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Abstract

Since the term RNA interference (RNAi) was coined in 1998, much knowledge about RNAi has accumulated. Presently,
RNAi is known as a power tool for studying gene function as well as a potential therapeutic molecular technique for a wide
range of disorders. This review discusses potential problem areas such as off-target effects, in vivo delivery and RNAi
saturation, and also indicates solutions including the current stage of RNAi therapeutics.
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1. Introduction to RNA Interference

RNA interference (RNAi) is a specific mechanism for
controlling down-regulation of gene expression. It is evo-
lutionally  conserved  in  plants,  Caenorhabditis  elegans,
Drosophila melanogaster, non-mammalian vertebrates and
mammals (Bosher and Labouesse, 2000; Naqvi, et al., 2009;
Poethig  et  al.,  2006;  Ramadan  et  al.,  2007).  The  RNAi
process is initiated by short double-stranded RNAs (dsRNAs)
that lead to the sequence-specific inhibition of their homo-
logous genes (Figure 1). These short dsRNAs (21-25 nucleo-
tides in length) are normally produced in cells from cleavage
of longer dsRNA precursors by the ribonuclease III (RNase
III) family member Dicer (Zhang et al., 2004) and incorpor-
ated into a multi-component nuclease complex known as the
RNA-induced silencing complexes (RISC), which has the
splicing  protein  Argonaute-2  (Ago-2)  (Hammond  et  al.,
2000). Then, the single stranded RNA derived from the short
dsRNA  acts  as  a  guide  sequence  (the  antisense  strand)
directing the complex to the specific target mRNA by inter-
molecular base pairing, where a RISC-associated endoribo-
nuclease silences the target mRNA (Bartel, 2004; Khvorova
et al., 2003; Schwarz et al., 2003)

In eukaryotic cells, two major types of short dsRNAs
are present in the RNAi pathway, namely small interfering
RNAs (siRNAs) and microRNAs (miRNAs). In more detail,
siRNAs have a characteristic two nucleotides 3 overhang,
which  are  processed  from  larger  dsRNAs  by  Dicer.  The
siRNAs are incorporated into RISC and the sense strand of
the siRNA is removed in an ATP-dependent manner. The
antisense strand of the siRNA perfectly pairs with its target
mRNA, where RISC mediates endonucleolytic cleavage and
subsequent degradation of the target RNA (Elbashir et al.,
2001; Fire et al., 1998; Parrish et al., 2000) (Figure 1). On the
other hand, miRNAs are initially processed from long pri-
mary transcripts (pri-miRNA) within the nucleus into 60-70
base-paired hairpins known as precursor miRNAs (pre-
miRNAs) by the microprocessor complex, which consists of
Drosha-DGCR8 (Han et al., 2004; Lee et al., 2003). Following
processing  by  Drosha,  the  pre-miRNA  is  exported  to  the
cytoplasm  by  the  Ran-GTP  dependent  cargo  transporter
Exportin-5 (Bollman, et al., 2003). In the cytoplasm the pre-
miRNA is processed by Dicer into the mature miRNA, which
is incorporated into RISC. In much the same way that siRNA
functions, the mature miRNA guides the complex to the target
mRNA for translational repression or message degradation
(Beverley, 2003). Notably, typical miRNAs are not perfectly
matched to their mRNA targets and exert silencing through
translational suppression (Ambros et al., 2003; Nelson et al.,
2004) (Figure 1).
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Currently,  RNAi  has  become  a  powerful  tool  for
reverse functional genomics. In addition, it has been employed
as a potential molecular therapeutic method for combating
a wide range of disorders including autoimmune diseases,
metabolic disorders, viral infections, neurological diseases
and cancer in many studies using mammalian tissue culture
system or the mouse model. For example, the expression of
mutant p53 or RAS genes that are observed in most tumour
cells was specifically silenced in SW480 human colon cancer
cells  by  siRNAs  without  affecting  the  wild  type  genes
(Kawasaki and Taira, 2003). Target of siRNAs to human
telomerase RNA inhibited telomerase activity in variety of
human  cancer  cell  lines  (Kosciolek  et  al.,  2003).  Several
pioneering studies have demonstrated great possibilities for
using siRNAs for treating serious viral diseases that caused
by  HIV  and  HCV  (Jakobsen  et  al.,  2009;  Lee  et  al.,  2002;
Wilson et al., 2003).

In  addition,  recent  studies  indicated  that  some
miRNAs are linked to several human diseases including viral
and metabolic diseases. Therefore, inhibition or interference
of miRNAs function could potentially be a new therapeutic
approach (McBride et al., 2008).

Despite the numerous successful studies of RNAi on
inhibition of specific genes in the mammalian tissue culture

system, inefficient delivery system, poor intracellular uptake
and  off-target  effects  have  impeded  RNAi  therapeutics.
Albeit clinical trials with RNAi have now begun, challenges
such as off-target effects, toxicity and the need for safe and
efficient delivery methods have to be overcome before using
RNAi for gene therapy.

