

Review Article

Overview of RNA interference therapeutics

Nattanan T-Thienprasert Panjaworayan*

*Department of Biochemistry, Faculty of Science,
Kasetsart University, Chatuchak, Bangkok, 10900 Thailand.*

Received 21 December 2010; Accepted 13 May 2012

Abstract

Since the term RNA interference (RNAi) was coined in 1998, much knowledge about RNAi has accumulated. Presently, RNAi is known as a power tool for studying gene function as well as a potential therapeutic molecular technique for a wide range of disorders. This review discusses potential problem areas such as off-target effects, *in vivo* delivery and RNAi saturation, and also indicates solutions including the current stage of RNAi therapeutics.

Keywords: RNA inference, siRNA, off-target effects, delivery, RNAi therapeutics

1. Introduction to RNA Interference

RNA interference (RNAi) is a specific mechanism for controlling down-regulation of gene expression. It is evolutionarily conserved in plants, *Caenorhabditis elegans*, *Drosophila melanogaster*, non-mammalian vertebrates and mammals (Bosher and Labouesse, 2000; Naqvi, *et al.*, 2009; Poethig *et al.*, 2006; Ramadan *et al.*, 2007). The RNAi process is initiated by short double-stranded RNAs (dsRNAs) that lead to the sequence-specific inhibition of their homologous genes (Figure 1). These short dsRNAs (21-25 nucleotides in length) are normally produced in cells from cleavage of longer dsRNA precursors by the ribonuclease III (RNase III) family member Dicer (Zhang *et al.*, 2004) and incorporated into a multi-component nuclease complex known as the RNA-induced silencing complexes (RISC), which has the splicing protein Argonaute-2 (Ago-2) (Hammond *et al.*, 2000). Then, the single stranded RNA derived from the short dsRNA acts as a guide sequence (the antisense strand) directing the complex to the specific target mRNA by intermolecular base pairing, where a RISC-associated endoribonuclease silences the target mRNA (Bartel, 2004; Khvorova *et al.*, 2003; Schwarz *et al.*, 2003)

In eukaryotic cells, two major types of short dsRNAs are present in the RNAi pathway, namely small interfering RNAs (siRNAs) and microRNAs (miRNAs). In more detail, siRNAs have a characteristic two nucleotides 3' overhang, which are processed from larger dsRNAs by Dicer. The siRNAs are incorporated into RISC and the sense strand of the siRNA is removed in an ATP-dependent manner. The antisense strand of the siRNA perfectly pairs with its target mRNA, where RISC mediates endonucleolytic cleavage and subsequent degradation of the target RNA (Elbashir *et al.*, 2001; Fire *et al.*, 1998; Parrish *et al.*, 2000) (Figure 1). On the other hand, miRNAs are initially processed from long primary transcripts (pri-miRNA) within the nucleus into 60-70 base-paired hairpins known as precursor miRNAs (pre-miRNAs) by the microprocessor complex, which consists of Drosha-DGCR8 (Han *et al.*, 2004; Lee *et al.*, 2003). Following processing by Drosha, the pre-miRNA is exported to the cytoplasm by the Ran-GTP dependent cargo transporter Exportin-5 (Bollman, *et al.*, 2003). In the cytoplasm the pre-miRNA is processed by Dicer into the mature miRNA, which is incorporated into RISC. In much the same way that siRNA functions, the mature miRNA guides the complex to the target mRNA for translational repression or message degradation (Beverley, 2003). Notably, typical miRNAs are not perfectly matched to their mRNA targets and exert silencing through translational suppression (Ambros *et al.*, 2003; Nelson *et al.*, 2004) (Figure 1).

* Corresponding author.

