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Abstract

In this paper, we obtain some criteria for determining the asymptotic stability of the zero solution of time-varying
delay-difference system of cellular neural networks in terms of certain matrix inequalities by using a discrete version of the
Lyapunov second method. The result is applied to obtain new stability conditions for some classes of time-varying delay-
difference equations such as time-varying delay-difference system of cellular neural networks with multiple delays in terms
of certain matrix inequalities. Our results can be well suited for computational purposes.
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1. Introduction

In recent decades, cellular neural networks have been
extensively studied in many aspects and successfully applied
to many fields such as pattern identifying, voice recognizing,
system controlling, signal processing systems, static image
treatment, and solving nonlinear algebraic equations, etc.
Such applications are based on the existence of equilibrium
points, and qualitative properties of systems. In electronic
implementation, time delays occur due to various reasons
such as circuit integration, switching delays of the amplifiers
and communication delays, etc. Therefore, the study of the
asymptotic stability of cellular neural networks with delays
is of particular importance to manufacturing high quality
microelectronic cellular neural networks.

While stability analysis of continuous-time neural
networks can employ the stability theory of differential
equations by Wei et al. (2005), it is much harder to study the
stability of discrete-time neural networks by Gubta and Jin
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(1996) with time delays by Arik (2005) or impulses by Liu
et al. (2003). The techniques currently available in the litera-
ture for discrete-time systems are mostly based on the con-
struction Lyapunov second method by Infante (1978). For
Lyapunov second method, it is well known that no general
rule exists to guide the construction of a proper Lyapunov
function for a given system. In fact, the construction of the
Lyapunov function becomes a very difficult task.

In this paper, we consider time varying delay-differ-
ence system of cellular neural networks of the form

u(k +1)=-C(k)u(k)+ A(k)S(u(k)) + B(k)S(u(k —h)) + f,

(1
where u(k) € Q< R” is the neuron state vector, />0,
C(k) =diag{c,(k),...,c,(k)}, ¢ (k)=0, i=L2,...,n
isthe 7 x n relaxation matrix function, A(k) = (al-j (k))m
and B(k)=(b,(k)),,, are the nxn weight matrix func-
tions, f = (fl, . f,,) € R" is the constant external input
vector and S(z) =[s,(z)),....s,(z,)]" with 5, e C'[R,(-1,1)]
where S, is the neuron activations and monotonically in-

creasing foreach i =1,2,...,n.
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The asymptotic stability of the zero solution of the
delay-differential system of cellular neural networks has been
developed during the past several years. We refer to mono-
graphs by Arik (2002) and Chua and Yang (1988) and the
references cited therein. Much less is known regarding the
asymptotic stability of the zero solution of the time- varying
delay-difference system of cellular neural networks. There-
fore, the purpose of this paper is to establish sufficient condi-
tions for the asymptotic stability of the zero solution of (1)
in terms of certain matrix inequalities.

2. Preliminaries

The following notations will be used throughout the
paper. R™ denotes the set of all non-negative real numbers;
Z" denotes the set of all non-negative integers; R” denotes
the n-finite-dimensional Euclidean space with the Euclidean
norm "" and the scalar product between x and y is defined
by x” y; M™" denotes the space of all (nxm) -matrices; and
A" denotes the transpose of the matrix 4; is the symmetric
matrix if .

We assume that the neuron activation functions are
bounded and satisfy the following hypotheses, respectively:

(1) —s.(.
OSMSL, Vr,,eR,and 1, #1,, (2)
n—n
where /, > 0 are constants for i =1,2,...,n.

By assumption (2) we know that the functions s,(-) satisfy

|S,- (xl.)| <l |x,.

, i=12,...,n,

and

s7.(x,) < Lx.s,(x,), 3)

Matrix Q € R™ is positive semidefinite (Q >0) if
x"Ox> 0, forall xe R" If x'Ox>0(x"0Ox <0, resp.) for
any x # 0, then Q is positive (negative, resp.) definite and
denoted by O >0,(Q <0, resp.). It is easy to verify that
0>0, (Q<0, resp.) Iff

3 >0: xTQxZﬁ”x
(3 >0: x'Ox< —ﬁ”x
Matrix function Q(¢) € M"™" ispositive definite if

3B>0: x'O(t)x > ﬂ||x

2
,VxeR",

* vxeR’, resp.);

2, vVieR", xeR".

Fact 2.1 For any positive scalar € and vectors x and y, the
following inequality holds:

xTy+yTx£8xTx+8_1yTy.

