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Abstract

The extraction of essential oils using compressed carbon dioxide is a modern technique offering significant advantages
over more conventional methods, especially in particular applications. The prediction of extraction efficiency is a powerful tool
for designing and optimizing the process. The current work proposed a new method based on the artificial neural network
(ANN) for the estimation of the extraction efficiency of the essential oil oregano bract. In addition, the work used the back-
propagation learning algorithm, incorporating different training methods. The required data were collected; pre-treating was
used for ANN training. The accuracy and trend stability of the trained networks were verified according to their ability to predict
unseen data. The Levenberg-Marquardt algorithm has been found to be the most suitable algorithm, with the appropriate
number of neurons (i.e., ten neurons) in the hidden layer and a minimum average absolute relative error (i.e., 0.019164). In
addition, some excellent predictions with maximum error of 0.039313 were observed. The results demonstrated the ANN’s
capability to predict the measured data. The ANN model performance was also compared to a suitable mathematical model,
thereby confirming the superiority of the ANN model.
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1. Introduction

The  extraction  of  essential  oils  using  compressed
carbon dioxide is a modern technique providing significant
advantages over more conventional methods, such as steam
distillation and liquid solvent extraction. The ability to predict
the  extraction  process  path,  based  on  knowledge  of  the
process parameters, is a powerful tool for both designing and
optimizing a carbon dioxide industrial plant (Gaspar et al.,

2003). To achieve this goal, mathematical models have been
developed by integrating differential mass balances within
the solid and fluid phases. These models require sufficient
information related to thermodynamics constraints, equili-
brium relationships, kinetic constraints, and the mass transfer
mechanism for any given temperature, pressure, and con-
densed phase composition (Izadifar et al., 2006). A method is
accepted based on the experimental data as well as its ability
to provide additional practical methods in modeling efforts.
The  models  demonstrate  dynamic  relationships  between
input and output variables while bypassing the underlying
complexity inherent in the system. Statistical models based
on regression analysis are examples of such black box model-
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ing. Most of these common approaches rely on linear system
identification models.

Yet the major processes in chemical engineering are
nonlinear  processes.  Consequently,  previous  approaches
have  failed  to  respond  appropriately  due  to  process  non-
linearity. Another promising alternative modeling technique,
artificial neural network (ANN), was recently developed using
numerous applications in chemical engineering (Zahedi et al.,
2009). ANN is an empirical tool; its behavior is analogous to
the behavior of biological neural structures. The model is
based  on  experimental  results  proposed  to  predict  the
required data in order to avoid the need for additional experi-
ments  (Moghadassi  et  al.,  2009a).  ANN  has  the  ability  to
identify underlying highly complex relationships using input-
output data. In fact, such networks define several empirical
relations for each data section (Ganguly, 2003). ANN’s ad-
vantages over classical methods include speed, simplicity,
and capacity to learn. More recently, ANNs have been used
to address various thermodynamical problems. In the context
of  thermodynamical  data  predictions,  the  use  of  ANNs
signals the need for suggested networks to estimate com-
pressibility factors in vapor and liquid phases (Chouai et al.,
2002), to predict the activity coefficient (Petersen et al., 1994;
Urata et al., 2002), to provide VLE (Vapor-Liquid-Equilibrium)
data for various systems (Habiballah et al., 1994; Guimaraes
et al., 1995; Sharma et al., 1995; Ganguly, 2002; Mohanty,
2006; Moghadassi et al., 2009b), and define asphaltene pre-
cipitation (Zahedi et al., 2009) as well as black pepper essen-
tial oil extraction (Izadifar et al., 2006), among other needs.

A literature review found few studies involving the
modeling of the supercritical extraction of essential oils by
ANN, but no studies dealing with the prediction of the extrac-
tion of the essential oil oregano bract using the ANN model.
Neural networks have been widely and successfully applied
in various technological disciplines. The ability to learn the
behavior  of  the  data  generated  by  a  system  gives  neural
networks its versatility (Zahedi et al., 2009). The remaining
part of the current study will briefly describe ANNs and then
develop multi-layer perceptron networks to estimate super-
critical extraction of oregano bract essential oil data. In addi-
tion, the best ANN predictor will also be described. Finally,
the  results  from  ANN  will  be  compared  with  a  suitable
mathematical model.

