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Abstract

Two statistics, SR2 and adjusted SR2, are developed to measure the goodness–of–fit for a system-of-equations model
based on a new definition of the norm of a square matrix with positive diagonal elements, and by this overcome the short-
comings of the McElroy R2 and the system weighted R2. The proposed measures are tested with the simulation data and the
simulation results show that the proposed measures outperform the McElroy R2 and give similar results as the AIC and BIC
criteria. The proposed measures are fairly constant when the irrelevant variables are eliminated but the sharp change in the
measure is obviously visible when one relevant variable is eliminated from the model. The movement of the McElroy R2

statistic is very slow comparing with the other four statistics and the sharp change in the measure is not visible when one of
relevant variables is eliminated.

Keywords: system R-square, adjusted system R-square, goodness–of–fit, a system-of-equations model,
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1. Introduction

Variable  selection  criteria  and  procedures  in  the
single–equation model are widely discussed in the literature
(e.g. Draper and Smith, 1998; Stock and Watson, 2003; Mont-
gomery et al., 2006). The concepts of R2 and adjusted R2 are
widely  used  as  the  measures  of  goodness–of–fit  in  the
single–equation model. McElroy (1977) extends the concept
of R2 to measure the goodness–of–fit in a system-of-equa-
tions model:
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where ε̂  is the nm 1  error vector, , y  is the nm 1  depen-
dent variable vector, n is the number of observations, m is
the number of equations in the model, 1 1ˆ = S I   , and  is
the estimated m×m  cross–equation covariance matrix of

errors. The system weighted R2 for the 3SLS, IT3SLS, SUR,
ITSUR, and FIML methods in the SAS PROC SYSLIN (SAS
Inc., 2003) is defined as
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where y is the dependent variable vector, R is the vector of
regressor set, W is the weighted matrix defined as W =

  11W = S Z Z Z Z   , Z is the matrix of instrument set, and
X X   is  the  matrix  of  R WR .  The  system  weighted  R2

reduces to the McElroy R2 if the matrix of the instrument set
is the identity matrix.

McElroy R2 in (1) or system weighted R2 in (2) is not
popular for variable selection in the system-of-equations
model since both measures are based on the comparison
reference depending on the selected variables. The denomi-
nator in McElroy R2 or system weighted R2 is not a constant
for  a  set  of  data  because  it  is  the  total  sum  of  squares
weighted by the inverse matrix of the estimated cross–equa-
tion covariance matrix of errors, depending on the variables
in the model. Furthermore, if the mean of errors generated in
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the parameter estimation from each equation is equal to zero
and the uncorrected form of degrees of freedom is used,
Lorchirachoonkul and Jitthavech (2008) have shown that the
weighted error sum of squares 1ˆ ˆSε ε  is equal to the total
error degrees of freedom, nm. If the corrected error degrees
of freedom are ij iEDF = n  p , i = 1, 2,..., m; j = 1, 2,..., m

then 1ˆ ˆSε ε  is equal to nm 
m

i
i=1

p , where pi is the number of

parameters  in  equation  i  in  the  model.  If  the  degrees  of
freedom correction are EDFij =  i jn max p , p ,  i = 1, 2,

… m ; j = 1, 2, …, m, then 1ˆ ˆSε ε  
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    , where Sij and Cij are the elements

in ith row and jth column of matrix S and the co-factor ij of
matrix S, respectively. Therefore, from the first normal condi-
tion, it may be concluded that the numerator in the second
term in McElroy R2 in (1) is equal to a fixed value depending
on the number of parameters in the model. Consequently,
the values of McElroy R2 in the different models will slightly
change when the numbers of regressors are equal since the
dependent variable sum of squares is usually much greater
than the error variance. A comparison between the models
should be done carefully since the weighted total sum of
squares  varies  from  model  to  model.  Moreover,  since  the
measures in Eq. 1 and 2 are both based on the weighted error
sum of squares and the weighted total sum of squares, their
values  can  possibly  be  increased  by  simply  adding  more
regressors. These overall fit measures also obscure the varia-
tion in fit across equations (Greene, 2003).

The information AIC and BIC statistics for the model
selection  in  a  multivariate  model  (Bedrick  et  al.,  1994;
Gorobets, 2005) are given by

m^

ε i
i=1

AIC = nln|Σ | + 2 p  + m(m+1) (3)
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The AIC for model selection in a model described by
a system of equations is developed for the generalized esti-
mating equations (GEE) model by using the quasi–likelihood
function (Pan, 2001) and for the state–space model under the
normality  assumption  (Bengtsson  and  Cavanaugh,  2006).
The GEE model extends the generalized linear model for the
correlated observations (Hedeker and Gibbons, 2006) but
does not take into account the contemporaneous correlation.
The main criticism of the information-type criteria is that the
minimum value of the criterion is unknown and we cannot
determine  how  the  selected  model  fits  the  unknown  true
model.