Let us denote V; ={xeR": ”x” <0},
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Lemma 2.1 (Hale (1977)) The zero solution of difference sys-
tem is asymptotic stability if there exists a positive definite
function V (k,x(k)):R" — R" such that

3B > 0: AV (k,x(k)) =V (k, x(k + D) =V (k, x(k)) < = Bx(h)|,

along the solution of the system. In case the above condition
holds for all x(k) eV, we say that the zero solution is
locally asymptotically stable.

We present the following technical lemmas, which
will be used in the proof of our main result.

Lemma 2.2 (Chua and Yang (1988)) For any constant sym-
metricmatrix M e R™", M =M" >0, scalar s € Z" /{0},
vector function W :[0,5]— R", we have

si(wr (OMw(i)) 2 [i w(i)j M [i w(i)j.

i=0 i=0
3. Main results

In this section, we consider the asymptotic stability of
the zero solution #” of (1) in terms of certain matrix in-
equalities. With out loss of generality, we can assume tha*t
u"=0,5(0)=0 and /= 0 (for otherwise, we let X =u —u
and define S(x)=S(x+u")-Su")).

The new form of (1) is now given by

x(k +1) = —Cx(k) + AS(x(k)) + BS(x(k —h)). (4)

Theorem 3.1 The zero solution of the time-varying delay-
difference system (4) is asymptotically stable if there exist
symmetric positive definite matrices P(k),G(k),W (k),
and L =diagll,,...,I ]> 0 satisfying the following matrix
inequalities:

@y 0 0
w=l 0 (22 0 |<0. (5)
0 0 (33

where

(L) = C" (k)P(k +1)C(k)— P(k)+hG (k) +W (k)
+sA" (k)P(k +1)B(k)B" (k)P(k +1)A(k)
+¢&,C" (k)P(k)B(k)B" (k)P(k)C(k)
+e,LA" (k)P(k +1)B(k)B" (k)P(k +1) A(k)L
+LA" (k)P(k+1)A(k)L + ¢ 'LL,

(2,2) = LB" (k)P(k+1)B(k)L+¢&,'LL
+&, 'LL-W (k) , and

(33) = -hG(k).
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Proof Consider the Lyapunov function V(k,y(k))=
Vilk, y(k))+V,(k, y(k))+V;(k, y(k)) where

V(k, y(k)) = x" (k)P(k)x(k),

k

Vy(ksy(k)) =Y, (h=k+ix" ()G(k)x(0),

i=k—h+1

k

Vitk,y(k))= 2 x" (W (k)x(i),

i=k—h+l1

P(k),G(k), and W (k) being symmetric positive definite
solutions of (5) and y(k) = [x(k), x(k— h)]

Then difference of V(k, y(k)) along trajectory of
solution of (4) is given by AV (k,y(k))=AV,(k,y(k))+
AV, (k, y(k)) + AV (k, y(k)) , where

AV (k, y(k)) = Vi(k,x(k+1)) =V, (k,x(k))

= [-C(b)x(k)+ A(k)S(x(k))
+ B(k)S(x(k - h)]" P(k +1)
[=C(k)x(k)+ A(k)S (x(k))
+ B(k)S (x(k — h))] —x" (k)P(k)x(k)

= x" (K)[C" (k)P(k +1)C(k) = P(k)]x(k)
—x"(k)CT (k)P(k +1) A(k)S(x(k))
— 8T (x(k)) A" (k)P(k +1)C(k)x(k)
—x"(k)C" (k)P(k +1)B(k)S (x(k — h))
— 8" (x(k — ) B (k) P(k +1)C(k)x(k)
+8" (x(k)) A" (k) P(k +1)B(k)S(x(k — h))
+87 (x(k — 1) B (k) P(k +1) A(k)S (x(k))
+8T (x(k)) A" (k) P(k +1)A(k)S (x(k))
+87 (x(k — h))B" (k) P(k +1)B(k)S (x(k — h)),

ﬁ (h—k+ i)xT(i)G(k)x(i)j =

i=k—h+1

AVz(k,y(k))=A(

hx" (k)G (k)x(k)— Zkl x" ()G (k)x(i),
and

k

> xT(i)W(k)X(i)j =x" (k)W (k)x(k)

i=k—h+1

AV (k, y(k)) = A(
—x" (k= h)W (k)x(k—h), (6)
where (3) and Fact 2.1 are utilized in (6), respectively.

