

Original Article

Effects of sour curry temperature with fermented shrimp paste on surface hardness of tooth enamel

Pojjanut Benjakul¹, Paruhat Prommontri⁴, Chanya Chuenarrom^{1,2*}, and Ureporn Leggat³

¹ Department of Prosthetic Dentistry, Faculty of Dentistry,

² Dental Materials Research Unit, Faculty of Dentistry,

³ Department of Oral Biology and Occlusion, Faculty of Dentistry,
Prince of Songkla University, Songkhla, Thailand

⁴ Phuket Smile Dental Clinic, Phuket, Thailand.

Received 8 July 2010; Accepted 3 August 2011

Abstract

The aim of this study was to evaluate the effect of temperature of Thai sour curry with and without fermented shrimp paste (Kapi) on enamel hardness. The pH and the titratable acidity of the assigned food were determined for Kangsom with Kapi and Kangsom without Kapi at 25°C, 37°C and 55°C. Thirty six enamel specimens were randomly assigned into 6 groups. Each group was exposed to the assigned foods at 25°C, 37°C and 55°C at 15 min interval for 3 periods and the last intervals at 60 min. The enamel surface hardness was evaluated by a Vickers microhardness tester. Increasing the temperature of the food resulted in a decreasing pH and a slightly increased titratable acidity content. The hardness values of enamel exposure for Kangsom with Kapi and Kangsom without Kapi were significantly different for all temperatures. The hardness value of enamel exposure for Kangsom with Kapi at 55°C was higher than that for exposure at 25°C and 37°C. In contrast, the hardness value of enamel exposure for Kangsom without Kapi at 55°C was significant lower than that for exposure at 25°C and 37°C. The temperature of Kangsom had an effect on enamel softening and Kangsom without Kapi had higher erosive potential than Kangsom with Kapi.

Keywords: enamel softening, fermented shrimp paste, Kangsom, microhardness, temperature

1. Introduction

Acidic foods and drinks which taste sour are an important factor of dental erosion (Chuajedong *et al.*, 2002; Kunzel *et al.*, 2000). Foods and drinks with pH value lower than the critical point (pH 5.5) and with high quantitation acid (titratable acidity) are more progressive in dental erosion (Tahmassebi *et al.*, 2006). However, there are other factors correlated with dental erosion, such as different kinds of

acids (citric, malic, tartaric etc. cause different progressions of dental erosion) (Zero, 1996), and food temperature (West *et al.*, 2000). Some minerals in foods, for example phosphate and fluoride are able to decrease the progression of dental erosion (Lussi *et al.*, 1993).

Amaechi *et al.* (1999) found that the immersed tooth specimens in orange juice at higher temperature showed a greater degree of erosion than at lower temperatures. Thien-thananurak (2004) studied the effect of temperature in Thai food on dental erosion and found that higher temperatures of orange juice and pickled grapes had greater effect on dental erosion. This result is in contrast to the finding with Kangsom (Thai spicy sour curry). When tooth specimens

* Corresponding author.

Email address: chanya.ch@psu.ac.th

were immersed in higher temperatures of Kansom there was less progression of dental erosion.

Kansom is a commonly consumed food in Thailand. This curry has a spicy and sour taste. The ingredients of Kansom sauce includes herbs such as chilli, shallot, garlic, turmeric, tamarind or lemon juice, Kapi (fermented shrimp paste), and salt. The ingredients of Kansom have varied chemical composition and acid-base, and may affect the relationship between composition and the level of effect dental erosion. Another recent work investigated the effect of Kapi in tamarind juice on loss of tooth enamel, in which it was found that Kapi could reduce the erosive potential of tamarind juice (Chuenarrom and Benjakul, 2010). Kapi is a salty fermented shrimp paste produced from small shrimps or silver shrimps, and is salted, fermented, and dried until it breaks down into a paste. It has a strong salty taste and an extreme smell. Kapi is used as a general condiment in south-east Asian and southern Chinese food. It is rich in protein, calcium, vitamins and various extractable compounds (Heu *et al.*, 2003). One teaspoon of Kapi contains 73 milligram of calcium or up to 1565 milligram of calcium per 100 gram of Kapi (Bunjong *et al.*, 1995).