The paper is organized as follows: In the next section,
a  statistic  different  from  the  McElroy  R2  and  the  system
weighted R2 is proposed to measure the goodness–of–fit of a

system-of-equations model in which the contemporaneous
correlation  exists.  A  simulation  is  conducted  to  test  the
proposed measure and the results are compared with the
results using the McElroy R2, AIC, and BIC criteria.

2. Variable selection in a system-of-equations model

Based on our theoretical and/or empirical knowledge
we may define an initial specification of the good model. But
it is unknown whether the specification is an overspecifica-
tion or underspecification of the true model. However, one
usually has a tendency to include too many variables in the
initial specification causing the overspecification problem
in order that the estimate of the covariance matrix with the
corrected degrees of freedom is an unbiased estimate of the
true covariance matrix (Fujikoshi and Satoh, 1997). Selecting
the appropriate variables from an overspecification set of
qualified  regressors  is,  therefore,  a  critical  step  in  model
building.

Consider a system-of-equations model, which can be
written as
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where yi is the n 1  dependent variable vector in equation i,
Xi is the in p  matrix of independent variables including
a constant unit vector 1 in equation i, iβ  is the ip 1  para-
meter  vector in equation i, iε  is the n 1  random error
IN  2

i0, σ  vector in equation i, n is the number of observa-
tions in each equation, and pi is the number of parameters
including a constant term in equation i. The error covariance
matrix given by  ε p  is not a diagonal matrix if the equa-
tions are correlated. The total number of parameters in the
system-of-equations model (5) is equal to

m
i

i=1
p = p .

Given Xi, i = 1, 2, …, m, the expectation of the random dis-
turbance is equal to zero.

 iE (p) X , i = 1, 2, …, m = .ε 0

The dependent variables and the random disturb-
ances in Eq. 5 are rearranged in the matrix form as

1 2 m = (  ... )y y y y ,

1 1 2 2 m m(p) = [ (p ) (p ) (p )]ε ε ε ε .

The error sum of squares generated in the parameter estima-
tion can be written as
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Consider the second term in the RHS of Eq. 6 which
can be rewritten as
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The diagonal elements of the first matrix in the RHS are equal
to zero since the least squares estimate ˆ (p)y  and ˆ(p)ε  are
known to be orthogonal (Johnson and Wichern, 1998), and
the second matrix is equal to zero since the sum of residuals
is equal to zero. Therefore, it can be concluded that the dia-
gonal elements in the matrices in Eq. 6 are all positive. There-
fore, the norm of a square matrix A with positive diagonal
elements, ||A||, can be defined as trace(A), which satisfies the
four basic properties of the matrix norm (Leon, 2002):

a) ||A|| = trace(A) > 0 and ||A|| = 0 if and only if A = 0.
b) ||cA|| = |c| ||A|| = |c| trace(A) where c is a scalar.
c) ||A + B|| = trace(A + B) = trace(A) + trace(B) = ||A||

+ ||B||, where B is also a matrix of same dimension as A and
its diagonal elements are positive.

d) || A || = ||A||

The matrix norm as defined above is different from the
trace norm, which is equal to the sum of the absolute value of
the singular values of the matrix, which is the upper bound
of the Frobenius norm (Srebro, 2004). The matrix norm of A in
the above definition equal to trace(A) can be easily shown to
be equal to the sum of eigenvalues of A.

Based on such definition of the matrix norm the norms
of matrices in Eq. 6 can be written as
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Replacing the matrix norms in Eq. 6 and the rearranging terms
yield the coefficient of multiple determination in a system-of-
equations model
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If ˆ (p)y  approaches y the denominator in Eq. 8 the regression
sum  of  squares  in  the  system-of-equations  model  will
approach  the  total  sum  of  squares.  Consequently,  SR2

approaches 1. It can be seen that the properties of R2 statistic
in a single-equation model can be extended to a system-of-
equations by the proposed SR2. It can be seen from Eq.7 that
maximizing SR2 is equivalent to minimizing the sum of error
sum of squares. Following the same arguments against R2 as
in the single-equation model we define the adjusted SR2 in
the system-of-equations model to take the complexity of the
model into account as

adjusted SR2 = 1 - 

m
i i

i=1
m
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where p is the total number of parameters in the system-of-
equations model, m is the number of equations, and n is the
number of observations in each equation. Again, maximizing
the adjusted SR2 is equivalent to minimizing the mean of error
sum of squares.