Note that
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—x" (k)CT (k) P(k +1) A(k)S (x(k)) — S” (x(k)) A" PCx(k) <
ex” (k)CT (k)P(k +1) Ak) A" (k) P(k + 1)C(k)x(k)
+&7'ST (x(k))S(x(k)),

—x" (k)C (k) P(k +1)B(k)S(x(k — h))
— 8" (x(k = h))B" (k) P(k + 1)C(k)x(k) <
ex" (K)CT (k)P(k +1)B(k)B" (k)P(k +1)C(k)x(k)
+&,'ST (x(k = h)S (x(k —h)),

S"(x(k) A" (k)P(k)B(k)S (x(k — h))
+ 8T (x(k — h))B" (k)P (k) A(k)S(x(k)) <
&,87 (k) A" (k)P(k)B(k)B" (k)P(k) A(k)S (k)
+&,7'ST (x(k = h)S(x(k - h)),

S” (x(k = hY)B" (k)P(k +1)B(k)S(x(k — h)) <

x" (k= h)LB" (k)P(k + 1) B(k)Lx(k — h),

S” (x(k)) A" (k) P(k + 1) A(k)S(x(k)) <

x" (k)LA" (k)P(k +1) A(k)Lx(k),

,87 (k) A" (k)P(k +1)B(k)B" (k)P(k +1) A(k)S(k)

< e,x" (k)LA" (k)P(k +1)B(k)B” (k)P(k + 1) A(k)Lx(k),

&' S” (x(k — h))S(x(k — h)) < &'x" (k — h)LLx(k — h)

&,'S" (x(k = )S(x(k —h)) < &,”'x (k — h)LLx(k — h),

and

e'ST (x(k))S(x(k)) < & 'x" (k) LLx (k).

hence

AV, (k, y(k)) < x" (K)[C" (k) P(k +1)C (k) — P(k)]x(k)
+ex” (k) A" (k)P(k +1)B(k)B" (k)P(k +1)A(k)x(k)
+ex” (k)C" (k)P(k +1)B(k)B" (k)P(k +1)C(k)x(k)
+x" (k—h)LB" (k)P(k +1)B(k)Lx(k — h)

+x" (k)LA" (k)P(k +1) A(k)Lx(k)

+&,x" (k)LA" (k)P(k +1)B(k)B" (k)P(k +1) A(k) Lx(k)
+&,'x" (k= h)LLx(k —h) +&,"'x" (k —h)LLx(k — h)

+& %" (k)LLx(k)-
Then we have

AV (k, (k) < X" (K)[CT (k) P(k +1)C(k) — P(k) + hG (k)
+W (k) + e A" (k)P(k +1)B(k) B” (k) P(k +1) A(k)
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+&,C" (k)P(k +1)B(k)B" (k)P (k +1)C(k)

+&,LA" (k)P(k +1)B(k)B" (k)P (k) A(k)L

+LA" (k)P(k +1) A(k) L + £ " LL]x(k)

+x" (k—=h)[LB" (k)P(k +)B(k)L +¢& 'LL+¢&,"'LL

W)k —h)— > X" ()Gk)x(i).

i=k—h+1
Using Lemma 2.2, we obtain

Z xT(l')G(k)x(i)Z(% Z x(i)J (hG(k))&__Z x(i)j.

i=k—h+1 =k—h+

From the above inequality it follows that:

AV (k, y(k)) < x" (k)[C" (k)P(k +1)C(k) — P(k) + hG (k)
+W (k) + e A" (k)P(k +1)B(k)B" (k)P(k +1) A(k)
+&,C" (k)P(k+1)B(k)B" (k)P(k +1)C(k)

+&,LA" (k)P(k +1)B(k)B" (k)P(k +1)A(k)L
+LA" (k)P(k +1)A(k)L + &' LL]x(k)

+x" (k—h)[LB" (k)P(k+1)B(k)L+¢&'LL+¢&,"'LL

_W(k)]x(k—h)—[% > x(i)j (hG(k)) G _Z x(i)

i=k—h+1

x(k)
1 & &n- 0 0 x(k—h)
_ (xr(k),xr(k*h)’(z_z x(i))Tj 0 2,2) 0 =
iZkh 0 0 (33) | (= z x())
h 5
Ly o 0
=V 0 22 0 |yk
0 0 (33)

where
(1L1)= C"(k)P(k +1)C(k)— P(k)+ hG(k)+ W (k)
+ A" (k)P(k +1)B(k)B” (k)P(k +1) A(k)
+&,C" (k)P(k)B(k)B" (k)P(k)C (k)
+&,LA" (k)P(k+1)B(k)B" (k)P(k +1)A(k)L
+LA" (k)P(k+1)A(k)L+¢'LL,
(2,2)= LB" (k)P(k+1)B(k)L+¢,'LL+¢&,"'LL-W (k) ,
(3.3) = —hG(k),

x(k)
x(k—h)