Email address: fscinnp@ku.ac.th

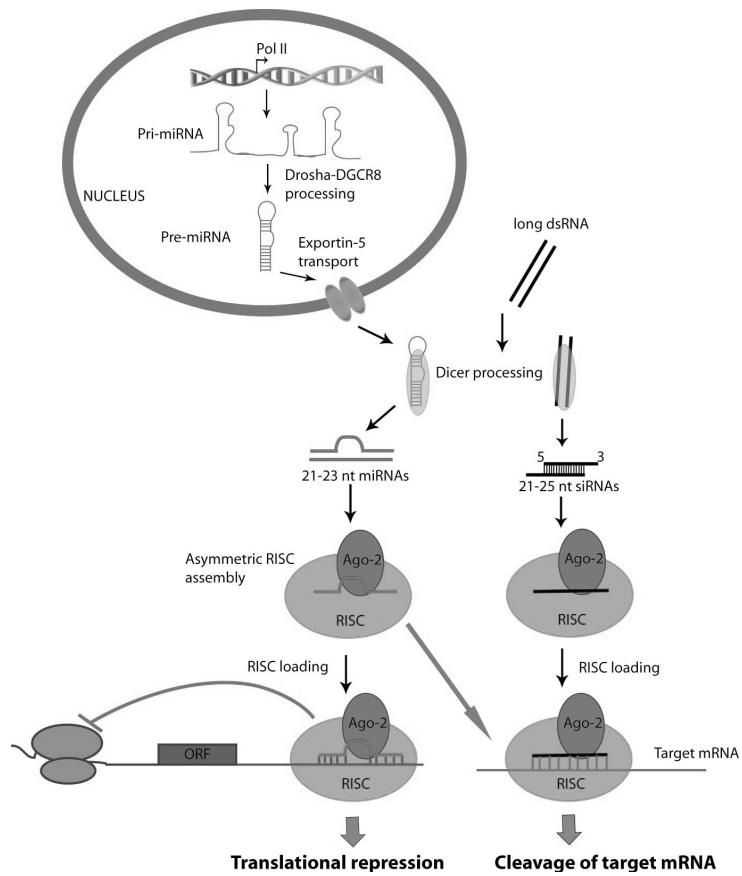


Figure 1. RNAi mechanism. The left hand side demonstrates of the mammalian miRNA pathway. The right hand side shows the pathway of synthetic siRNAs in mammalian cells (modified from Panjaworayan and Brown, 2011).

Currently, RNAi has become a powerful tool for reverse functional genomics. In addition, it has been employed as a potential molecular therapeutic method for combating a wide range of disorders including autoimmune diseases, metabolic disorders, viral infections, neurological diseases and cancer in many studies using mammalian tissue culture system or the mouse model. For example, the expression of mutant p53 or RAS genes that are observed in most tumour cells was specifically silenced in SW480 human colon cancer cells by siRNAs without affecting the wild type genes (Kawasaki and Taira, 2003). Target of siRNAs to human telomerase RNA inhibited telomerase activity in variety of human cancer cell lines (Kosciolek *et al.*, 2003). Several pioneering studies have demonstrated great possibilities for using siRNAs for treating serious viral diseases that caused by HIV and HCV (Jakobsen *et al.*, 2009; Lee *et al.*, 2002; Wilson *et al.*, 2003).

In addition, recent studies indicated that some miRNAs are linked to several human diseases including viral and metabolic diseases. Therefore, inhibition or interference of miRNAs function could potentially be a new therapeutic approach (McBride *et al.*, 2008).

Despite the numerous successful studies of RNAi on inhibition of specific genes in the mammalian tissue culture

system, inefficient delivery system, poor intracellular uptake and off-target effects have impeded RNAi therapeutics. Albeit clinical trials with RNAi have now begun, challenges such as off-target effects, toxicity and the need for safe and efficient delivery methods have to be overcome before using RNAi for gene therapy.

2. RNAi and Gene Therapy

In medical sciences, the term gene therapy has been indicated for more than 10 years. Several innovative therapeutic modalities have been investigated including numerous potent drugs such as anti-sense, ribozymes and the use of regulatory elements for reversing malignant phenotypes (Pan *et al.*, 2009; Quon and Kassner, 2009; Schmidt, 2009). Clinical studies of current gene therapy have experienced significant obstacles such as the unexpected frequency of major side effects, inefficient gene delivery method and the high cost of the therapy (Aagaard and Rossi, 2007; Li and Shen, 2009).

For RNAi, the specificity of mechanism, large scale silencing and a natural defence mechanism are attractive criteria for being a good molecular therapeutic method (Aagaard and Rossi, 2007; Ebbesen *et al.*, 2008; Inoue *et al.*,

2006). The concept of successful RNAi therapeutics is based on 3 main conditions: (i) lack of toxicity, (ii) specificity and (iii) efficacy (usually measured as half-maximal inhibition levels or IC_{50} values) in *vitro* and *in vivo* (Ichim *et al.*, 2004; Takeshita and Ochiya, 2006; Vorhies and Nemunaitis, 2007). The major challenge in RNAi gene therapy is the delivery of siRNAs or miRNAs to the desired cell type, tissue or organ.