The pH range is 3.38-3.90 for Kansom (Tiantananu-rak, 2004) which is lower than the critical point for eroding dental enamel (Cairns *et al.*, 2002). Kansom is consumed at room temperature or taken hot, so the finding that the level of dental erosion is inversely related to its temperature is particularly interesting. The aim of this study was to investigate the effect of Kapi in Kansom on enamel hardness change and compare the erosive potential of Kansom with Kapi and Kansom without Kapi at different temperatures. The results of this study will serve on a guideline for examination of enamel erosion from Kansom, which is a popular dish for Thai people.

2. Materials and Methods

2.1 The acidity of Kansom sauce and ingredients

The Kansom sauce recipe comprises curry paste and tamarind juice. The curry paste is prepared from crushed

chilli, garlic, turmeric, kapi and salt in tamarind juice. The recipe of the assigned foods used in the present study is presented in Table 1.

The pH value of the assigned food at 25°C, 37°C and 50°C were determined using pH meter (520A, Orion, Orion Research Inc., USA). Next, 20 ml of each assigned food was titrated with 1 N NaOH to raise the pH from the original pH to pH of 7. The volume (ml) of 1 N NaOH used in the titration was recorded to be the titratable acidity content (TA).

2.2 Specimen preparation

Unerupted human third molar teeth were immersed in NaCl for preserving the teeth. Eighteen teeth were selected and soaked in 0.05% NaClO for disinfecting. The remaining debris was removed by scrubbing and the tooth was washed in distilled water. Specimens were sectioned into buccal and lingual side, embedded in acrylic resin blocks, then minimally ground with silicon carbide abrasive paper with grit No.400, 600 and 1,200 under tap water to produce an optically flat area of enamel, 3x3 mm² in dimension. All specimens were measured for initial hardness using a Vickers microhardness tester (Buehler, Micromet II, Buehled Ltd., USA) under a load of 100 g for 10 s.

2.3 Erosion regimes

The 36 specimens were randomly assigned to 6 groups, and then immersed in Kansom without Kapi or Kansom with Kapi at 25°C, 37°C or 50°C. Each group was exposed to 20 ml of the assigned foods at 15 min interval for 3 periods (totalling 45 min). Next, specimens were exposed to the last interval for 60 min. At each interval, specimens were rinsed in running tap water, dried and the hardness of enamel surfaces measured with the microhardness tester under a load of 100 g for 10 s.

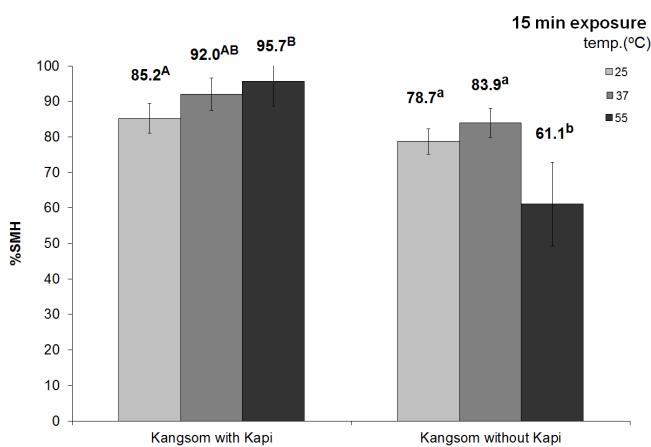
The percentage of surface microhardness value (%SMH) was calculated based on the initial Vickers hardness number (VHN₀) and Vickers hardness number after exposure in agents (VHN₁) as follows: %SMH = (VHN₁ / VHN₀) x 100.

Table 1. The composition of assigned foods used in the study for their acidity properties.

Assigned food	temperature						Composition in water (%weight)	
	25°C		37°C		55°C			
	pH	TA	pH	TA	pH	TA		
Tamarind juice	2.69	0.59	2.43	0.67	2.21	0.66	2.7% tamarind paste	
Kapi	7.38	-	7.32	-	6.98	-	1.0% kapi paste	
Kansom without Kapi	2.97	1.16	2.81	1.17	2.44	1.22	2.7% tamarind paste, 1.7% chilli, 0.8% garlic, 0.3% turmeric, 0.1% salt	
Kansom with Kapi	4.06	0.72	3.93	1.0	3.65	0.94	2.7% tamarind paste, 1.7% chilli, 1.0% kapi, 0.8% garlic, 0.3% turmeric, 0.1% salt	

2.4 Statistical analysis

Analysis of variance was performed on the results and Tukey's significant difference was used to evaluate the multiple comparisons.