1)

i=k—h

and y(k)=

By the condition (5), AV is negative definite, namely there
is a number >0 such that AV (y(k))<—pg|y(k)[, and
hence, the asymptotic stability of the system immediately
follows from Lemma 2.1. This completes the proof.

Example 3.1 Let us consider the time-varying delay-differ-
ence system (4), given by the system

x(k +1) = —~C(k)x(k) + A(K)S(x(k)) + B(k)S(x(k — h)),

where the matrices are

et 0 1.9-0.5¢7% —¢™* I
C(k) =( 0 ezo,st} A(k) :[ e 0.5¢" -2

3—¢" -1 2
B(k) = s(x)="tan"(x,),i=1,2
(k) [ . _O'Sez,j, ()= =tan” (). =1.2,
e=0.5and h=1.

Using the LMI Toolbox in MATLAB, we found that
the LMIs in Theorem 3.1 are feasible and

e 0 10 e’ 0
P(k)={ . J,G(k):(o ewjaW(k)—(O J,

2.7293 0

and L=
( 0 2.8806

) are set of solutions to the LMIs

o).

Therefore, the system is asymptotically stable.

For a given initial condition x(0) = [-0.5,-2]", con-
vergence behavior of is shown in Figure 1. As we can see

o5 T
ol
?; _lj_i._\_’/-._'—._
Al
-1.5 L k
2] 5 10 15
1}
2]
w _1/
]
. 1 1
2] 5 10 15

t

Figure 1. The convergence dynamics of the system in example 3.1.
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from this figure, the steady state of cellular neural networks
is indeed asymptotically stable.

4. Application

In this section, we apply the main result to obtain sta-
bility conditions for some specific classes of time-varying
delay-difference equation. We consider time-varying delay-
difference system of cellular neural networks with multiple
delays in terms of certain matrix inequalities of the form

u(k +1)=—-Cu(k)+ AS(u(k))+ ZB[.S(u(k -hN+f, ()
i=1

where u(k) e Qc R" is the neuron state vector, 0 </, <
..<h,, Clk)=diag{c (k),...,c,(k)}, c;(k)=0,i= 1.2,
..,n isthe nx n relaxation matrix function, 4,(k)and B, (k),
i=12,..,m are the nxn weight matrices function, /' =
(f;>---».f,) € R" is the constant external input vector and
S(z) =[5,(z)s...,s,(z,)]" with s, €C"' [R, (-1, 1)] where
S, is the neuron activations and monotonically increasing
foreachi=1,2,...,n.

We consider the asymptotic stability of the zero solu-
tion u" of (7) in the terms of certa
in matrix inequalities. With out loss of generality, we can as-
sume that u” =0,5(0)=0 and f'= 0 (for otherwise, we let
x=u—-u anddefine S(x)= S(x+u")—Su))-

The new form of (7) is now given by

x(k+1) =~ A(k)x(k) + . B,(k)S(x(k ~h,)) ®)
i=1

Theorem 4.1 The zero solution of the time-varying delay-

difference system (8) is asymptotically stable if there exist

symmetric positive definite matrices P(k), G,(k), and W(k),

i=L2,..,m and L=diag[l,...,[ ]>0 satisfying the

following matrix inequalities:

[(0,00 0 0 - 0 0 0 0 - 0
0 (L) (1L2) - (Lm) 0 0 0 - 0
0 2D (22 - @2m) 0 0 0 - 0
0 (ml) (m2) - (m,m) 0 0 0 - 0
v = <09
0 0 0 - 0 (m+lm+l) 0 0 - 0
0 0 0 0 0 0 (m+2,m+2) 0 - 0
: : : : : : 0 :
0 0 0 0 0 0 : 0
| 0 0 0 0 0 0 0 -0 (2m,2m) ]
©)

where

(0,0)=C" (k)P(k +1)C(k)— P(k)+ ihiGi (k) +W,(k)
+giiAT (k)P(k +1)B,(k)B;" (k)P(k+1)A(k)

