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Abstract

Two statistics, SR” and adjusted SR?, are developed to measure the goodness—offit for a system-of-equations model
based on a new definition of the norm of a square matrix with positive diagonal elements, and by this overcome the short-
comings of the McElroy R” and the system weighted R*. The proposed measures are tested with the simulation data and the
simulation results show that the proposed measures outperform the McElroy R” and give similar results as the AIC and BIC
criteria. The proposed measures are fairly constant when the irrelevant variables are eliminated but the sharp change in the
measure is obviously visible when one relevant variable is eliminated from the model. The movement of the McElroy R?
statistic is very slow comparing with the other four statistics and the sharp change in the measure is not visible when one of

relevant variables is eliminated.

Keywords: system R-square, adjusted system R-square, goodness—of—fit, a system-of-equations model,
contemporaneous correlation.
1. Introduction errors. The system weighted R for the 3SLS, IT3SLS, SUR,

Variable selection criteria and procedures in the
single—equation model are widely discussed in the literature
(e.g. Draper and Smith, 1998; Stock and Watson, 2003; Mont-
gomery et al., 2006). The concepts of R* and adjusted R” are
widely used as the measures of goodness—of-fit in the
single—equation model. McElroy (1977) extends the concept
of R* to measure the goodness—of—fit in a system-of-equa-
tions model:

YO v M)

where g is the nmx1 error vector, Y is the nmx1 depen-
dent variable vector, n is the number of observations, m is
the number of equations in the model, Q! = S7'®1I, and is
the estimated mXm cross—equation covariance matrix of
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ITSUR, and FIML methods in the SAS PROC SYSLIN (SAS
Inc.,2003) is defined as
YWR(X'X) ' R'Wy
y'Wy

where y is the dependent variable vector, R is the vector of
regressor set, W is the weighted matrix defined as W =
S~ ®Z(Z'Z)_1 Z', Z is the matrix of instrument set, and
X'X is the matrix of R'WR. The system weighted R’
reduces to the McElroy R’ if the matrix of the instrument set
is the identity matrix.

McElroy R? in (1) or system weighted R” in (2) is not
popular for variable selection in the system-of-equations
model since both measures are based on the comparison
reference depending on the selected variables. The denomi-
nator in McElroy R or system weighted R” is not a constant
for a set of data because it is the total sum of squares
weighted by the inverse matrix of the estimated cross—equa-
tion covariance matrix of errors, depending on the variables
in the model. Furthermore, ifthe mean of errors generated in
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the parameter estimation from each equation is equal to zero
and the uncorrected form of degrees of freedom is used,
Lorchirachoonkul and Jitthavech (2008) have shown that the
weighted error sum of squares £S7'8 is equal to the total
error degrees of freedom, nm. If the corrected error degrees
of freedom are EDE=n - p,,i=1,2,..m;j=12,.,m

then £'S7'2 is equal tonm - p, , where p, is the number of

i=1

parameters in equation i in the model. If the degrees of

freedom correction are EDFij = n—max{p;, p;), i=1, 2,
m

.m;j=1,2, .. m, then &sla =nm-) p; +

. i=1
1] m 1
@ > (pi —pj)SijCij , where S, and C, are the elements
i=1j=1
in i" row and j" column of matrix S and the co-factor ij of

matrix S, respectively. Therefore, from the first normal condi-
tion, it may be concluded that the numerator in the second
term in McElroy R”in (1) is equal to a fixed value depending
on the number of parameters in the model. Consequently,
the values of McElroy R” in the different models will slightly
change when the numbers of regressors are equal since the
dependent variable sum of squares is usually much greater
than the error variance. A comparison between the models
should be done carefully since the weighted total sum of
squares varies from model to model. Moreover, since the
measures in Eq. 1 and 2 are both based on the weighted error
sum of squares and the weighted total sum of squares, their
values can possibly be increased by simply adding more
regressors. These overall fit measures also obscure the varia-
tion in fit across equations (Greene, 2003).

The information AIC and BIC statistics for the model
selection in a multivariate model (Bedrick et al., 1994,
Gorobets, 2005) are given by

AIC = nln|X | +2) p, + m(m+1) €))
i=1
BIC = nln|X. | + ln(n)[Zpi + O.5m(m+l)j @)
i=1

The AIC for model selection in a model described by
a system of equations is developed for the generalized esti-
mating equations (GEE) model by using the quasi—likelihood
function (Pan, 2001) and for the state—space model under the
normality assumption (Bengtsson and Cavanaugh, 2006).
The GEE model extends the generalized linear model for the
correlated observations (Hedeker and Gibbons, 2006) but
does not take into account the contemporaneous correlation.
The main criticism of the information-type criteria is that the
minimum value of the criterion is unknown and we cannot
determine how the selected model fits the unknown true
model.