3. Results

The pH and titratable acidity of tamarind juice, Kapi, Kangsom without Kapi, and Kangsom with Kapi at different temperatures are shown in Table 1. Increasing food temperature resulted in decreasing their pH and slightly increasing the titratable acidity content. Tamarind juice was a strong acid while Kapi sauce was neutral. Therefore, Kangsom with

Kapi had a higher pH than Kangsom without Kapi.

The average initial Vickers hardness value of 36 specimens was 361.8 ± 13.8 kg/mm². The percentage for surface hardness value of the treatment groups showed that each group had a different erosive potential on the enamel surface (Figures 1 to 4). At the same temperature, specimens exposed in Kangsom without Kapi had a lower hardness value than Kangsom with Kapi ($p < 0.05$).

An effect of the temperature on enamel hardness was also seen. At 55°C, for exposure in Kangsom with Kapi, the enamel hardness value was higher than at 25°C and 37°C. In contrast, the hardness value of enamel exposure for Kangsom without Kapi at 55°C was significantly lower than that at 25°C and 37°C.

Means identified with the same letter are not significantly different at the $p < .05$ level.

Figure 1. %SMH of enamel after exposure to assigned agents for 15 min at different temperatures.

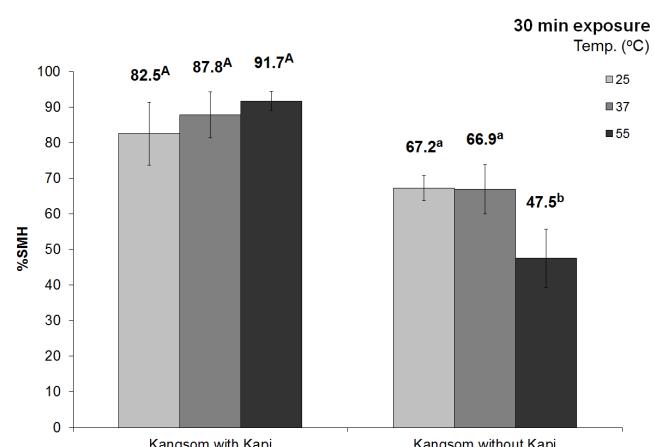
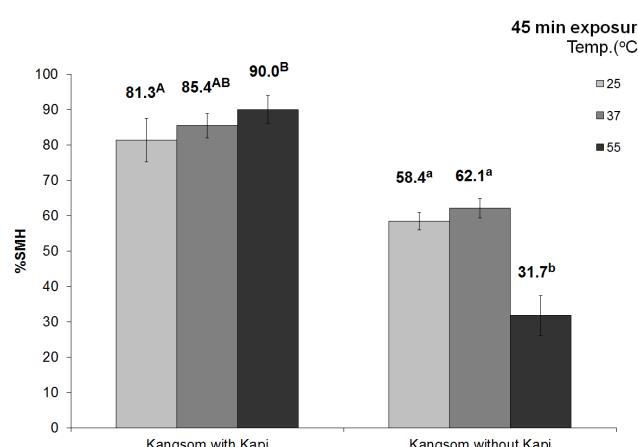



Figure 2. %SMH of enamel after exposure to assigned agents for 30 min at different temperatures.

Means identified with the same letter are not significantly different at the $p < .05$ level.

Figure 3. %SMH of enamel after exposure to assigned agents for 45 min at different temperatures.

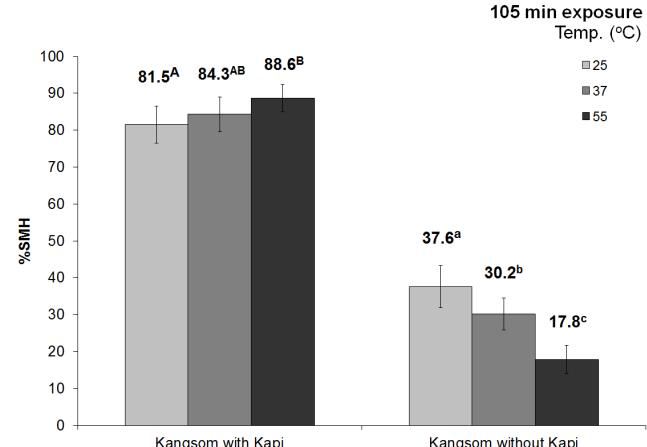


Figure 4. %SMH of enamel after exposure to assigned agents for 105 min at different temperatures.