2. RNAi and Gene Therapy

In medical sciences, the term gene therapy has been
indicated for more than 10 years. Several innovative therapeu-
tic modalities have been investigated including numerous
potent drugs such as anti-sense, ribozymes and the use of
regulatory  elements  for  reversing  malignant  phenotypes
(Pan et al., 2009; Quon and Kassner, 2009; Schmidt, 2009).
Clinical studies of current gene therapy have experienced
significant obstacles such as the unexpected frequency of
major side effects, inefficient gene delivery method and the
high cost of the therapy (Aagaard and Rossi, 2007; Li and
Shen, 2009).

For RNAi, the specificity of mechanism, large scale
silencing  and  a  natural  defence  mechanism  are  attractive
criteria for being a good molecular therapeutic method
(Aagaard and Rossi, 2007; Ebbesen et al., 2008; Inoue et al.,

 

Figure 1. RNAi mechanism. The left hand side demonstrates of the mammalian miRNA pathway. The right hand side shows the pathway
of synthetic siRNAs in mammalian cells (modified from Panjaworayan and Brown, 2011).
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2006). The concept of successful RNAi therapeutics is based
on 3 main conditions: (i) lack of toxicity, (ii) specificity and
(iii) efficacy (usually measured as half-maximal inhibition
levels or IC50 values) in vitro and in vivo (Ichim et al., 2004;
Takeshita and Ochiya, 2006; Vorhies and Nemunaitis, 2007).
The major challenge in RNAi gene therapy is the delivery of
siRNAs or miRNAs to the desired cell type, tissue or organ.

2.1 Delivery of RNAi

Most of reviews classify delivery of RNAi based on
the delivery systems: viral and non-viral methods. As these
two  systems  are  selectively  used  for  molecules  that  are
carried to trigger RNAi pathways, this review article describes
two basic strategies used to activate RNAi pathways: (i) a
RNA  based - approach  by  delivery  of  synthetic  21  base
siRNA duplex (Figure 1) and (ii) a DNA-based method in
which  the  active  siRNAs  are  generated  from  longer  RNA
hairpin transcripts that are transported to the cytoplasm via
the miRNA machinery and are processed into active siRNAs
by Dicer (Figure 2).

1) Delivery of siRNA duplexes

Cellular  delivery  of  synthetic  siRNA  duplexes  is
usually  achieved  by  cationic  liposome - based  strategies.
Liposome and synthetic siRNAs are complexed in vitro and
taken up by cells via the endosomal pathway, Then, siRNAs
are released into the cytoplasm where they associate with
RISC (Sioud and Sorensen, 2003). Although this approach
is considered to be passive and its lack the ability to target
specific cells or tissue, it provides a safer delivery compared

to intravenous injection or local administration of naked
siRNA. Naked siRNA delivery for therapeutic purposes is
ineffective due to the instability of siRNA, low bioactivity
and high dosage requirement of siRNA. Moreover, naked
siRNA is incapable of crossing the blood-brain barrier.

The transient transfection of liposome-siRNA com-
plex typically shows effects of gene silencing for 3-5 days
in culture cells whereas the effects could be sustained for
several weeks in non-dividing cells (Omi et al., 2004; Song
et al., 2003). As mentioned above, the disadvantage of this
approach  in  vivo  is  the  rapid  liver  clearance  and  lack  of
target specificity (Jones, 2009; Sioud and Sorensen, 2003). To
improve  in  vivo  stability  of  siRNA  duplex,  backbone  of
siRNA is chemically modified and linked to molecules such
as 2F, 2O-Me and 2H. As a result, such molecules show an
improved stability of siRNAs in serum and do not reduce
RNAi efficiency (Shiraishi et al., 2008; Watts et al., 2007).
Alternatively, in vivo delivery methods for siRNAs include
the use of Atelocollagen (Minakuchi et al., 2004), conjuga-
tion of cholesterol to the siRNA sense strand (Han et al.,
2008),  binding  of  antibody-protamine  fusion  to  siRNAs
(Song et al., 2005), aptamer-siRNA conjugates (McNamara
et al., 2006), and cyclodextrin nanoparticles (Hu-Lieskovan
et al., 2005). The approaches target siRNAs to specific tissue
or cell type and could potentially be translated into clinical
studies.