The paper is organized as follows: In the next section,
a statistic different from the McElroy R* and the system
weighted R” is proposed to measure the goodness—of—fit of a
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system-of-equations model in which the contemporaneous
correlation exists. A simulation is conducted to test the
proposed measure and the results are compared with the
results using the McElroy R*, AIC, and BIC criteria.

2. Variable selection in a system-of-equations model

Based on our theoretical and/or empirical knowledge
we may define an initial specification of the good model. But
it is unknown whether the specification is an overspecifica-
tion or underspecification of the frue model. However, one
usually has a tendency to include too many variables in the
initial specification causing the overspecification problem
in order that the estimate of the covariance matrix with the
corrected degrees of freedom is an unbiased estimate of the
true covariance matrix (Fujikoshi and Satoh, 1997). Selecting
the appropriate variables from an overspecification set of
qualified regressors is, therefore, a critical step in model
building.

Consider a system-of-equations model, which can be
written as

Y1 Xp, 00 0 B €
Y2 0 X5 0 = 0| B &
y3 =] 0 0 X; 0 ||Bs|*+]|e )|, )
Ym 0 0 0 o Xm ﬁm €m

where y. is the nx1 dependent variable vector in equation i,
X is the nxp; matrix of independent variables including
a constant unit vector 1 in equation i, B; is the p; x1 para-

meter vector in equation i, €; is the nxI random error

IN{ O, csiz vector in equation i, n is the number of observa-
tions in each equation, and p, is the number of parameters
including a constant term in equation i. The error covariance
matrix given by >, 8(p) is not a diagonal matrix if the equa-
tions are correlated. The total number of parameters in the
system-of-equations model (5) is equal to

m
p=2p;i
i=1
Given X, i=1, 2, ..., m, the expectation of the random dis-

turbance is equal to zero.

E(e(p)X;,i=1,2, ...m)=0.

The dependent variables and the random disturb-
ances in Eq. 5 are rearranged in the matrix form as

Y= Y2 - Ym)s
&) =[& @) &2(2) - &mPm)]-

The error sum of squares generated in the parameter estima-
tion can be written as
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&p)'e(p) =y - YOIy -y()]
=ly—EWITy -EWI-[y®) - EWI ly—E)]
= [y -EWIy(P) -EW]+yP) - EWIyE) -EW)]-
©)

Consider the second term in the RHS of Eq. 6 which
can be rewritten as

[Y() ~EW]I Ty — E(y)]
= [Y(®) ~E®)Ie0) + [y®) - EMI Y(P) —EW)]
= Y(P)(P) - EW)e) + [Y() - EWIYE) - EW)].

The diagonal elements of the first matrix in the RHS are equal
to zero since the least squares estimate y(p) and &(p) are
known to be orthogonal (Johnson and Wichern, 1998), and
the second matrix is equal to zero since the sum of residuals
is equal to zero. Therefore, it can be concluded that the dia-
gonal elements in the matrices in Eq. 6 are all positive. There-
fore, the norm of a square matrix A with positive diagonal
elements, ||A||, can be defined as trace(A), which satisfies the
four basic properties of the matrix norm (Leon, 2002):

a) ||Al|=trace(A)>0and|A|=0ifand onlyifA=0.

b) [[cA|=c| ||A]|=|c| trace(A) where ¢ is a scalar.

¢) ||A+BJ=trace(A +B)=trace(A) +trace(B)=|A||
+ ||B||, where B is also a matrix of same dimension as A and
its diagonal elements are positive.

d) [[A"[=llA]

The matrix norm as defined above is different from the
trace norm, which is equal to the sum of the absolute value of
the singular values of the matrix, which is the upper bound
of the Frobenius norm (Srebro, 2004). The matrix norm of A in
the above definition equal to trace(A) can be easily shown to
be equal to the sum of eigenvalues of A.