2. Artificial Neural Network

In order to identify the relationship between the input
and  output  data  derived  from  experimental  work,  a  more
powerful method than what has been traditionally used is
necessary. The ANN is an especially efficient algorithm to
approximate any function using a finite number of disconti-
nuities  by  defining  the  relationships  between  input  and
output vectors (Hagan et al., 1996; Bozorgmehry et al., 2005;
Zahedi et al., 2009). The ANN is considered to be a black box
consisting of a series of complex equations for the calcula-
tion of outputs based on a given series of input values. These

algorithms can learn from the experiments and are also fault
tolerant in the sense that they are able to handle noisy and
incomplete data. The ANNs effectively deal with non-linear
problems; once trained, they can quickly perform predictions
and generalizations (Sozen et al., 2004). Such networks have
been used to solve complex problems that are difficult-if not
impossible-to  solve  using  conventional  approaches.  More
specifically, the networks minimize the difference between
the predicted and observed (actual) outputs (Chouai et al.,
2002).  ANNs  are  biological  inspirations  based  on  various
brain  functionalities.  They  are  composed  of  many  simple
elements (i.e., neurons) that are interconnected by links and
act like axons to define the empirical relationship between the
inputs and outputs of a given system in which the inputs are
independent variables while the outputs include dependent
variables. Therefore, it is essential that the user have a good
understanding  of  the  system’s  fundamental  science  to
provide the appropriate input and consequently support the
identified relationship (Zahedi et al., 2009).

Figure 1 depicts the multi-layered arrangement of a
typical interconnected neural network, which consists of an
input layer, an output layer, and one hidden layer-each of
which play different roles. Each connecting line has a cor-
responding  weight.  ANNs  are  trained  by  adjusting  these
input  weights  (connection  weights)  so  that  the  calculated
outputs  may  be  approximated  according  to  the  desired
values.  The  output  from  a  given  neuron  is  calculated  by
applying a transfer function to a weighted summation of its
input to result in an output, which in turn serves as input to
other neurons, as indicated in Equation 1 (Gharbi, 1997):
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where jk  is neuron j’s output from k’s layer and jk is the
bias weight for neuron j in layer k. The model-fitting para-
meters, wijk, are known as the connection weights. The non-
linear activation transfer functions Fk may emerge in many
different forms; the classical forms are threshold, sigmoid,

Figure 1. Schematic diagram of a typical multi-layer neural network
model.



533A. R. Moghadassi et al. / Songklanakarin J. Sci. Technol. 33 (5), 531-538, 2011

Gaussian,  and  linear  functions,  among  others.  For  more
details of various activation functions, see Bulsari (1995).

The training process requires a proper set of data-
namely, input (Ii) and target output (ti). During training, the
network’s weights and biases are iteratively adjusted to mini-
mize the network error function (Demuth et al., 2002). The
typical  error  function  is  the  Average  of  Absolute  Relative
Errors (AARE), as denoted in Equation 2.
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Many types of neural networks exist, differing accord-
ing to their network topologies and/or learning algorithm.
One of the most commonly applied ANN is the feed-forward
multi-layer ANN that uses a back-propagation learning algo-
rithm. In the current paper, the back propagation learning
algorithm  is  applied  to  predict  the  supercritical  carbon  di-
oxide extraction of oregano bract essential oil. Back propaga-
tion is a multi-layered feed-forward network with hidden
layers between the input and output (Osman et al., 2002).
The simplest implementation of back propagation learning
contains  the  network  weights  and  biases  updates  in  the
direction of the negative gradient by changing the momen-
tum and learning rate based on the behavior of the errors
(Zahedi  et  al.,  2009),  in  which  the  performance  function
decreases very quickly. An iteration of this algorithm can be
written as follows (Gharbi, 1997):

1k k k kx x l g   (3)

where xk is a vector of current weights and biases, gk is the
current gradient,  is the learning rate, and xk+1 is a vector of
new weights and biases.

Figure 2 depicts the process detail flowchart used to
locate the optimal model. Various back propagation algori-
thms exist, including the Scaled Conjugate Gradient (SCG),
Levenberg-Marquardt (LM), and Gradient Descent with vari-
able  learning  rate  Back  propagation  (GDX),  and  Resilient
back Propagation (RP). The LM is the fastest training algo-
rithm for networks of a moderate size; its memory reduction
feature can be used when the training set is large. The SCG is
also one of the most important general purpose back propa-
gation training algorithms (Lang, 2000; Demuth et al., 2002).
The neural networks learn to recognize the patterns of the
data sets during the training process, teaching the patterns of
the data set and thereby enabling the analyst to perform more
interesting  and  flexible  work  in  a  changing  environment
(Moghadassi et al., 2009a). Although the neural network
may require extensive time to learn a sudden drastic change,
it  excels  at  adapting  to  constantly  changing  information.
However,  the  programmed  systems  are  constrained  to  the
designed situation and are not valid in other conditions. In
the learning process, several variables influence the ANN
training: the number of iterations, learning rate, momentum
coefficient, number of hidden layers, and number of hidden
neurons.  Determining  the  ideal  set  of  these  variables  and

Figure 2.  Training process flowchart.
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parameters  requires  varying  them  all  before  choosing  the
best combination (Demuth et al., 2002).

