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Abstract

Suppose X, X,,...,X, is a random sample from N (6,V) distribution. Consider H,:6, =6, =...=0, =0 and
H :0,>0 fori=12,..,p ,let H —H, denote the hypothesis that /, holds but //, does not, and let ~ H, denote the
hypothesis that H, does not hold. Because the likelihood ratio test (LRT) of H, versus H, — H, is complicated, several
ad hoc tests have been proposed. Tang, Gnecco and Geller (1989) proposed an approximate LRT, Follmann (1996) suggested
rejecting H ) if the usual test of H |, versus ~ H rejects H, with significance level 20 and a weighted sum of the sample
means is positive, and Chongcharoen, Singh and Wright (2002) modified Follmann’s test to include information about the
correlation structure in the sum of the sample means. Chongcharoen and Wright (2007, 2006) give versions of the Tang-
Gnecco-Geller tests and Follmann-type tests, respectively, with invariance properties. With LRT’s scale invariant desired
property, we investigate its powers by using Monte Carlo techniques and compare them with the tests which we recommend

in Chongcharoen and Wright (2007, 2006).

Keywords: Follmann’s test; likelihood ratio tests; modified Follmann’s test; Tang-Gnecco-Geller test

1. Introduction

Suppose one uses a matched-pair design to compare
the multivariate responses of two treatments. If the responses
are p dimensional and 6 = (6, ,92,...,9p)' is the difference,
treatment one minus treatment two, of the mean responses,
then one may test the null hypothesis, H,:6, =60, =...=
60, =0, to determine if there is a difference in the two treat-
ments. Furthermore, if one believes that for each coordinate,
the mean responses for treatment one are at least as large as
those for treatment two, then the alternative can be constrained
by H,:0,20 fori=12,...,p.

Based on a random sample from the normal distribu-
tion with mean 6 and covariance matrix V, Kudo (1963),
Shorack (1967) and Perlman (1969) derived the likelihood ratio
test (LRT) of H versus H, — H for the cases in which V'is
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known, known up to a multiplicative constant and completely
unknown, respectively. Tang et al. (1989) proposed an
approximate likelihood ratio test, and Follmann (1996)
proposed one-sided modifications of Hotelling’s T” tests of
H,, versus ~ H, thatare easier to implement. Using exact
computations and Monte Carlo methods, Chongcharoen
et al. (2002) compared the performance of Kudo’s test,
Follmann’s test, a new test, which is a modification of
Follmann’s test, the permutation test of Boyett and Shuster
and the Tang-Gnecco-Geller test for a known covariance
matrix. For a partially known covariance matrix, they
compared the powers of these tests with Kudo’s test replaced
by Shorack’s test.

Chongcharoen and Wright (2007; 2006) studied
versions of the Tang-Gnecco-Geller test, Follmann’s test and
the modified Follmann’s test that are permutation and scale
invariant. Because the Boyett-Shuster test does not require
the assumption of normality and are quite complicated, we
do not consider further.
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Throughout this paper, we suppose that X, X,,..., X,
is arandom sample from a p-dimensional multivariate normal
distribution with unknown mean 6 =(6,,6,,...,0,)" and un-
known positive definite covariance matrix V. We consider
testing the null hypothesis H,:0=0 versus H,—H,
where H,:0€Q, ande= {x:x>0fori=1,2,...,p}is
the p-dimensional nonnegative orthant. The sample mean,
sample covariance and the unbiased sample covariance are

Z .S, Zw and SA'=LSX.

= N n—1

It is well known that Sx and 3’ are positive definite with

probability one.