3. Simulation

A set of simulation data is generated to compare the
proposed SR2 and adjusted SR2 statistics as measures of
goodness-of-fit with the well-known information AIC and
BIC  criteria  and  McElroy  R2  in  the  system-of-equations
model. The system of equations used to simulate the data
consists of two equations and four exogenous variables with
six parameters:

1 11 11 12 12 13 13 1y = 5 + a x + a x + a x + ε

2 21 21 22 22 23 23 2y = 4 + a x + a x + a x + ε  (10)

where x11 U(5, 30), x12 = x21 U(3, 20), x13 = x22 ~ U(15, 35), x23 ~
U(10, 25), a11 = 2, a12 = 5, a13 = 6, a21 = 3, a22 = 4, a23 = 7, 1 and 2
are bivariate normal with 1 = 0.15 and 2 = 0.25, respectively,
and the contemporaneous correlation = 0.4.

In  the  simulation  study  the  system  of  equations  is
initially specified by adding another two irrelevant variables
in each equation as

1 11 11 12 12 13 13 14 14 15 15 1y = 5 + a x + a x + a x + a x + a x + ε

2 21 21 22 22 23 23 24 24 25 25 2y = 4 + a x + a x + a x + a x + a x + ε

(11)

In this simulation, the irrelevant variables x14 = x24 and x15 =
x25 are generated from U(15,115) and U(3,63), respectively,
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and a14, a15, a24, and a25 are expected to be equal to 0. The data
set in the simulation consists of 5,000 records; each consists
of twelve variables, y1, y2, x11, x12, x13, x14, x15, x21, x22, x23, x24,
and x25. The set of simulation data is randomly sampled to
create 20 datasets of 50 observations to test the effectiveness
of the proposed SR2 and adjusted SR2 statistics for variable
selection.

The ten independent variables and the two random
disturbances 1 and 2 are tested to confirm that their distri-
butions in the generated population are consistent with the
assumed distributions. From the Pearson correlation coeffi-
cient matrix in Table 1 it can be concluded that there is a
significant contemporaneous correlation of ρ = 0.4  in the
system of equations and the pairwise correlations between
the xi’s are insignificant. Since we assume that no information
on the covariance matrix of the random disturbances is avail-
able the parameters are estimated by the SAS Proc Model
using the IT3SLS method to correct the contemporaneous
correlation.

The  variable  selection  strategy  in  the  simulation
follows the concept of the backward elimination procedure
to reduce partially the computational demand in the variable

selection. The backward elimination algorithm is often less
adversely affected by the correlative structure of the regres-
sors than the forward selection (Mantel, 1970). The simula-
tion algorithm can be summarized as follows:

1. Estimate the parameters in the system-of-equations
model with all twelve parameters in Eq. 11 referred as a full
model. From the simulation results of 20 runs, the averages
of the goodness-of-fit measures are used as the estimates of
all five statistics as shown in Table 2.

2. Repeat Step 1 ten times with the system-of-equa-
tions model consisting of 9 independent variables, by drop-
ping one variable at a time. All statistics except McElroy R2

suggest dropping x25 permanently from the model, while
McElroy  R2  suggests  dropping  x14.  The  optimal  values  of
statistics at the end of iteration 1 are summarized in Table 3.
It can be seen that the values of McElroy R2 of the reduced
models almost remain unchanged within the same simulation
run when dropping one variable at a time. The maximum of
the  average  values  of  McElroy  R2  of  the  reduced  model
decreases insignificantly compared with the full model. The
optimal values of the averages of the other four statistics of
the reduced models are not significantly different from the

Table 1. Pearson correlation coefficients.

 y11 y2 x11 x12 x13 x23 x14 x15 1 2

y1 1.0000 0.6081 0.3106 0.5400 0.7610 -0.0163 0.0083 0.0097 0.0084 0.0148
<.0001 <.0001 <.0001 <.0001 0.2488 0.5595 0.4943 0.5540 0.2968

y2 0.6081 1.0000 -0.0242 0.3572 0.5557 0.7307 -0.0086 0.0047 0.0132 0.0093
<.0001 0.0869 <.0001 <.0001 <.0001 0.5416 0.7416 0.3507 0.5128

x11 0.3106 -0.0242 1.0000 -0.0180 0.0029 -0.0225 0.0110 0.0119 -0.0053 -0.0187
<.0001 0.0869 0.2042 0.8386 0.1125 0.4353 0.3986 0.7094 0.1869