Neural  networks  build  informative  models,  unlike
more conventional models, which fail to do so. Due to the
need to handle extremely complex interactions, neural net-
works can easily model data too difficult to model in classic
ways (e.g., inferential statistics or programming logic). The
performance of neural networks is at least as good as classi-
cal statistical modeling and even better in most cases (Osman
et al., 2002). Models built by neural networks are more reflec-
tive of the data structure and are significantly faster. Today’s
neural networks operate well with modest computer hardware.
Although neural networks are computationally intensive, the
routines have been optimized to the point that they can now
run in a reasonable time on personal computers. As such, they
no longer require supercomputers, as they did in the early
days of neural network research.

This research paper uses multi-layer perceptron net-
works to estimate the supercritical extraction of oregano bract
essential oil data. The developed networks are trained and
evaluated  using  the  experimental  data  reported  by  a  pre-
viously published paper (i.e. Gaspar et al., 2003). One part of
experimental data was used to train the networks, while the
remaining parts were devoted to the evaluation of the net-
works’ performance. The experimental data and correspond-
ing predicted values by ANNs were compared, and the best
ANN model was evaluated by comparing it to an appropriate
mathematical model.

3. Modeling

3.1 Neural network development to extract an efficient pre-
diction

Developing  a  neural  network  model  to  accurately
predict extraction efficiency requires exposing it to a suitable
data set during the training phase. The current work used
back-propagation learning with one hidden layer network.
The  Scaled  Conjugate  Gradient,  Levenberg-Marquardt,
Resilient back Propagation, and Gradient Descent with vari-
able  learning  rate  Back  propagation  were  implemented
according to simulation purposes. As input layer neurons
have no transfer functions, the neurons in the hidden layer
perform two tasks: summing the weighted inputs connected
to them and passing the result through a non-linear activa-
tion function to the output or adjacent neurons of the cor-
responding  hidden  layer.  The  network  inputs  should  be
selected  carefully  if  the  best  results  are  expected  to  be
achieved. The input variables should reflect the underlying
physics of the process being analyzed. In the supercritical
extraction process, the extraction time, pressure, temperature,
flow rate, and size of particles significantly affect extraction
efficiency. Therefore, the network model inputs include ex-
traction time, pressure, temperature, material flow rate, and
the size of particles; the amount of extraction efficiency is
considered as the model output (see Figure 3). Inputs and

outputs are normalized between the ranges of 0 to 1. The
Logistic Sigmoid and purelin transfer functions were used to
build the ANNs, each of which was trained using two thirds
of the data set while the remainder of the data was used to
evaluate accuracy and trend stability. The comparison was
undertaken using statistical methods. The comparison crite-
rion  was  the  average  of  absolute  relative  errors  (AARE)
between net output and training data. The computer program
was developed using MATLAB.

3.2 Mathematical modeling applied to extract an efficient
prediction

The prediction of extraction efficiency, indentified in
the  following  steps,  was  undertaken  using  Gaspar  et  al.
(2003) mathematical model. The Fluid Phase/Simple Single
Plate (FP/SSP) model contains a detailed description of the
fluid phase mass and the particle mass balances. The model
combines the fluid phase mass balances because it involves
intraparticle diffusion that controls the extraction rate. The
FP/SSP model also considers the likely presence of essential
oils in the fluid phase at the start of the dynamic extraction.
The system pressurization causes some of the non-retained
oils to be leached by the solvent into the fluid phase (Gaspar
et  al.,  2003).  In  addition,  the  oil  is  uniformly  distributed
within the fluid phase and particles. The modeling equation
is as follows:
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where M(t) and M” are the mass of oil extracted from the bed
after time (t) and in infinity, us is the superficial velocity of
the solvent, A is the cross-sectional area of the bed, and C
(z=L, t) is the concentration at the exit of the bed. E(t) is the
extraction degree of essential oils.

The concentration profile in the fluid phase, C, is
obtained from the integration of the fluid phase mass balance,
as indicated in Equation 5.
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Figure 3. Schematic diagram of the neural network structure for
supercritical extraction of essential oil.
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where z is the axial coordinate of the bed, Dax is the axial dis-
persion coefficient,  is the bed porosity, and g (t) is the rate
of mass transfer from the particles. The initial and boundary
conditions applied to Equation 5 are as follows:
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where C0 is the initial concentration in the fluid phase and f0
is the fraction of oil initially dissolved in the fluid phase.