The hypotheses H and H, also arise in the one-
way analysis of variance when the means are known to satisfy
an order restriction. For observations which come from &
normal populations whose means are known to satisfy a
simple ordering, i.e. H @y <, <,...,< i, , Bartholomew
(1959a, 1959b, 1961) derived the likelihood ratio test of 1, =
u, =, ...,= i, with the alternative restricted by H for the
cases of known variances and variances known up to a multi-
plicative constant. Suppose the observations are Yi/‘ for
_—1 2,..,n, and i=1,2,...,k, and the sample means are
Y,Y,,. Y with known variances, 67,073, ...., o , Kudo

(1963) noted that for p=k—1; X, = Yiu-Y, for i =
1,2,...,p, X=(X,,X,,...X,) and 6 = E(X), the hypo-
theses on A are equivalent to H, and H, above, and
Bartholomew s and Kudo’s tests are equlvalent With w, =
n/ G for i=1,2,....,k, the correlation matrix for X

satisfies
Wili+2 ;
P =— fori=1,2,...,p—1
bitl \/(Wi+Wi+1) (W1 + Wit2)
and pjj =0 for [i — j| = 2.
(1.1)
If the weights are equal, i.e. W, =Ww, =...=Ww,, the cor-

relation matrix in (1.1) is denoted by R, .

Also, Bartholomew considered an arbitrary partial
order restriction, which includes the simple tree order, i.e.
Hy @ p <y, for j=2,3,....k . For this ordering, one takes
differences, X, = Yia —Y for i=1,2,...,p, and with
p=k-1and w,=n/ Gi as above, the correlation matrix
of X =(X,,X,,..,X,) satisfies

o i = Wi+l Wi+l
B A Wi+ (w1 +1)

forl1<i=j<p.

(12)

Ifthe weights are equal, i.e. W, =w, =...= W, , thecorrela-
tion matrix in (1.2) is denoted by R,. We compare the
powers of the proposed tests for several correlation matrices
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including R andR,.

It is clear that for most matched-pair designs, one wants
the test to be invariant under changes in the units of measure-
ment for any or all of the response variables as well as changes
in the order of the response variables. The likelihood function
and the constraint region, //,, are invariant under permuta-
tions of the indices of the response variables. For under scale
changes for the response variables, the LRTs test statistic,
Kudo’s test statistic, Shorack’s test statistic and Perlman’s
test statistic, are shown below:

When covariance matrix J/ is known, Kudo’s test
statistic for testing /1 versus H, —H rejects H, for
large value of

Xo =nX VX (13)

where X" is the restricted ‘maximum likelihood estimate of 6
under H,. In particular, X minimizes (X —6)' S, (X —6)
subjectto @ € Qp, and can be computed using a quadratic
programming routine such as QPROG in IMSL. The null
hypothesis distribution of )C(?] is given by Robertson et al.
(1988, pp.219-220) Theorem 4.6.1, i.e. foranyreal ¢,

P(Xo2)=)_0(j, p;V)P(x; 2 1)

Jj=0

(14)

where the weights O(/, p;V), j=0,1,2,
negative and sum to one and Zf
with J degrees of freedom (y; =0) . The weights O(J, p; V),
j=0,1,2
computed using the FORTRAN programs by Bohrer and
Chow (1978) and Sun (1988) for p <10.

For considering scale invariant property of Kudo’s
test statistic, we let M, =diag(l/ \/Z ), then the trans-
formation Y=M X with R, =M VM, has Kudo’s test
statistic as nI?*RO_]?* = nXV'X = %, where Y
can be computed as X"

The permutation and scale invariant statistic of the
Tang-Gnecco-Geller test which was recommended in

Chongcharoen and Wright (2007), itis G 4 that given a v b
denoting the maximum of a and b and let

.., P, are non-

is a chi-squared variable

,...., p, are called level probabilities and can be

! — p
Z=\nRiM,X and g(z)=)(zv0)*.
i=l1
H, is rejected for the large values of g(z) with the null dis-
tribution for any real number #