2) Delivery of short hairpin RNAs (shRNAs)

Since production of synthetic siRNA duplex is costly,
DNA-based expression cassettes are alternatively used to
generate  the  functional  siRNA  in  cells.  Like  siRNA  duplex

Figure 2. Schematic diagram indicates induction of RNAi pathway by DNA based expression vectors designed to express short hairpin
RNAs (shRNAs)
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delivery, DNA-based shRNA plasmids do not readily cross
the  cellular  membrane  because  of  their  negative  charge.
Therefore, they require facilitating carriers such as cationic
liposome, Atelocollagen or viral vectors. Presently, there are
a number of viral vectors available. Each type of viral vector
has specific characteristics that need to be determined for
the specific therapeutic target. The adenovirus and adeno-
associated virus (AAV) derived vectors provide an efficient
delivery vehicle for transient shRNA expression (Gao et al.,
2004). Particularly, the Ad-gutless vector is used for liver
directed systemic delivery with prolonged silencing effects
(Hosono et al., 2004) while a conditionally replicating aden-
ovirus (CRAd) is designed to replicate and kill tumour cells
specifically (Carette et al., 2004). Retroviruses on the other
hand provide a major advantage to incorporate the trans-
genic siRNAs into the host cell genome. Potential retroviral
vectors  used  for  RNAi  therapeutics  are  Moloney  murine
leukaemia virus (Mo-MuLV) and lentivirus such as human
immunodeficiency virus (HIV), feline immunodeficiency virus
(FIV) or equine infectious anaemia virus (EIAV) (Poeschla,
2003). Several studies indicated that the Mo-MuLV and
lentivirus based-vectors are efficient delivery system, which
can  significantly  silence  expression  of  target  genes  in  a
specific manner (Amendola et al., 2009; Frka et al., 2009;
Sun and Rossi, 2009; Ye et al., 2009).

Despite the high transfection efficiency demonstrated
by viral systems, this approach raises safety concerns for
human use because of the associated oncogenic potential
and immunological complications.

Additional examples of recent RNAi mediated ap-
proaches against viral infection, cancer and metabolic dis-
eases are summarized in  Table 1.

2.2 Off-target effects

Despite  the  specific  mechanism  of  RNAi,  some
studies reported that siRNAs can have off-target effects. For
example, strings of dsRNAs (pri-siRNAs/pri-miRNAs) can
trigger non-specific cellular innate immune response such as
the  interferon  response.  Cullen  (2006)  demonstrated  that
longer dsRNAs (more than 30 nucleotides in length) could
induce interferon response by binding to double-stranded-
RNA-activated protein kinase (PKR), 2, 5-oligoadenylate
synthetase-RNase  L  system  or  several  Toll-like  receptors
(TLRs) (Hornung et al., 2005). Therefore, the use of longer
dsRNAs raises concern over the risk of increased immune
stimulation. Analysis of interferon response can be done by
checking the level of expression of an interferon-response
gene such as oligoadenylate synthase-1 (OAS1) (Bridge et
al., 2003; Fish and Kruithof, 2004). In addition, saturation
of the RNAi machinery due to high concentration of shRNA
transfection is reported to cause toxic non-specific effects.
Competition assays showed that over-expression of shRNA
inhibited miRNA function and saturated the Exportin 5 path-
way.  Therefore,  it  is  important  to  transfect  the  minimum
amount of the siRNA duplex to eliminate the off-target effects

(Cullen, 2006).

3. Clinical Trials for RNAi Therapies

The process of new drug development begins with
extensive pre-clinical studies, which involve in vitro and in
vivo experiments for obtaining pharmacokinetic information
including efficacy and toxicity of the new drug. Pre-clinical
studies of RNAi therapeutics have been widely conducted
against cancer using the mouse model. For example, siRNAs
were used to silence the colorectal cancer-associated gene
beta-catenin, the oncogene H-ras to inhibit tumour growth of
human ovarian cancer, the oncogenic K-ras to inhibit cancer
cells (Brummelkamp et al., 2002; Liu et al., 2007). Results
from  pre-clinical  studies  showed  that  the  siRNAs  were
sufficiently  selective  as  they  only  silenced  expression  of
tumour genes. The results therefore hold promise for further
RNAi therapeutic development.

According to the U.S. National Institutes of Health
(NIH), clinical trials for new drugs can be classified into five
types  based  on  purpose  of  the  trials:  prevention  trials,
screening trials, diagnosis trials, treatment trials and quality
of life trials (The US National Institutes of Health, 2007). They
are conducted following four phases. Phase I trials treat a
small group of people (20-80) for determining a safe dosage
range and identifying side effects. Phase II trials treat a larger
group of people (100-300) for evaluating efficacy and safety.
Phase III trials study a large group of people (1,000-3,000) to
verify the effectiveness of the drug and compare its effects
with current conventional drugs. Phase IV trials consist of
post-approval studies involving safety surveillance such as
risk-benefit  analysis  and  optimal  usage  (National  Cancer
Institute). The process of new drug development will nor-
mally  proceed  through  all  four  phases  over  many  years.
Clinical  trials  for  RNAi  therapies  have  already  begun  and
they belong to the category of treatment trials.