4. Discussion

The microhardness test is the accepted method for investigating the early stage of enamel dissolution (Maupome *et al.*, 1998; Seow and Thong, 2005; Wongkhantee *et al.*, 2006; Zero *et al.*, 1990). In this study, Vickers microhardness number (VHN) for enamel surface after flat polishing ranged from 321 to 389 kg/mm². These values are similar to other previous studies (Lupi-Pegurier *et al.*, 2003; Maupome *et al.*, 1998). After exposure to assigned agents, the results showed different softening of enamel surface in each group.

Kangsom was chosen because it is a frequently consumed dish in the southern area of Thailand. Although there are several ingredients in Kangsom sauce, each with different chemical properties, our pilot study found that the ingredients in Kangsom sauce other than tamarind juice and Kapi did not affect the acidity value of Kangsom. This study looked at these 2 main ingredients; tamarind juice produces a sour taste and Kapi is rich in calcium. Both tamarind juice and Kapi had an effect on the pH value of Kangsom. Table 1 shows that tamarind juice is an acid, while Kapi is neutral, so when adding Kapi to Kangsom it assists in decreasing the acidity of Kangsom. The results clearly demonstrate that the difference in the erosive potential of Kangsom can be attributed to the adding of Kapi. This result is consistent with previous reports. Hooper *et al.* (2004) demonstrated that calcium addition can be applied to a range of drink types to reduce erosion of enamel. Barbour *et al.* (2006) demonstrated that sufficient calcium concentration in drinks is one of the factors that assists in the reduction of the rate of hydroxyapatite dissolution. A recent study has found that Kapi could delay enamel loss due to tamarind juice (Chuenarrom and Benjakul, 2010). Calcium can reduce enamel erosion as follows; calcium ions can interact with the carboxyl group of tartaric acid to create calcium salt, hence the number of available carboxyl groups of tartaric acid would decrease and calcium would be extracted from the enamel surface at a lower rate. In addition, when the acid typically dissolves the surface of enamel until a calcium saturated solution is reached, the saturated solution prevents further dissolution or erosion. Therefore, addition of sufficient calcium to the initial solution can saturate the initial solution and prevent subsequent dissolution (Featherstone and Lussi, 2006).

The pH of all tested food in Table 1 decreased noticeably with increase in temperature and there was a slight variation in the titratable acidity. Heat is used as a catalyst to speed up the chemical reaction between acidic food and hydroxyapatite which results in tooth enamel loss. The effect of the temperature on the pH and the erosive potential of Kangsom without Kapi was consistent with the explanation above. It can be seen in Figures 1 to 4 that there was a significant decrease in surface hardness of enamel when the temperature was increased from 37°C to 55°C.

Kangsom with Kapi, by contrast, saw a decrease in the pH and the erosive potential even when the temperature was increased, whereas other sour foods saw the opposite

expected result. Interestingly, the decrease in the pH afforded by the increase in temperature results in a decrease of the erosive potential of Kangsom with Kapi. Kangsom with Kapi at 25°C and 37°C, with a pH of 4.06 and pH of 3.93 respectively, caused a greater reduction in the hardness of enamel than Kangsom with Kapi at 55°C (pH of 3.65). The reduction in hardness was small and independent of the temperature which has been confirmed in a previous study on juice drink with high calcium concentration (Barbour *et al.*, 2006). This is likely to be due to the relatively high concentration of calcium in the drink which compensates for the decrease in pH. In the present study, this effect can also be explained as it is possible that Kangsom with Kapi at higher temperatures had higher concentrations of free Ca²⁺ from the Kapi and this would increase ion activity of the solution and reduce the solubility of hydroxyapatites.

In practice, Kangsom is consumed with rice, holding Kangsom in the mouth while chewing before swallowing is a risk factor for tooth softening or erosion. Our results indicated that Kapi is an important ingredient in Kangsom for reducing erosive potentials, and so consumers should eat Kangsom hot. However, the hardness changing results obtained in this *in vitro* study must be interpreted with regard to the *in vivo* situation. The interpretation is that the enamel softening effect of Kangsom *in vivo* conditions will be less than *in vitro* studies because of the formation of pellicles as well as the buffer capacity, pH and flow rate of oral fluid (Lussi *et al.*, 1995).

5. Conclusion

Under the experimental conditions of this study, the results showed that adding Kapi to Kangsom resulted in a reduction of enamel softening. It is clear that the association between enamel softening and the temperature of Kangsom without Kapi differed from that of Kangsom with Kapi. For Kangsom without Kapi, an increase in temperature resulted in an increase in enamel softening. While for Kangsom with Kapi, an increase in temperature resulted in a decrease in enamel softening.