P(g(z)20=3(C? 129)P(1] 20)

i=1
where C/ is the number of combinations of p things taken
i at a time, %1.2 a chi-square variable with 7 degrees of
freedom and y; =0.
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In Chongcharoen and Wright (2006), the recommend-
ed permutation and scale invariant statistic of the Follman-
type testis N that reject null hypothesis if

j— j— ) _
2= nXV'X >y, and U > 0 with U0T=Zl: ™, X

where )(220(’ , is the (1-2a)" quantile of the chi-square

distribution with p degrees of freedom.
When covariance matrix }J = UzVO is partially
known, ¥, known, Shorack’s test statistic for testing /1,

versus H, —H, rejects H for large value of

g KX

zz‘:l XWX,
where X * solves
min ., (X X))V (X -X) (1.6)

The null hypothesis distribution of E%is given by Robertson
etal. (1988, pp.221) Theorem 4.6.2, i.¢. for anyreal ¢,

_ P
P(E2 > t)=ZQ(j,p; VO)P(B_/'/2,(np—j)/2 21)

Jj=0

(1.7)
where the weights O(j, p;V,), j=0,1,2,...., p , level prob-
ability, are the same as the covariance known case and
B(a,b) is arandom variable having a beta distribution with

parameteraand b (B(0,b)=0).
For considering scale invariant property of Shorack’s
test statistic, we let M| =diag(1/,/(V}),, ), then the trans-
formation ¥ =M X with R, =M V M, has Shorack’s test

statistic as

nz*!R;IZ* _ nX*!V(;]X* :Ez
Z?:l Xi,R{lZé Z?:l )—(i,VOil)—(i

where ¥ can be computed as X .

In Chongcharoen and Wright (2007), the recommend-
ed permutation and scale invariant statistic of the Tang-
Gnecco-Geller test is G, that [ isrejected for large value
of

(1.8)

V4 1 —
Gy= —2E) iz =/nR*M X and

n , 1
Z XjVO Xj
j=1
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§)=Y (V07

The null distribution of G ¢ is given by the following: for any
real number 7,

p
P(G,q 2t)=Z(Cf 12°)P(B, )3 -2 21)

i=1
where C/ is the number of combinations of P things taken

[ atatime; B, , abetarandom variable and B,,=0.

In Chongcharoen and Wright (2006), the recommend-
ed permutation and scale invariant statistic of the Follman-
type test is N that reject null hypothesis if

-DXV,'X
n(n =XV, >F.

2a;p,(n-1)p

F=

X, - XK (X, - )

J=

p —_—
and U, > 0 with U, = (I/Oil)i,iXi
i=1
where F,, ), isthe (1-2a)" quantile of the F distri-

bution with p and (n—1)p degrees of freedom.
When covariance matrix } is completely unknown,
Perlman’s test statistic for testing /1, versus H, —H,

rejects H |, for large value of
U B X*!S;IX*
+(X-XT)S (X -X7)

(19)

where )_? * is the restricted maximum likelihood estimate of
6 under H,. In particular, X" minimizes (X —0)' S;' (X -0)

subject to 0 € Qp and can be computed using a quadratic

programming routine such as QPROG in IMSL. The null
hypothesis distribution of U 1is given by the following: for
anyreal number ¢,

P
P(Uzt)= X 0 0(j.piV) P(Z?/Z%-p =0),
J =

where y (21 is a chi-squared random variable with q degrees of
freedom (X% =0)and y f and )(5_ , areindependent. The
weights O(j, p;V),j=0,1,2,...., p, level probabilities,

(1.10)

are the same as the covariance known case. Perlman (1969)
obtained the maximum of (1.10) over all positive definite V.
However, using this maximum makes the test too conserva-
tive. Following Lei et al. (1995), we approximate Q(j, p;V)
byusing S_in placeof V.
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Again for considering scale invariant property of

Perlman’s test statistic, we let M, =diag(1/ LSA',.J. ), then the
transformation Y =M, X with R, :MZS’MZ s Sy =M,S.M,
has Perlman’s test statistic as:
Y's)'y’ X's'X U
L+ -Y)S (Y -Y) 1+(X-X)S(X-X")
(1.11)

where Y can be computed as X

In Chongcharoen and Wright (2007), the recommend-
ed permutation and scale invariant statistic of the Tang-
Gnecco-Geller test is G, that [, is rejected for large value of

1 —_ P
G,s = g(Z) with Z =ynR;M,X and 2(2)=>(z,v0).

i=1
The null distribution of G, is given by the following: for any
real number ¢

(n—p) )
(j(n=1))

where C/ is the number of combinations of p things taken

P
P(Gys 2t)=Y (C I2")P(F,, , >t
i=1

i atatime, F, the random variable of the F distribution

J.n=p
with jand n— p degrees of freedom.