The  first  application  of  RNAi  therapy  is  for  age-
related macular degeneration (AMD) using siRNAs to inhibit
the vascular endothelial growth factor (VEGF) pathway that
causes abnormal growth of blood vessels behind the retina.
This treatment is designed to be administered directly to the
eye  (Takeshita  and  Ochiya,  2006).  In  addition,  the  RNAi
therapies have been extended to investigate infectious dis-
ease from viruses such as hepatitis C (HCV), HIV and Rous
sarcoma virus (RSV). Examples of current trials for RNAi
therapy is summarised in Table 2.

Subsequently, the results of these trails will address
whether RNAi therapeutics cause unpredictable side effects.

4. Conclusion

The RNAi pathway has emerged as a powerful tool
for the study of gene function as well as a new promising
therapeutic approach. Despite challenges such as off-target
effects, toxicity and the need for safe delivery methods, RNAi
therapeutics appears to hold promise in the treatment of dis-
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ease along with more conventional approaches.

Acknowledgement

NP is funded by the Research Grant for New Scholar
(co-funded by TRF and CHE, Grant Number: MRG5380104);
The Kasetsart University Research and Development Insti-
tute Grant (Grant number: 45.53) and ScRF Grant from Faculty
of Science, Kasetsart University (Grant number: ScRF-E13/
2553)

References

Aagaard, L. and Rossi, J.J. 2007. RNAi therapeutics: princi-
ples, prospects and challenges. Advanced Drug De-
livery Reviews. 59, 75-86.

Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington,
J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones,
S., Marshall, M., Matzke, M., Ruvkun, G. and Tuschl,
T. 2003. A uniform system for microRNA annotation.
RNA. 9, 277-279.

Table 1. RNAi used for inhibiting specific genes that link to cancer or human disorders

Target genes RNAi expression Delivery Models Effects/ References
system methods Duration

Enhancer of zeste Pol III promoter- Lentiviral expression - Human pancreatic RNAi-mediated (Chen et al., 2010)
homolog 2 (EZH2) shRNA plasmid system cancer SW1990 and knockdown of EZH2
in tumorigenesis expressing vectors PANC-1 cells. expression can inhibit
and liver metastasis - Athymic nude mice. tumour growth in the
of pancreatic cancer mouse model.

Duration: 45 days

Human apurinic or Chemically Lipofectamine 2000 Human pancreatic Down regulation of (Xiong et al., 2010)
apyrimidinic synthesized small (Invitrogen) cancer, SW1990 cells APE1/Ref-1 gene
endonuclease/redox interfering RNA expression significantly
factor-1 gene (siRNA) sensitize the SW1990
(APE1/Ref-1) cells to gemcitabine
associated with and enhance cell
human pancreatic apoptosis
cancer Duration: 3 days

C-MYC gene A vector-based Liposome reagent Human gastric cancer Down regulation of (Zhang et al., 2010)
associated with siRNA system cell SGC7901 and the C-MYC can restrain
gastric tumour gastric cell line the growth and

HFE145 proliferation of gastric
cancer cells
Duration: 7 days

Bcl-2 gene Human telomerase Lipofectamine 2000, Tumour Lung cell lines Down regulation of (Zhang et al., 2009)
associated with RT promoter Invitrogen) A549,Hela-S3 and Bcl-2 and induction
tumour cells expressing mi-Bcl2  HepG2 of apoptosis

Duration: 7 days

Insulin-like growth ShRNA plasmid Liposome Human colon cancer Reduction of IGF-IR (Yavari et al., 2009)
factor-I receptor expressing vectors (FuGene6, Roche) cell line SW480 and inhibition of
(IGF-IR) in colon tumour growth
cancer Duration: 2 days

Amyloid precursor Short-hairpin RNA Recombinant Transgenic mouse Reduction of soluble (Rodriguez-Lebron
protein (APP) in (shRNA) adeno-associated model Ab peptide et al., 2009)
Swedish variants virus Duration: 35 days

Influenza M2 gene H1-promoter-driven Recombinant Madin-Darby cannie Inhibition of viral (Sui et al., 2009)
shRNA cassettes Lentiviral vectors kidney and Human replication.

embryonic kidney Duration: 3 days
293T cells

NS5-1, NS5-2, H1-promoter shRNA Lipofectamine 2000, Vero E6 cells and Inhibition of YFP (Pacca et al., 2009)
E NS1 genes in expression plasmid Invitrogen) mouse model replication
Yellow Fever Virus Duration: 10 days

Anti-hepatitis B Pol II cassettes Lipofectamine  2000 HuH-7 cells and Inhibition of HBV (Ely et al., 2008)
virus pre-miR DNA encoding primary (Invitrogen) and mouse model replication

(pri)-miR-31 injection Duration: 5 days



N. Thienprasert / Songklanakarin J. Sci. Technol. 34 (3), 293-301, 2012298

Amendola, M., Passerini, L., Pucci, F., Gentner, B., Bacchetta,
R. and Naldini, L. 2009. Regulated and multiple miRNA
and siRNA delivery into primary cells by a lentiviral
platform. Molecular Therapy. 17, 1039-1052.

Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mecha-
nism, and function. Cell. 116, 281-297.

Beverley, S.M. 2003. Protozomics: trypanosomatid parasite
genetics comes of age. Nature Reviews Genetics. 4, 11-
19.

Bollman,  K.M.,  Aukerman,  M.J.,  Park,  M.Y.,  Hunter,  C.,
Berardini, T.Z. and Poethig, R.S. 2003. HASTY, the
Arabidopsis ortholog of exportin 5/MSN5, regulates
phase change and morphogenesis. Development. 130,
1493-1504.

Bosher, J.M. and Labouesse, M. 2000. RNA interference:
genetic wand and genetic watchdog, Nature Cell Bio-
logy. 2, E31-E36.

Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. and
Iggo, R. 2003. Induction of an interferon response by
RNAi vectors in mammalian cells. Nature Genetics.
34, 263-264.

Brummelkamp, T.R., Bernards, R. and Agami, R. 2002. Stable
suppression  of  tumorigenicity  by  virus-mediated
RNA interference. Cancer Cell. 2, 243-247.

Carette, J.E., Overmeer, R.M., Schagen, F.H., Alemany, R.,
Barski, O.A., Gerritsen, W.R. and Van Beusechem,
V.W.  2004.  Conditionally  replicating  adenoviruses
expressing short hairpin RNAs silence the expression
of a target gene in cancer cells. Cancer Research. 64,
2663-2667.

Chen, Y., Xie, D., Yin Li, W., Man Cheung, C., Yao, H., Chan,
C.Y., Chan, C.Y., Xu, F.P., Liu, Y.H., Sung, J.J. and Kung,
H.F.  2010.  RNAi  targeting  EZH2  inhibits  tumour
growth and liver metastasis of pancreatic cancer in
vivo. Cancer Letters. 297, 109-116.

Cullen, B.R. 2006. Enhancing and confirming the specificity
of RNAi experiments. Nature Methods. 3, 677-681.

Ebbesen, M., Jensen, T.G., Andersen, S. and Pedersen, F.S.
2008. Ethical perspectives on RNA interference thera-
peutics. International Journal of Medical Science, 5,
159-168.

Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber,
K. and Tuschl, T. 2001. Duplexes of 21-nucleotide
RNAs mediate RNA interference in cultured mamma-
lian cells. Nature. 411, 494-498.

Ely, A., Naidoo, T., Mufamadi, S., Crowther, C. and Arbuth-
not, P. 2008. Expressed anti-HBV primary microRNA
shuttles inhibit viral replication efficiently in vitro

Table 2. Example of current trials for RNAi therapy (The US. National Institutes of Health, 2012)

         Condition                Target               Drug/ intervention          Sponsor               Status

Age-related macular Vascular endothelial AGN211745, modified siRNA Therapeutics, Inc Completed phase I, II
degeneration; choroidal growth factor receptor-1 Sirna duplex
neovascularization (VEGFR-1) - Single intravitreal injection

Pachyonychia Pathogenic mutation TD101, siRNA duplex Pachyonychia Completed Phase 1
Congenita in keratin K6a - Injection into a callus on the Congenita project
(keratin disorder) bottom of patient’s feet

Cancer/Solid tumour M2 subunit of CALAA-01, targeted nanocomplex Calando Active phase I
ribonucleotide reductase that contains anti-R2 siRNA Pharmaceuticals
(R2) - Administration

Diabetic Mascular VEGF Bevasirnanib (or Cand5), modified Opko Helaths, Inc. Completed phase II
Edema siRNA duplex with 2 deoxyribose

at the 3’ end

Advanced cancer Stahmin1/oncoprotein 18 Pbi-shRNATM STMN1 LP, shRNA Gradalis, Inc Active phase I
Metastatic cancer (STMN1) expression plasmid complex with
Solid tumour bilamella invaginated vesicle

- A single intratumoral injection

HCV- infection HCV gene SPC3649, mir-122 Santaris Pharma A/S Completed phase I
- Administration 5 weekly dose

HIV-1 infection HIV Tat protein, pHIV7-shl-TAR-CCR5RZ, City of Hope Terminated phase 0
HIV TAR RNA, lentivirus vector-expressed RNAi Medical Centre
human CCR5 in autologous T- cells of HIV-

patents

RSV RSV nucleocapsid ALN-RSV01, modified siRNA Alnylam Completed phase II
duplex Parmaceuticals
- Administation by nebulization
once daily for 3 days



299N. Thienprasert / Songklanakarin J. Sci. Technol. 34 (3), 293-301, 2012

and in vivo. Molecular Therapy. 16, 1105-1112.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver,

S.E. and Mello, C.C. 1998. Potent and specific genetic
interference  by  double-stranded  RNA  in  Caenor-
habditis elegans. Nature, 391, 806-811.