4. Results and Discussions

In this section, various ANN architectures relying on
different training algorithms are examined. The optimum per-
formance of networks is empirically obtained by changing the
number of neurons in the hidden layer using the trial-and-
error method. The minimal number of neurons is sufficient for
prediction performance without leading to over-fitting or an
unreasonably long computational time. If too few neurons
exist in the hidden layer, the performance of the network will
not be satisfactory. Conversely, if too many neurons exist in
the hidden layer, the convergence will be very slow and may
be  compromised  by  local  minima  or  over-fitting.  Figure  4
depicts the effects of the number of neurons on the train and
test errors in the model. In all cases, errors decreased as the
number of neurons in the hidden layer increased due to the
higher number of adjustable parameters. Nonetheless, inordi-
nate increases are a cause for over-fitting (increasing the test-
ing errors). As evident in these figures, the optimum number
of hidden layer neurons is determined to be eleven for mini-
mum error. Moreover, the LM training algorithm was found
to have a superior performance among all the best networks.
Therefore, the LM method containing eleven hidden neurons
with minimum error is selected as the optimum structure.

In addition, the AARE training of the algorithms (with
eleven  hidden  layer  neurons-  namely,  the  best  networks)
is  listed  in  Table  1.  As  seen  in  this  table,  the  Levenberg-
Marquardt has the minimum AARE. The trained ANN models
were also tested and evaluated against the new data. Table 2
shows the AARE testing of these networks. According to
Tables 1 and 2, the LM algorithm provides the best minimum
error average (i.e., AARE) in both training and testing. Figure
5 shows the relative error fluctuations in this algorithm.

Table 1. AARE training of the algorithms for the best network.

Algorithm AARE of network Training

trainlm 0.0067543
trainscg 0.010237
trainrp 0.013249
traingdx 0.025152

Table 2. AARE testing of the algorithms for the best network.

Algorithm AARE of network Training

trainlm 0.019164
trainscg 0.023167
trainrp 0.02434
traingdx 0.039313

Figure 4. Determining  the  optimum  number  of  neurons  for  the
selected algorithms: (a) Networks training, (b) Networks
testing.

(a)

(b)

Because the initial weights are selected randomly in
the network training, the performance of neural networks
trained on the same data set will depend on these values.
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Therefore, in order to obtain the best network, the training
was iterated. The initial weights matrix and the biases that
result in minimum error are as follows:

0.0099 1.7511 0.3518 -0.7319 1.4703
-0.0675 0.0900 1.6232 -0.2980 0.7320

 -10.4413 -5.7708  -2.4070 -10.4114 -5.9390
-0.8183 -0.1719 0.7770 -5.0717  0.6001
-0.7552  -2.4575 5.4409  0.4388  -7.2859
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 1.1575 1.7612 -1.2325 -0.3857 -0.1893
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 
 














 
















  

 1.1629
-0.3549
 7.2220
-1.1323
-6.7744

. . 7.1504
0.7801
3.9673
4.9087
-4.1849
15.3825

I b

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

(12)

Figure 6 shows the scatter diagrams that compare the
experimental data versus the computed neural network data
in both training and testing networks. As evident in the figure,
a tight cluster of points around the 45 line occurs for the
data points, indicating excellent agreement between the ex-
perimental and calculated data. Almost all data fall along this
line, which confirms the accuracy of the ANN model.

To verify the performance of the ANN model, its esti-
mation ability was compared with a suitable mathematical
model. The results of the mathematical model were compared
with the ANN as well as with the experimental data not used
in the ANN training. As shown in Figures 7a-d, good agree-
ment occurred between the experimental data and the pre-
dicted  ANN  results.  Thus,  the  ANN  has  excellent  overlap
with laboratory experimental data. Figure 8 shows the ANN
and mathematical model error rates. The estimated error of
ANN is unbelievably low. The obtained ANN model can be
updated when new data are available, which can be applied
in  retraining  the  ANN  using  old  ANN  weights  as  initial
weights for the new ANN. The results indicate that ANN has
the best performance with minimum error, which confirms its
application in predicting efficiency.

5. Conclusion

This work investigated the ability of ANN in model-
ing and predicting the supercritical extraction of an essential
oil.  Specifically,  the  extraction  efficiency  in  oregano   bract
was modeled using the MLP neural network architectures,
obtaining good agreement with experimental data. An im-
portant feature of the model is that it requires no theoretical
knowledge or human experiences during the training process.
The model was trained based on the experimental data only,
with no prior knowledge. All unknown relationships were
represented approximately using neural networks instead
of  traditional  relationships.  Finally,  the  ANN  ability  was
compared with a suitable mathematical model and found to
be the most accurate model.

Figure 5. Typically relative error between predicted data by ANN
and experimental data for the best network (LM algo-
rithm).

Figure 6. Typical evaluation of ANN performance; a scatter plot of
typically measured experimental data against the ANN
model for (a) training and (b) testing.
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Figure 7.  Typically comparison between predicted data by ANN, mathematical model and the experimental data in different conditions.
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