In Chongcharoen and Wright (2006), the recommend-
ed permutation and scale invariant statistic of the Follman-
type test is N that reject null hypothesis if

ol (n-Dp
F2 = nXS X > W za’p,n_p and
. 4 f—1ly, o
Uyp > OwithUyp = z (S X.

i=1 i i

where F,,., .,

the (1—2a)" quantile of the F distribution
with p and n— p degrees of freedom.

2. Power Comparisons

For p =3 and 6, we compare the performances of the
LRT with the tests which we recommend in Chongcharoen
and Wright (2007, 2006) by Monte Carlo techniques for
multivariate normal distributions and Rg and R, , thatis for
the simple order and the simple tree order correlations with
equal weights and k=4 and 7(p =k —1) as well as some
other forms of correlation structures. Recall that R, and
R, aregivenin (1.1) and (1.2), respectively, which we denote
by R, and R, , we also consider the following correlation

matrices R = ( o )

P2

pxp

Ry;(R,,) with p, =—0.4(-0.1) for 1<i# j< p,
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R,, with p,, =p,; =-0.4 and p, =04,
R, with p, =p,; =04 and p, =-0.4, and

R6,4 With 0, = Py, = P55 = Pos = Pas = Pag = Pas = Pag = 0.4
and the other p, =0.4 fori# j

Sample sizes considered here are n =6, 20,and 100
for p=3 and n=10, 20,and 100 , for p = 6. We consider
mean vectors of the form, 6 = cU with ¢ a constant and L
a vector.

The vector U is called the direction and we choose
¢ so that the usual F-test has power equal to 0.70 provided
U is non-null, i.e., b # 0. We consider directions of the
form (U],...,Up)' with v, =0 or 1 for 1<i<p. With
10,000 iterations, the proportion of times each test rejects the
null hypothesis is recorded. Throughout, the level of signifi-
canceis a =0.05. Let
N = the new permutation and scale invariant test for

known variance

G = the Tang-Gnecco-Geller permutation and scale

invariant test for known variance
= the new permutation and scale invariant test for
partially known variance
the Tang-Gnecco-Geller permutation and scale
invariant test for partially known variance
= the new permutation and scale invariant test for
unknown variance
the Tang-Gnecco-Geller permutation and scale
invariant test for unknown variance

We consider three tests here, i.e. version of Tang-
Gnecco-Geller test and the new test which we recommend on
Chongcharoen and Wright (2007, 2006) and a version of LRT.
For all of these tests, all #, and all the correlation structures
considered, the power estimates under the null hypothesis
range from 0.045 to 0.053. The Monte Carlo power estimates
of the non-null powers of Hotelling’s T* were between 0.689
and 0.716. For a given correlation matrix, we estimate power
of three tests over the 2°-1 non-null directions which 4 of 63
estimates power tables given Table 1-4.

For variance V' known, both p =3 and 6, the
LRT (Kudo’s test) is the best overall tests for every correla-
tion matrix considered, the minimum power and averages
power ranges 0.750 (0.733) t0 0.858 (0.880) and 0.770 (0.761)
t00.873 (0.917) respectively for p =3 (6) . G is the second
best test for this case but it has minimum power less than 0.7
for R 5, R;,(R;)and R,,. N, has minimum power less
than 0.7 for R;,(R;), R, and it has very bad power for
R6’ 4+ So we recommend Kudo’s test over other two tests for
this variance case.