Based on such definition of the matrix norm the norms
of matrices in Eq. 6 can be written as

I ()| = issa(po

Iy - EW) Ty —E@)]l = issr
1)~ EW)TTy - EW = 5~ EWI @) -EW] |
I3 (0) - BT 5 (0) - EM] || = §SSR1-

Replacing the matrix normsin Eq. 6 and the rearranging terms
yield the coefficient of multiple determination in a system-of-
equations model

m
2. SSE; (p;)
SRZ=1 - =L @
m
2.SST,

i=1
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If y(p) approaches y the denominator in Eq. 8 the regression
sum of squares in the system-of-equations model will
approach the total sum of squares. Consequently, SR’
approaches 1. It can be seen that the properties of R” statistic
in a single-equation model can be extended to a system-of-
equations by the proposed SR, It can be seen from Eq.7 that
maximizing SR” is equivalent to minimizing the sum of error
sum of squares. Following the same arguments against R” as
in the single-equation model we define the adjusted SR in
the system-of-equations model to take the complexity of the
model into account as

m
. Z]SSEi(pi)/(nm - p)
adjusted SR°=1 - i=

S SST,/[m(n —1)]
i=1

, ©

where p is the total number of parameters in the system-of-
equations model, m is the number of equations, and n is the
number of observations in each equation. Again, maximizing
the adjusted SR is equivalent to minimizing the mean of error
sum of squares.

3. Simulation

A set of simulation data is generated to compare the
proposed SR” and adjusted SR® statistics as measures of
goodness-of-fit with the well-known information AIC and
BIC criteria and McElroy R” in the system-of-equations
model. The system of equations used to simulate the data
consists of two equations and four exogenous variables with
six parameters:

y1 =5+ ax) tapX;p tapx; teg

Yo =4tayXy tapXy TagXy; t&  (10)
where x, U(5, 30), x, =x,, U(3, 20), x,,= x,,~U(15, 35), x,, ~
U(10,25),a,,=2,a,=5,a,=6,a,=3,a,=4,a,=7,¢ and g,
are bivariate normal with 6, =0.15 and 6, = 0.25, respectively,
and the contemporaneous correlation = 0.4.

In the simulation study the system of equations is
initially specified by adding another two irrelevant variables
in each equation as

yi =5FapX tapX;; tapx; tagX;y ta;sx;s g
Yo =S4T ay Xy taynXy tagXyy tanXyy taXys e,
(11

In this simulation, the irrelevant variables x , = x,, and x ;=
X,, are generated from U(15,115) and U(3,63), respectively,
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andaaa, anda, are expected to be equal to 0. The data
set in the simulation consists of 5,000 records; each consists
of twelve variables, y,, y,, X, X,,, X, X4 Xps Xops Xy Xy Xy
and x,,. The set of simulation data is randomly sampled to
create 20 datasets of 50 observations to test the effectiveness
of the proposed SR” and adjusted SR’ statistics for variable
selection.

The ten independent variables and the two random
disturbances ¢, and &, are tested to confirm that their distri-
butions in the generated population are consistent with the
assumed distributions. From the Pearson correlation coeffi-
cient matrix in Table 1 it can be concluded that there is a
significant contemporaneous correlation of p=0.4 in the
system of equations and the pairwise correlations between
the x’s are insignificant. Since we assume that no information
on the covariance matrix of the random disturbances is avail-
able the parameters are estimated by the SAS Proc Model
using the IT3SLS method to correct the contemporaneous
correlation.

The variable selection strategy in the simulation
follows the concept of the backward elimination procedure
to reduce partially the computational demand in the variable

Table 1. Pearson correlation coefficients.
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selection. The backward elimination algorithm is often less
adversely affected by the correlative structure of the regres-
sors than the forward selection (Mantel, 1970). The simula-
tion algorithm can be summarized as follows:

1. Estimate the parameters in the system-of-equations
model with all twelve parameters in Eq. 11 referred as a full
model. From the simulation results of 20 runs, the averages
of the goodness-of-fit measures are used as the estimates of
all five statistics as shown in Table 2.

2. Repeat Step 1 ten times with the system-of-equa-
tions model consisting of 9 independent variables, by drop-
ping one variable at a time. All statistics except McElroy R’
suggest dropping x,. permanently from the model, while
McElroy R* suggests dropping x,,- The optimal values of
statistics at the end of iteration 1 are summarized in Table 3.
It can be seen that the values of McElroy R* of the reduced
models almost remain unchanged within the same simulation
run when dropping one variable at a time. The maximum of
the average values of McElroy R® of the reduced model
decreases insignificantly compared with the full model. The
optimal values of the averages of the other four statistics of
the reduced models are not significantly different from the