i=1 j=I

+€, f‘ﬁ‘pT (k)P(k+1)B,(k)B," (k)P(k +1)C(k)

i=1 j=I

+€, iiLAT (k)P(k+1)B, (k)BjT (K)P(k+1)A(k)L

i=1 j=1

+LAT (k)P(k +1)A(k)L +&7'LL,
(1,1)= LB (k)P(k +1)B,(k)L + &' LL + &, LL-W,(k),
(1,2) = LB, (k)P(k +1)B,(k)L + ¢ 'LL+¢, ' LL,
(1,m)= LB (k)P(k+1)B, (k)L +¢ 'LL+¢,"'LL,
(2,1)=LB," (k)P(k+1)B,(k)L+&'LL+¢&,"'LL,
(2,2) = LB, (k)P(k +1)B,(k)L+¢&'LL+¢&,”' LL-W,(k),
(2,m)=LB," (k)P(k+1)B, (k)L+¢&'LL+¢,"'LL,
(m,1)=LB," (k)P(k+1)B,(k)L+¢&, 'LL+¢,”'LL,
(m,2)=LB," (k)P(k+1)B,(k)L+¢& 'LL+¢&,'LL,
(m,m)=LB," (k)P(k +1)B, (k)L +¢& 'LL+¢&," ' LL-W,(k),
(m+1,m+1)=-hG,(k),
(m+2,m+2)=-h,G,(k), and
2m,2m)=-h G, (k).

m m

Proof Consider the Lyapunov function V(k,y(k)) =
Vilk, y(k)) +V,(k, y(k)) +V;(k, y(k)) , where

Wik, y(k) = x" (k) P(k)x(k),

m

V(k,y(k)=3" .

i=1 j=k—h;+1

(h=k+0)x" ()G, (k)x()),

3
B

D X (D)X,
i=1 j=k—h;+1
P(k),G.(k), and W/(k), i=1,2,...,m being symmetric
positive definite solutions of (9) and y(k)=[x(k),
xtk—=h),....,.x(k=h,)].
Then difference of V' (k,y(k)) along trajectory of
solution of (8) is given by AV (k,y(k))=AV,(k,y(k))
+AV, (vk, (k) + AV (k, y(k)) , where

AV, y(K)) =V, (ko xCk +1) —V, K x(K))
— [-CORx(k) + AR S (k) x(h)
+ 3 B(R)S(x(k — )T P(k+1)

i=1

X[=C(k)x(k) + A(k)S (x(k))x(k)
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+ 3 B0 (xlk— )] = (6)P(R)x(k)

= x" ([C" (k)P(k +1)C(k)— P(k)]x(k)
—x" (k)CT (k) P(k + 1) A(k)S (x(k))
— S" (x(k)) A" (k) P(k +1)C(k)x (k)

—ixT(k)CT(k)P(k +1)B,(k)S(x(k — ;)

i=1

= 3" (x(k = h)B] ()P +DC(R)x(K)

i=l1

+iST (x(k)) A" (k)P(k +1)B.(k)S(x(k —h,))

i=l

+ iST (x(k—h)B" (k)P(k +1) A(k)S(x(k))

i=l

F3S7 (x6) AT (6 PCk +1)B,()S (x(k — )

i=l1

+ iST (x(k—h))B (k)P(k +1)A(k)S(x(k))

i=1

+87 (x(k)) A" (k) P(k +1) A(k)S (x(k))

+zm:isf (x(k —h))B/ (kYP(k +1)B, (k)S(x(k —h,)),

i=1 =l

AVz(k,y(k»:A[i > (h,._k+,~)xf(,~>c,.(k)x(j)j

k

:ih,.xr(k)q(k)x(k)—i > X (NG K)x()),

i=l j=k=h;+]

AV_;(k,yUc)):A[i > xT(j)W,-(k)x(j)j

= 3 (W (R = S (k= hy W, (k) (k= ).

The rest of the proofis similar to that of Theorem 3.1.
need hold.

5. Conclusions

In this paper, based on a discrete analog of the
Lyapunov second method, we have established a sufficient
condition for the asymptotic stability of time-varying delay-
difference system of cellular neural networks in terms of
certain matrix inequalities. The result has been applied to
obtain new stability conditions for some classes of time-
varying delay-difference equation such as delay-difference
system of cellular neural networks with multiple delays in
the terms of certain matrix inequalities.
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