x12 0.5400 0.3572 -0.0180 1.0000 0.0002 -0.0090 -0.0053 0.0105 -0.0151 0.0153
<.0001 <.0001 0.2042 0.9875 0.5233 0.7063 0.4590 0.2845 0.2789

x13 0.7610 0.5557 0.0029 0.0002 1.0000 -0.0025 0.0089 -0.0009 0.0146 0.0154
<.0001 <.0001 0.8386 0.9875 0.8594 0.5277 0.9468 0.3028 0.2774

x23 -0.0163 0.7307 -0.0225 -0.0090 -0.0025 1.0000 -0.0158 0.0027 0.0157 -0.0146
0.2488 <.0001 0.1125 0.5233 0.8594 0.2644 0.8469 0.2672 0.3011

x14 0.0083 -0.0086 0.0110 -0.0053 0.0089 -0.0158 1.0000 0.0061 0.0099 0.0088
0.5595 0.5416 0.4353 0.7063 0.5277 0.2644 0.6645 0.4828 0.5351

x15 0.0097 0.0047 0.0119 0.0105 -0.0009 0.0027 0.0061 1.0000 -0.0089 -0.0213
0.4943 0.7416 0.3986 0.4590 0.9468 0.8469 0.6645 0.5302 0.1330

1 0.0084 0.0132 -0.0053 -0.0151 0.0146 0.0157 0.0099 -0.0089 1.0000 0.3934
0.5540 0.3507 0.7094 0.2845 0.3028 0.2672 0.4828 0.5302 <.0001

2 0.0148 0.0093 -0.0187 0.0153 0.0154 -0.0146 0.0088 -0.0213 0.3934 1.0000
0.2968 0.5128 0.1869 0.2789 0.2774 0.3011 0.5351 0.1330 <.0001

Table 2. Estimates of measures of goodness-of-fit of the full model.

     Full model McElroy R2 AIC BIC SR2 Adjusted SR2

Mean 0.9994 403.4638 432.1441 0.9754 0.9726
Standard error 1.59E-05 3.0969 3.0969 0.0013 0.0014
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full model. The significant level used in the tests in the simu-
lation is 0.05.

3. Repeat Step 1 nine times with the system-of-equa-
tions model consisting of 8 independent variables, by drop-
ping x25 permanently from the model and dropping another
one variable at a time. The optimal values of statistics are
summarized in Table 4. At the end of iteration 2, all five good-
ness-of-fit  measures  of  the  reduced  models  decrease  in-
significantly. McElroy R2 still insists to drop x14 permanently
from the model while the other four statistics suggest drop-
ping x24 permanently from the model.

4. Repeat Step 3 eight times by dropping another x24
permanently and dropping another one variable at a time.
All statistics suggest dropping x15 permanently without any
significant deterioration in the goodness-of-fit measure of

the model. In fact, the significant improvement of goodness-
of-fit measure of the reduced model under BIC criterion can
be observed. The optimal values of statistics are summarized
in Table 5.

5. Repeat Step 4 seven times by dropping another
x15 permanently and dropping another one variable at a time.
All  statistics  suggest  dropping  x14  permanently  from  the
model. But at the end of iteration 4 the value of McElroy R2

decreases significantly as shown in Table 6. It implies that
the variable x14 cannot be excluded from the model under
McElroy R2 criterion without significant deterioration in the
goodness-of-fit  measure.  The  variable  elimination  under
McElroy R2 criterion is to be terminated. But AIC, SR2, and
adjusted SR2 do not change significantly from the corres-
ponding values in the full model and BIC shows the signifi-

Table 3. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 1.

          Reduced model Max McElroy R2 Min AIC Min BIC Max SR2 Max Adjusted SR2

Mean 0.9994 402.5267 429.2951 0.9752 0.9727
Standard error 1.58E-05 3.0860 3.0860 0.0013 0.0014
Full model-Reduced model 5.36E-06 0.9371 2.8491 -0.0002 -0.0001
Pooled standard error 1.59E-05 3.0914 3.0914 0.0013 0.0014
t-statistic 0.3384 0.3031 0.9216 0.1591 0.0581

Table 4. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 2.

          Reduced model Max McElroy R2 Min AIC Min BIC Max SR2 Max Adjusted SR2

Mean 0.9994 401.7743 426.6306 0.9749 0.9727
Standard error 1.71E-05 3.1153 3.1153 0.0013 0.0014
Full model-Reduced model 1.27E-05 1.6895 5.5135 0.0005 0.0001
Pooled standard error 1.65E-05 3.1061 3.1061 0.0013 0.0014
t-statistic 0.7688 0.5439 1.7751 0.3592 0.0725

Table 5. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 3.

