained and added to a
candidate list. The Hough matcher was also utilized to search
the database to find the five finger details with the highest
matching scores, and they were also put into the candidate
list. The Simple matcher re-verified all the finger details in
the list, and the best match was found. This configuration
had an EER of 1.64%. The Equal Error Rates of all experi-
ments are summarized in Table 2.

The average computation time to perform 1:200
matches in the identification operation for the TopView and
Hough matchers was 4 ms and 625 ms respectively. The
Simple matcher required 1.358 seconds to perform 1:10 veri-
fications in both the Simple+Hough and the Simple+Hough
+TopView configurations.

7. Discussion and Conclusions

The NailCode feature reduces the verification error

@ (b)

Figure 11. Finger image captures at different times: (a) the initial
image; (b) the same finger captured after 990 days had
passed.

rate of the system by 17.68%. This value is obtained by
comparing the results between the Hough+Simple and
Hough+Simple+TopView configurations. In the identifica-
tion mode, the system error is reduced by 6.82%. NailCode
improves the accuracy of the fingerprint matching system,
while requiring very low computation times, and being able
to operate in both the identification and verification modes.
We recommend that the NailCode matcher be used to
increase the accuracy of fingerprint recognition systems.

Skin wrinkles on a finger will increase over time, but at
a slow rate. For example, we have demonstrated that the same
finger captured 990 days after its previous snapshot
(see Figure 11) can still be correctly identified.

Since NailCode has lower accuracy than fingerprint-
ing, it is recommended that top-view finger imaging should
not be used alone to verify or identify individuals: it should
be employed in conjunction with fingerprinting to improve
overall recognition accuracy. These two features can be
easily utilized together as part of one user operation. To keep
the top-view feature up-to-date, biometric updating is recom-
mended to overcome any time variances.
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