Fish, R.J. and Kruithof, E.K. 2004. Short-term cytotoxic effects
and long-term instability of RNAi delivered using
lentiviral vectors, BMC Molecular Biology. 5, 9.

Frka, K., Facchinello, N., Del Vecchio, C., Carpi, A., Curtarello,
M., Venerando, R., Angelin, A., Parolin, C., Bernardi,
P., Bonaldo, P., Volpin, D., Braghetta, P. and Bressan,
G.M. 2009. Lentiviral-mediated RNAi in vivo silencing
of Col6a1, a gene with complex tissue specific expres-
sion pattern, Journal of Biotechnology. 141, 8-17.

Gao, G., Lebherz, C., Weiner, D.J., Grant, R., Calcedo, R.,
McCullough, B., Bagg, A., Zhang, Y. and Wilson, J.M.
2004. Erythropoietin gene therapy leads to autoim-
mune anaemia in macaques. Blood. 103, 3300-3302.

Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J.
2000. An RNA-directed nuclease mediates post-tran-
scriptional gene silencing in Drosophila cells. Nature.
404,  293-296.

Han, M.H., Goud, S., Song, L. and Fedoroff, N. 2004. The
Arabidopsis double-stranded RNA-binding protein
HYL1 plays a role in microRNA-mediated gene regu-
lation.  Proceedings  of  the  National  Academy  of
Sciences. 101, 1093-1098.

Han, S.E., Kang, H., Shim, G.Y., Suh, M.S., Kim, S.J., Kim, J.S.
and Oh, Y.K. 2008. Novel cationic cholesterol deriva-
tive-based liposomes for serum-enhanced delivery of
siRNA. International Journal of Pharmaceutics. 353,
260-269.

Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A.,
Schlee, M., Uematsu, S., Noronha, A., Manoharan, M.,
Akira, S., de Fougerolles, A., Endres, S. and Hartmann,
G. 2005. Sequence-specific potent induction of IFN-
alpha by short interfering RNA in plasmacytoid den-
dritic cells through TLR7. Nature Medicine. 11, 263-
270.

Hosono, T., Mizuguchi, H., Katayama, K., Xu, Z.L., Sakurai,
F., Ishii-Watabe, A., Kawabata, K., Yamaguchi, T.,
Nakagawa,  S.,  Mayumi,  T.  and  Hayakawa,  T.  2004.
Adenovirus vector-mediated doxycycline-inducible
RNA interference. Human Gene Therapy. 15, 813-819.

Hu-Lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E.
and Triche, T.J. 2005. Sequence-specific knockdown
of EWS-FLI1 by targeted, nonviral delivery of small
interfering RNA inhibits tumour growth in a murine
model  of  metastatic  Ewing’s  sarcoma.  Cancer
Research. 65, 8984-8992.

Ichim, T.E., Li, M., Qian, H., Popov, I.A., Rycerz, K., Zheng,
X., White, D., Zhong, R. and Min, W.P. 2004. RNA
interference: a potent tool for gene-specific therapeu-
tics. American Journal of Transplantation. 4, 1227-
1236.

Inoue, A., Sawata, S.Y. and Taira, K. 2006. Molecular design
and delivery of siRNA, Journal of Drug Targeting. 14,
448-455.

Jones, D. 2009. Teaming up to tackle RNAi delivery challenge.
Nature Reviews Drug Discovery. 8, 525-526.

Kawasaki, H. and Taira, K. 2003. Short hairpin type of dsRNAs
that are controlled by tRNA(Val) promoter signifi-
cantly induce RNAi-mediated gene silencing in the
cytoplasm of human cells. Nucleic Acids Research.
31, 700-707.

Khvorova, A., Reynolds, A. and Jayasena, S.D. 2003. Func-
tional siRNAs and miRNAs exhibit strand bias. Cell.
115, 209-216.

Kosciolek, B.A., Kalantidis, K., Tabler, M. and Rowley, P.T.
2003.  Inhibition  of  telomerase  activity  in  human
cancer cells by RNA interference. Molecular Cancer
Therapeutics. 2, 209-216.

Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A.,
Salvaterra, P. and Rossi, J. 2002. Expression of small
interfering  RNAs  targeted  against  HIV-1  rev  tran-
scripts in human cells. Nature Biotechnology. 20, 500-
505.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J.,
Provost, P., Radmark, O., Kim, S. and Kim, V.N. 2003.
The  nuclear  RNase  III  Drosha  initiates  microRNA
processing. Nature. 425, 415-419.

Li, L. and Shen, Y. 2009. Overcoming obstacles to develop
effective and safe siRNA therapeutics. Expert Opinion
on Biological Therapy. 9, 609-619.

Liu, G., Wong-Staal, F. and Li, Q.X. 2007. Development of
new RNAi therapeutics, Histology and Histopatho-
logy. 22, 211-217.