For V' known up to a multiplicative constant, the LRT
(Shorack’s test) has highest powers of overall tests for every
correlation matrix in both p =3 and 6 and every 7 consid-
ered. The minimum power and average power ranges 0.753
(0.736) to 0.898 (0.896) and 0.771 (0.762) to 0.911 (0.930)
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Table 1. Estimates of the power of the tests when J unknown
for simple order correlation with equal weights, R;,
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Table 2. Estimate of the power of the tests when V unknown
for simple tree order correlation with equal weights,

p=3,n=6 . R.,p=3,n=6.

Direction c Perl N,. G-y Direction c Perl N,. G-y
(0,0,0) 0.000 0.053 0.050 0.050 (0,0,0) 0.000 0.048 0.050 0.049
(L,1,1) 0.747 0.930 0.890 0.905 (L,1,1) 1.929 0.826 0.880 0.895
(1,0,1) 1.182 0.900 0.889 0.902 (1,0,1) 1.671 0.797 0.885 0.857
(0,1,1) 1.008 0.904 0.890 0.902 (0,1,1) 1.671 0.799 0.886 0.859
(1,1,0) 1.008 0.900 0.880 0.895 (1,1,0) 1.671 0.797 0.882 0.856
(1,0,0) 1.930 0.856 0.877 0.887 (1,0,0) 1.929 0.763 0.843 0.845
(0,1,0) 1.671 0.872 0.884 0.896 (0,1,0) 1.929 0.768 0.850 0.854
(0,0,1) 1.930 0.864 0.888 0.894 (0,0,1) 1.929 0.774 0.854 0.854
Min. 0.856 0.877 0.887 Min. 0.763 0.843 0.845

Average 0.889 0.885 0.897 Average 0.789 0.869 0.860

Table 3. Estimates of the power of the tests when V unknown
for simple order correlation with equal weights, R;,
p =6, n=10.( 6 of 63 directions shown)

Table 4: Estimates of the power of the tests when J unknown
for simple tree order correlation with equal weights,
R, ,p=6,n=10.(60f63 directions shown)

Direction C Perl N G-

Direction C Perl N G-

2T 28 2T 28

(0,0,0,0,0,0) 0.000 0.051 0.050 0.052 (0,0,0,0,0,0) 0.000 0.051 0.051 0.049
(1,1,1,1,1,1) 0273 0954 0.866 0910 (1,1,1,1,1,1) 1.560 0.809 0.874 0912
0,1,1,1,1,1) 0.302 0.948 0.866 0.907 0,1,1,1,1,1) 1.209 0.788 0.873 0.850
0,0,1,1,1,1) 0364 0.936 0.865 0.905 0,0,1,1,1,1) 1.103 0.768 0.864 0.821
(0,0,0,1,1,1) 0485 0916 0.864 0.902 (0,0,0,1,1,1) 1.103 0.752 0.859 0.814
(0,0,0,0,1,1) 0.749 0.890 0.871 0.902 (0,0,0,0,1,1) 1.209 0.733 0.815 0.813
(0,0,0,0,0,1) 1.560 0.849 0.864 0.893 (0,0,0,0,0,1) 1.560 0.724 0.744 0.835
Min. 0.849 0.859 0.893 Min. 0.722 0.741 0.809
Average 0919 0.867 0.906 Average 0.754 0.843 0.823

respectively for p=3(6). For p=3 , all n considered,
G, has minimum power less than that of usual F-test for
correlation matrices with the number of positive elements
larger than those of negative elements only for direction
(0,1,0). It has overall powers second best to LRT. N, also
has bad powers for R, when n =20,100 and for R, ; when
n =100 . Both cases are on direction (v;,0,,0;)" with only
one v, =1;i=1,2,3. For p =6 with all possible 63 direc-
tions of all # and every correlation matrix considered, both
G, and N, have very bad powers on R, and R, 4 . It can
be noted that these two tests are affected by correlation
matrices with positive elements. Clearly, for this partially
known variance case, the LRT gives the best powers for
every direction considered, so we recommend it for all p .
For variance V' completely unknown, with p =3 and
small 7 all three tests, LRT (Perlman’s test), N, and G,  have
essentially high power for every correlation matrix consid-
ered. That is, Perlman’s test , N, and G,; have minimum
power ranges 0.763, 0.843, 0.813 to 0.881, 0.882, 0.895 and
have averages powers ranges 0.789, 0.869, 0.860 to 0.908,
0.888, 0.901 respectively. Since they do not have essentially
difference in power, so we recommend all these three tests for