Acknowledgements

This research was supported by Graduate School, Prince of Songkla University. The authors would like to thank Mr. Mitchell Atkins for proof reading the manuscript.

References

- Amaechi, B.T., Higham, S.M. and Edgar, W.M. 1999. Factors influencing the development of dental erosion *in vitro*: enamel type, temperature and exposure time. *Journal of Oral Rehabilitation*. 26, 624-630.
- Barbour, M.E., Finke, M., Parker, D.M., Hughes, J.A., Allen, G.C. and Addy, M. 2006. The relationship between enamel softening and erosion caused by soft drinks

at a range of temperatures. *Journal of Dentistry*. 34, 207-213.

Bunjong, O., Viriyapanich, T. and Chitchong, U. 1995. Food quantity conversion handbook. Institute of nutrition, Mahidol University, Nakhonpathom, Thailand.

Cairns, A.M., Watson, M., Creanor, S.L. and Foye, R.H. 2002. The pH and titratable acidity of a range of diluting drinks and their potential effect on dental erosion. *Journal of Dentistry*. 30, 313-317.

Chuajedong, P., Kedjarune-Leggat, U., Kertpon, V., Chongsuvivatwong, V. and Benjakul, P. 2002. Associated factors of tooth wear in southern Thailand. *Journal of Oral Rehabilitation*. 29, 997-1002.

Chuenarrom, C. and Benjakul, P. 2010. Dental erosion protection by fermented shrimp paste in acidic food. *Caries Research*. 44, 20-23.

Featherstone, J.D. and Lussi, A. 2006. Understanding the chemistry of dental erosion. *Monographs in Oral Science*. 20, 66-76.

Heu, M.S., Kim, J.S. and Shahidi, F. 2003. Components and nutritional quality of shrimp processing by-products. *Food Chemistry*. 82, 235-242.

Hooper, S., West, N.X., Sharif, N., Smith, S., North, M., De'Ath, J., Parker, D.M., Roedig-Penman, A. and M., A. 2004. A comparison of enamel erosion by a new sports drink compared to two proprietary products: a controlled, crossover study in situ. *Journal of Dentistry*. 32, 541-545.

Kunzel, W., Cruz, M.S. and Fischer, T. 2000. Dental erosion in Cuban children associated with excessive consumption of oranges. *European Journal of Oral Sciences*. 108, 104-109.

Lupi-Pegurier, L., Muller, M., Leforestier, E., Bertrand, M.F. and Bolla, M. 2003. In vitro action of Bordeaux red wine on the microhardness of human dental enamel. *Archives of Oral Biology*. 48, 141-145.

Lussi, A., Jaeggi, T. and Jaeggi-Schärer, S. 1995. Prediction of the erosive potential of some beverages. *Caries Research*. 29, 349-354.

Lussi, A., Jaggi, T. and Scharer, S. 1993. The influence of different factors on in vitro enamel erosion. *Caries Research*. 27, 387-393.

Maupome, G., Diez-de-Bonilla, J., Torres-Villasenor, G., Andrade-Delgado, L.C. and Castano, V.M. 1998. In vitro quantitative assessment of enamel microhardness after exposure to eroding immersion in a cola drink. *Caries Research*. 32, 148-153.

Seow, W.K. and Thong, K.M. 2005. Erosive effects of common beverages on extracted premolar teeth. *Australian Dental Journal*. 50, 173-178; quiz 211.

Tahmassebi, J.F., Duggal, M.S., Malik-Kotru, G. and Curzon, M.E. 2006. Soft drinks and dental health: a review of the current literature. *Journal of Dentistry*. 34, 2-11.

Tiantananurak, N. 2004. Evaluation of acidic Thai Food on dental enamel. Prince of Songkla University.

West, N.X., Hughes, J.A. and Addy, M. 2000. Erosion of dentine and enamel in vitro by dietary acids: the effect of temperature, acid character, concentration and exposure time. *Journal of Oral Rehabilitation*. 27, 875-880.

Wongkhantee, S., Patanapiradej, V., Maneenut, C. and Tantbirojn, D. 2006. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. *Journal of Dentistry*. 34, 214-220.

Zero, D.T. 1996. Etiology of dental erosion—extrinsic factors. *European Journal of Oral Sciences*. 104, 162-177.

Zero, D.T., Rahbek, I., Fu, J., Proskin, H.M. and Featherstone, J.D. 1990. Comparison of the iodide permeability test, the surface microhardness test, and mineral dissolution of bovine enamel following acid challenge. *Caries Research*. 24, 181-188.