Liu, Q., Wu, K., Zhu, Y., He, Y., Wu, J. and Liu, Z. 2007. Silenc-
ing MAT2A gene by RNA interference inhibited cell
growth and induced apoptosis in human hepatoma
cells. Hepatology Research. 37, 376-388.

McBride, J.L., Boudreau, R.L., Harper, S.Q., Staber, P.D.,
Monteys, A.M., Martins, I., Gilmore, B.L., Burstein, H.,
Peluso, R.W., Polisky, B., Carter, B.J. and Davidson,
B.L. 2008. Artificial miRNAs mitigate shRNA-mediated
toxicity in the brain: implications for the therapeutic
development of RNAi. Proceedings of the National
Academy of Sciences. 105, 5868-5873.

McNamara, J.O., 2nd, Andrechek, E.R., Wang, Y., Viles, K.D.,
Rempel,  R.E.,  Gilboa,  E.,  Sullenger,  B.A.  and
Giangrande, P.H. 2006. Cell type-specific delivery of
siRNAs with aptamer-siRNA chimeras. Nature Bio-
technology. 24, 1005-1015.

Minakuchi, Y., Takeshita, F., Kosaka, N., Sasaki, H., Yama-
moto, Y., Kouno, M., Honma, K., Nagahara, S., Hanai,
K., Sano, A., Kato, T., Terada, M. and Ochiya, T. 2004.
Atelocollagen-mediated synthetic small interfering
RNA delivery for effective gene silencing in vitro and
in vivo. Nucleic Acids Research. 32, e109.



N. Thienprasert / Songklanakarin J. Sci. Technol. 34 (3), 293-301, 2012300

Naqvi, A.R., Islam, M.N., Choudhury, N.R. and Haq, Q.M.
2009.  The  fascinating  world  of  RNA  interference,
International Journal of Biological Sciences. 5, 97-
117.

Nelson, P.T., Hatzigeorgiou, A.G. and Mourelatos, Z. 2004.
miRNP:mRNA  association  in  polyribosomes  in  a
human neuronal cell line. RNA. 10, 387-394.

Omi, K., Tokunaga, K. and Hohjoh, H. 2004. Long-lasting
RNAi activity in mammalian neurons.  FEBS Letters.
558, 89-95.

Pacca, C.C., Severino, A.A., Mondini, A., Rahal, P., D’Avila S,
G., Cordeiro, J.A., Nogueira, M.C., Bronzoni, R.V. and
Nogueira, M.L. 2009. RNA interference inhibits yellow
fever virus replication in vitro and in vivo. Virus
Genes. 38, 224-231.

Pan, Q., Tilanus, H.W., Janssen, H.L. and van der Laan, L.J.
2009. Prospects of RNAi and microRNA-based thera-
pies for hepatitis C. Expert Opinion Biological Therapy.
9, 713-724.

Panjaworayan, N. and Brown, C.M. 2011. Effects of HBV
genetic variability on RNAi strategies. Hepatitis Re-
search Treatment. 2011, 1-8.

Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. 2000.
Functional anatomy of a dsRNA trigger: differential
requirement for the two trigger strands in RNA inter-
ference. Molecular Cell. 6, 1077-1087.

Poeschla, E.M. 2003. Non-primate lentiviral vectors. Current
Opinion Molecular Therapeutic. 5, 529-540.

Poethig,  R.S.,  Peragine,  A.,  Yoshikawa,  M.,  Hunter,  C.,
Willmann, M. and Wu, G. 2006. The function of RNAi
in plant development, Cold Spring Harbour Symposia
on Quantitative Biology, 71, 165-170.

Quon, K. and Kassner, P.D. 2009. RNA interference screening
for the discovery of oncology targets. Expert Opinion
on Therapeutic Targets. 13, 1027-1035.

Ramadan, N., Flockhart, I., Booker, M., Perrimon, N. and
Mathey-Prevot, B. 2007. Design and implementation
of high-throughput RNAi screens in cultured Droso-
phila cells. Nature Protocols. 2, 2245-2264.

Rodriguez-Lebron, E., Gouvion, C.M., Moore, S.A., David-
son, B.L. and Paulson, H.L. 2009. Allele-specific RNAi
Mitigates Phenotypic Progression in a Transgenic
Model of Alzheimer’s disease. Molecular Therapy. 17,
1563-1573.

Schmidt, F.R. 2009. The RNA interference-virus interplay:
tools of nature for gene modulation, morphogenesis,
evolution and a possible mean for aflatoxin control.
Applied Microbiology and Biotechnology. 83, 611-
615.

Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and
Zamore, P.D. 2003. Asymmetry in the assembly of the
RNAi enzyme complex. Cell. 115, 199-208.

Shiraishi, T., Hamzavi, R. and Nielsen, P.E. 2008. Subnano-
molar  antisense  activity  of  phosphonate-peptide
nucleic acid (PNA) conjugates delivered by cationic

lipids to HeLa cells. Nucleic Acids Research. 36, 4424-
4432.