yl 1 y2 Xll X12 X13 XZ% X14 XIS 81 82

Y, 1.0000  0.6081 03106 05400 07610 -0.0163  0.0083  0.0097 00084  0.0148

<0001 <0001 <0001 <0001 02488 05595 04943 05540  0.2968

Y, 0.6081 1.0000 -0.0242 03572 05557  0.7307 -0.0086  0.0047 00132  0.0093

<.0001 0.0869 <0001 <0001 <0001 05416 07416 03507 05128

X, 03106  -0.0242 1.0000  -0.0180  0.0029 -0.0225  0.0110  0.0119 -0.0053 -0.0187

<.0001 0.0869 02042 0838  0.1125 04353 03986  0.7094  0.1869

X, 0.5400 03572 -0.0180 1.0000  0.0002 -0.0090 -0.0053  0.0105 -0.0151 0.0153

<0001 <0001 0.2042 0.9875 05233 07063 04590 02845  0.2789

X, 0.7610 05557  0.0029  0.0002 1.0000  -0.0025  0.0089  -0.0009  0.0146  0.0154

<0001 <0001 0.8386  0.9875 0.8594 05277 09468 03028  0.2774

X, -0.0163 07307  -0.0225 -0.0090  -0.0025 1.0000  -0.0158  0.0027 00157 -0.0146

0.2488 <0001 0.1125 05233  0.85%4 02644 08469 02672 03011

X, 0.0083  -0.0086  0.0110 -0.0053  0.0089  -0.0158 1.0000  0.0061 0.0099  0.0088

05595 05416 04353 07063 05277  0.2644 0.6645 04828 05351

X, 0.0097  0.0047 00119 00105 -0.0009 00027  0.0061 1.0000  -0.0089  -0.0213

04943 07416 03986 04590 09468  0.8469  0.6645 0.5302  0.1330

g, 0.0084 00132 -00053 -0.0151 0.0146 00157  0.0099  -0.0089 1.0000  0.3934

0.5540 03507 07094 02845 03028 02672 04828  0.5302 <.0001

g, 0.0148  0.0093 -00187 00153 00154 -0.0146 00088 -0.0213  0.3934 1.0000
02968 05128 01869 02789 02774 03011 0.5351 0.1330 <0001

Table 2. Estimates of measures of goodness-of-fit of the full model.

Full model McElroy R? AIC BIC SR’ Adjusted SR’
Mean 0.9994 403.4638 432.1441 0.9754 0.9726
Standard error 1.59E-05 3.0969 3.0969 0.0013 0.0014
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Table 3. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 1.

Reduced model Max McElroyR> MinAIC MinBIC  MaxSR® Max Adjusted SR’
Mean 0.9994 402.5267  429.2951 0.9752 0.9727
Standard error 1.58E-05 3.0860 3.0860 0.0013 0.0014
Full model-Reduced model 5.36E-06 0.9371 2.8491 -0.0002 -0.0001
Pooled standard error 1.59E-05 3.0914 3.0914 0.0013 0.0014
t-statistic 03384 0.3031 0.9216 0.1591 0.0581

Table4. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 2.

Reduced model Max McElroyR>  MinAIC  MinBIC ~ MaxSR® Max Adjusted SR
Mean 0.9994 401.7743  426.6306 0.9749 0.9727
Standard error 1.71E-05 3.1153 3.1153 0.0013 0.0014
Full model-Reduced model 1.27E-05 1.6895 5.5135 0.0005 0.0001
Pooled standard error 1.65E-05 3.1061 3.1061 0.0013 0.0014
t-statistic 0.7688 0.5439 1.7751 0.3592 0.0725

Table 5. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 3.

Reduced model Max McElroyR>  MinAIC MinBIC  Max SR> Max Adjusted SR’
Mean 0.9994 402.0897  425.0339 0.9743 0.9723
Standard error 1.77E-05 2.9451 2.9451 0.0013 0.0014
Full model-Reduced model 2.60E-05 1.3741 7.1102 0.0011 -0.0003
Pooled standard error 1.68E-05 3.0220 3.0220 0.0013 0.0014
t-statistic 1.5467 0.4547 23528 0.8610 0.2035

Table 6. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 4.

Reduced model Max McElroyR>  MinAIC  MinBIC ~ MaxSR* Max Adjusted SR
Mean 0.9994 400.6573  421.6895 0.9741 0.9994
Standard error 1.62E-05 2.9899 2.9899 0.0013 0.0014
Full model-Reduced model 3.26E-05 2.8065 104546 0.0013 0.0001
Pooled standard error 1.60E-05 3.0439 3.0439 0.0013 0.0014

full model. The significant level used in the tests in the simu-
lation is 0.05.

3. Repeat Step 1 nine times with the system-of-equa-
tions model consisting of 8 independent variables, by drop-
ping x,, permanently from the model and dropping another
one variable at a time. The optimal values of statistics are
summarized in Table 4. At the end of iteration 2, all five good-
ness-of-fit measures of the reduced models decrease in-
significantly. McElroy R still insists to drop X, permanently
from the model while the other four statistics suggest drop-
ping x,, permanently from the model.