          Reduced model Max McElroy R2 Min AIC Min BIC Max SR2 Max Adjusted SR2

Mean 0.9994 402.0897 425.0339 0.9743 0.9723
Standard error 1.77E-05 2.9451 2.9451 0.0013 0.0014
Full model-Reduced model 2.60E-05 1.3741 7.1102 0.0011 -0.0003
Pooled standard error 1.68E-05 3.0220 3.0220 0.0013 0.0014
t-statistic 1.5467 0.4547 2.3528 0.8610 0.2035

Table 6. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 4.

          Reduced model Max McElroy R2 Min AIC Min BIC Max SR2 Max Adjusted SR2

Mean 0.9994 400.6573 421.6895 0.9741 0.9994
Standard error 1.62E-05 2.9899 2.9899 0.0013 0.0014
Full model-Reduced model 3.26E-05 2.8065 10.4546 0.0013 0.0001
Pooled standard error 1.60E-05 3.0439 3.0439 0.0013 0.0014
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cant improvement in the goodness-of-fit measure. The vari-
able elimination procedure will continue under the remaining
four criteria.

6. Repeat Step 5 six times by dropping x25, x24, x15,
and x14 permanently and dropping one of the remaining vari-
ables at a time. It should be noted that all irrelevant variables
are eliminated and the reduced models in this iteration en-
compass only relevant variables in the system-of-equations
model. Any further elimination of independent variables is
expected to deteriorate the goodness-of-fit if the measure is
effective.  The  simulation  result  shows  that  all  remaining
statistics indicate that any additional elimination of indepen-
dent  variables  will  deteriorate  the  goodness-of-fit  of  the

model significantly as shown in Table 7. However, in order to
observe the change of McElroy R2 when one of the relevant
variables is dropped the maximum value of McElroy R2 is
also included in Table 7.

Under  McElroy  R2  criterion  we  can  eliminate  only
three out of four irrelevant variables but retain all relevant
variables. The McElroy R2 statistic does not illustrate the
sharp change when a significant change in value occurs. The
AIC, BIC, SR2, and adjusted SR2 can eliminate all irrelevant
variables and select only all relevant variables and the statis-
tics do illustrate the sharp change as shown in Figures 1 and
2. This sharp angle is necessary to terminate the algorithm
in practice when we have only one sample. Additionally, the

Table 7. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 5.

          Reduced model Max McElroy R2 Min AIC Min BIC Max SR2 Max Adjusted SR2

Mean 0.9992 475.9044 495.0246 0.9175 0.9130
Standard error 3.16E-05 2.4525 2.4525 0.0039 0.0041
Full model-Reduced model 0.0003 -72.4406 -62.8805 0.0579 0.0596
Pooled standard error 2.50E-05 2.7933 2.7933 0.0029 0.0031
t-statistic 10.4150 -25.9333 -22.5108 19.8357 19.2492

Figure 2.  Maximum values of McElroy R2, SR2, and adjusted SR2 in each iteration.

Figure 1.  Minimum values of AIC and BIC in each iteration.
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value of McElroy R2 statistic is quite misleading since it is
equal to 0.9995 in the full model, and the maximum value of
McElroy R2 in the reduced model, which drops all irrelevant
variables  and  one  of  the  relevant  variables,  is  equal  to
0.9992.

4. Conclusions

The norm of a matrix A, whose diagonal elements are
positive, is defined as trace(A). Based on such definition, the
SR2 and adjusted SR2 statistics are developed as measures of
goodness-of-fit for a system-of-equations model. Maximizing
SR2 and adjusted SR2 are shown to be equivalent to minimiz-
ing the sum of error sum of squares and the mean of error
sum of squares, respectively. From the simulation results it
can be concluded that the characteristics of the proposed
SR2 and adjusted SR2 statistics are similar to the well-known
information AIC and BIC criteria in variable selection for a
system-of-equations model. The sharp change in the values
of the statistics, except McElroy R2, is clearly visible when
any relevant variable is eliminated from the model. The sharp
change is necessary in order to terminate the elimination of
independent variables from the model when only one sample
is available. Therefore the proposed SR2 and adjusted SR2

statistics  can  solve  the  underfit  and  overfit  problem  in
practice. The advantage of the proposed SR2 and adjusted
SR2 statistics over the information criteria is that the values
of the proposed statistics can indicate how close the model is
to the true model since the maximum values of the proposed
SR2 and adjusted SR2 statistics are known equal to 1. The
analyst knows from this property how close the system-of-
equations model fits the data in the case of the single-equa-
tion model.
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