Sioud, M. and Sorensen, D.R. 2003. Cationic liposome-medi-
ated delivery of siRNAs in adult mice. Biochemical
and  Biophysical  Research  Communications.  312,
1220-1225.

Song, E., Lee, S.K., Dykxhoorn, D.M., Novina, C., Zhang, D.,
Crawford, K., Cerny, J., Sharp, P.A., Lieberman, J.,
Manjunath, N. and Shankar, P. 2003. Sustained small
interfering RNA-mediated human immunodeficiency
virus type 1 inhibition in primary macrophages. Jour-
nal of Virology. 77, 7174-7181.

Song, E., Zhu, P., Lee, S.K., Chowdhury, D., Kussman, S.,
Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B.,
Shankar, P., Marasco, W.A. and Lieberman, J. 2005.
Antibody mediated in vivo delivery of small interfer-
ing RNAs via cell-surface receptors. Nature Biotech-
nology. 23, 709-717.

Sui, H.Y., Zhao, G.Y., Huang, J.D., Jin, D.Y., Yuen, K.Y. and
Zheng, B.J. 2009. Small interfering RNA targeting m2
gene  induces  effective  and  long  term  inhibition  of
influenza A virus replication. PLoS One. 4, e5671.

Sun,  G.  and  Rossi,  J.J.  2009.  Problems  associated  with
reporter assays in RNAi studies. RNA Biology. 6, 406-
411.

Takeshita, F. and Ochiya, T. 2006. Therapeutic potential of
RNA interference against cancer. Cancer Science. 97,
689-696.

The US National Institutes of Health. 2007. Understanding
clinical trials. http://clinicaltrials.gov/ct2/info/under-
stand [April 29, 2012).

The US National Institutes of Health. 2012. ClinicalTrials.gov.
http://clinicaltrials.gov/ct2/results?term=siRNA [April
29, 2012).

Vorhies,  J.S.  and  Nemunaitis,  J.  2007.  Nonviral  delivery
vehicles for use in short hairpin RNA-based cancer
therapies. Expert Review of Anticancer Therapy. 7,
373-382.

Watts, J.K., Choubdar, N., Sadalapure, K., Robert, F., Wahba,
A.S., Pelletier, J., Pinto, B.M. and Damha, M.J. 2007.
2'-fluoro-4'-thioarabino-modified oligonucleotides:
conformational  switches  linked  to  siRNA  activity.
Nucleic Acids Research. 35, 1441-1451.

Wilson,  J.A.,  Jayasena,  S.,  Khvorova,  A.,  Sabatinos,  S.,
Rodrigue-Gervais, I.G., Arya, S., Sarangi, F., Harris-
Brandts, M., Beaulieu, S. and Richardson, C.D. 2003.
RNA interference blocks gene expression and RNA
synthesis from hepatitis C replicons propagated in
human liver cells. Proceedings of the National Acad-
emy of Sciences. 100, 2783-2788.

Xiong, G.S., Sun, H.L., Wu, S.M. and Mo, J.Z. 2010. Small
interfering RNA against the apurinic or apyrimidinic
endonuclease  enhances  the  sensitivity  of  human
pancreatic cancer cells to gemcitabine in vitro. Journal
of Digestive Diseases. 11, 224-230.



301N. Thienprasert / Songklanakarin J. Sci. Technol. 34 (3), 293-301, 2012

Yavari, K., Taghikhani, M., Maragheh, M.G., Mesbah-Namin,
S.A. and Babaei, M.H. 2009. Knockdown of IGF-IR by
RNAi inhibits SW480 colon cancer cells growth in
vitro. Archives of Medical Research. 40, 235-240.

Ye, X., Liu, T., Gong, Y., Zheng, B., Meng, W. and Leng, Y.
2009. Lentivirus-mediated RNA interference reversing
the drug-resistance in MDR1 single-factor resistant
cell line K562/MDR1. Leukaemia Research. 33, 1114-
1119.

Zhang, J., Huang, S., Zhang, H., Wang, H., Guo, H., Qian, G.,
Fan, X., Lu, J., Hoffman, A.R., Hu, J.F. and Ge, S. 2009.

Targeted knockdown of Bcl2 in tumour cells using a
synthetic  TRAIL  3'-UTR  microRNA.  International
Journal of Cancer. 126, 2229-2239.

Zhang, L., Hou, Y., Ashktorab, H., Gao, L., Xu, Y., Wu, K.,
Zhai, J. and Zhang, L. 2010. The impact of C-MYC
gene expression on gastric cancer cell. Molecular and
Cellular Biochemistry. 344, 125-135.

Zhang, M., Bai, C.X., Zhang, X., Chen, J., Mao, L. and Gao,
L. 2004. Downregulation enhanced green fluorescence
protein gene expression by RNA interference in mam-
malian cells. RNA Biology. 1, 74-77.