any correlation cases here. When sample size » increases to
moderate or large, the power of G at direction (0,1,0) has
power smaller than that of Hotelling’s T-* and this also
happens for N__ only for large 7. So for some protection
when the sample size is medium or large , we recommend
Perlman’s test over other two tests. For p = 6 and small #n ,
all three tests considered give high power for almost every
correlation matrix except for R, , , G, has smaller power than
that of usual F-test only at direction (0,0,1,0,0,0) and N, also
has smaller power than that of usual F-test in several direc-
tions. For correlation matrices Ry, R; and R, on average
of minimum powers and average powers G, will be ranked
as the best test with N, as the second best test and the third
is Perlman’s test. When sample size n increases to moderate
or large, both N, and G, have some power smaller than 0.7
for R, and R, , so we recommend Perlman’s test over
these two tests for these cases.

In summary, when V' known and partially known
LRT (Kudo’s test and Shorack’s test) have the best overall
powers over the other two tests for all p and n considered,
we recommend Kudo’s test for I/ known and Shorack’s test
for V' partially known. For V' unknown, p =3 and small
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n, we recommend all three tests, i.e. Perlman’s tests , N, .,
and G, because they give essentially equal high powers.
When 7 is moderate (n =20 ) or large (n =100 ), we recom-
mend Perlman’s test. For p = 6 and small # we recommend
G, except for V' with no negative and positive correlations.
If n is moderate or large, we recommend Perlman’s test .

3. Two examples for illustration

In this section, we apply the proposed test and the
N,, and G tests to the two examples of the data from the
matched-pair design and the one-way analysis of variance,
(Rencher A.C. 2002, p135 and p227). The data sets are
described next.

1) The matched-pair data: Two types of coating for
resistance to corrosion, 15 pieces of pipe were coated with
each type of coating. Two pipes, one with each type of coat-
ing, were buried together and left for the same duration of
time at 15 different locations, providing a natural pairing of
observations. Corrosion for two coatings were measure by
two variables (p =2). The tests that coating 2 is better than
coating 1 are conducted.

2) The one-way analysis of variance data: The mea-
surements in a dental study on boys from ages 8 to 14 (p =3)
were reported by Potthoff and Roy (1964). We want to test
that this measurement has the growth curve.

The results are shown in Table 5. For the matched-
pair data the p —values of the three tests equal to 1.1045e-02,
2.4196¢-02 and 9.7431e-03 respectively. Thus, all the three
tests lead to rejection of the hypothesis that coating 2 has
equality the same as coating 1. The p—values of the three
tests for the one-way analysis of variance data are 9.6860¢-
06, 4.7028¢-05 and 1.3925¢-05 respectively and also lead to
the rejection of hypothesis that the latter measurements in the
dental study do not increase with ages.

Acknowledgement
The author would like to express sincere thanks to

Professor F.T. Wright of the University of Missouri-
Columbia, USA, for his invaluable suggestions.

Table 5. Observed p-values for testing the equality of the
mean difference for two data.

LRT N2T G2S
The matched-pair data:
Statistic 0.7728 5.0231 10.8189
Average sum 1.1981>0
p-values 1.1045¢-02  2.4196e-02 9.7431e-03

The one-way analysis of variance data:

Statistic 5.1971 20.8813 73.0846
Average sum 3.0852>0
p-values 9.6860e-06 4.7028e-05 1.3925¢-05
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