4. Repeat Step 3 eight times by dropping another x,
permanently and dropping another one variable at a time.
All statistics suggest dropping x,; permanently without any
significant deterioration in the goodness-of-fit measure of

the model. In fact, the significant improvement of goodness-
of-fit measure of the reduced model under BIC criterion can
be observed. The optimal values of statistics are summarized
in Table 5.

5. Repeat Step 4 seven times by dropping another
X,; permanently and dropping another one variable at a time.
All statistics suggest dropping x,, permanently from the
model. But at the end of iteration 4 the value of McElroy R?
decreases significantly as shown in Table 6. It implies that
the variable x , cannot be excluded from the model under
McElroy R criterion without significant deterioration in the
goodness-of-fit measure. The variable elimination under
McElroy R criterion is to be terminated. But AIC, SR?, and
adjusted SR* do not change significantly from the corres-
ponding values in the full model and BIC shows the signifi-
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Table 7. Estimates of measures of goodness-of-fit of the reduced models at the end of iteration 5.

Reduced model Max McElroyR>  MinAIC MinBIC ~ MaxSR* Max Adjusted SR
Mean 0.9992 4759044  495.0246 09175 0.9130
Standard error 3.16E-05 24525 24525 0.0039 0.0041
Full model-Reduced model 0.0003 -724406  -62.8805 0.0579 0.0596
Pooled standard error 2.50E-05 2.7933 2.7933 0.0029 0.0031
t-statistic 104150 -259333  -22.5108 19.8357 19.2492

cant improvement in the goodness-of-fit measure. The vari-
able elimination procedure will continue under the remaining
four criteria.

6. Repeat Step 5 six times by dropping X,, X,,, X5
and x,, permanently and dropping one of the remaining vari-
ables at a time. It should be noted that all irrelevant variables
are eliminated and the reduced models in this iteration en-
compass only relevant variables in the system-of-equations
model. Any further elimination of independent variables is
expected to deteriorate the goodness-of-fit if the measure is
effective. The simulation result shows that all remaining
statistics indicate that any additional elimination of indepen-
dent variables will deteriorate the goodness-of-fit of the

model significantly as shown in Table 7. However, in order to
observe the change of McElroy R* when one of the relevant
variables is dropped the maximum value of McElroy R® is
also included in Table 7.

Under McElroy R® criterion we can eliminate only
three out of four irrelevant variables but retain all relevant
variables. The McElroy R’ statistic does not illustrate the
sharp change when a significant change in value occurs. The
AIC, BIC, SR? and adjusted SR’ can eliminate all irrelevant
variables and select only all relevant variables and the statis-
tics do illustrate the sharp change as shown in Figures 1 and
2. This sharp angle is necessary to terminate the algorithm
in practice when we have only one sample. Additionally, the
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Figure 1. Minimum values of AIC and BIC in each iteration.
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Figure 2. Maximum values of McElroy R?, SR and adjusted SR? in each iteration.
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value of McElroy R’ statistic is quite misleading since it is
equal to 0.9995 in the full model, and the maximum value of
McElroy R” in the reduced model, which drops all irrelevant
variables and one of the relevant variables, is equal to
0.9992.

4. Conclusions

The norm of a matrix A, whose diagonal elements are
positive, is defined as trace(A). Based on such definition, the
SR’ and adjusted SR’ statistics are developed as measures of
goodness-of-fit for a system-of-equations model. Maximizing
SR’ and adjusted SR” are shown to be equivalent to minimiz-
ing the sum of error sum of squares and the mean of error
sum of squares, respectively. From the simulation results it
can be concluded that the characteristics of the proposed
SR’ and adjusted SR statistics are similar to the well-known
information AIC and BIC criteria in variable selection for a
system-of-equations model. The sharp change in the values
of the statistics, except McElroy R’ is clearly visible when
any relevant variable is eliminated from the model. The sharp
change is necessary in order to terminate the elimination of
independent variables from the model when only one sample
is available. Therefore the proposed SR’ and adjusted SR®
statistics can solve the underfit and overfit problem in
practice. The advantage of the proposed SR> and adjusted
SR’ statistics over the information criteria is that the values
of the proposed statistics can indicate how close the model is
to the true model since the maximum values of the proposed
SR’ and adjusted SR’ statistics are known equal to 1. The
analyst knows from this property how close the system-of-
equations model fits the data in the case of the single-equa-
tion model.
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