2.1 Delivery of RNAi

Most of reviews classify delivery of RNAi based on the delivery systems: viral and non-viral methods. As these two systems are selectively used for molecules that are carried to trigger RNAi pathways, this review article describes two basic strategies used to activate RNAi pathways: (i) a RNA based - approach by delivery of synthetic 21 base siRNA duplex (Figure 1) and (ii) a DNA-based method in which the active siRNAs are generated from longer RNA hairpin transcripts that are transported to the cytoplasm via the miRNA machinery and are processed into active siRNAs by Dicer (Figure 2).

1) Delivery of siRNA duplexes

Cellular delivery of synthetic siRNA duplexes is usually achieved by cationic liposome - based strategies. Liposome and synthetic siRNAs are complexed *in vitro* and taken up by cells via the endosomal pathway. Then, siRNAs are released into the cytoplasm where they associate with RISC (Sioud and Sorensen, 2003). Although this approach is considered to be passive and its lack the ability to target specific cells or tissue, it provides a safer delivery compared

to intravenous injection or local administration of naked siRNA. Naked siRNA delivery for therapeutic purposes is ineffective due to the instability of siRNA, low bioactivity and high dosage requirement of siRNA. Moreover, naked siRNA is incapable of crossing the blood-brain barrier.

The transient transfection of liposome-siRNA complex typically shows effects of gene silencing for 3-5 days in culture cells whereas the effects could be sustained for several weeks in non-dividing cells (Omi *et al.*, 2004; Song *et al.*, 2003). As mentioned above, the disadvantage of this approach *in vivo* is the rapid liver clearance and lack of target specificity (Jones, 2009; Sioud and Sorensen, 2003). To improve *in vivo* stability of siRNA duplex, backbone of siRNA is chemically modified and linked to molecules such as 2'F, 2'O-Me and 2H. As a result, such molecules show an improved stability of siRNAs in serum and do not reduce RNAi efficiency (Shiraishi *et al.*, 2008; Watts *et al.*, 2007). Alternatively, *in vivo* delivery methods for siRNAs include the use of Atelocollagen (Minakuchi *et al.*, 2004), conjugation of cholesterol to the siRNA sense strand (Han *et al.*, 2008), binding of antibody-protamine fusion to siRNAs (Song *et al.*, 2005), aptamer-siRNA conjugates (McNamara *et al.*, 2006), and cyclodextrin nanoparticles (Hu-Lieskovan *et al.*, 2005). The approaches target siRNAs to specific tissue or cell type and could potentially be translated into clinical studies.

2) Delivery of short hairpin RNAs (shRNAs)

Since production of synthetic siRNA duplex is costly, DNA-based expression cassettes are alternatively used to generate the functional siRNA in cells. Like siRNA duplex

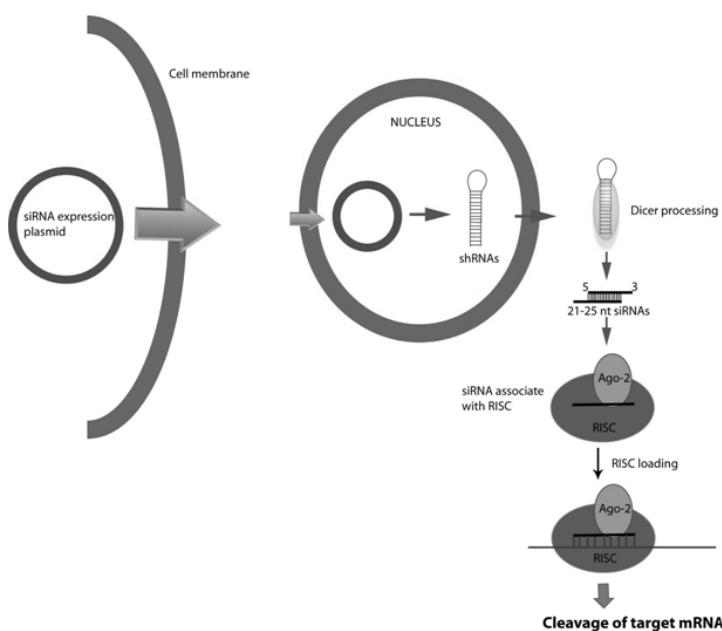


Figure 2. Schematic diagram indicates induction of RNAi pathway by DNA based expression vectors designed to express short hairpin RNAs (shRNAs)

delivery, DNA-based shRNA plasmids do not readily cross the cellular membrane because of their negative charge. Therefore, they require facilitating carriers such as cationic liposome, Atelocollagen or viral vectors. Presently, there are a number of viral vectors available. Each type of viral vector has specific characteristics that need to be determined for the specific therapeutic target. The adenovirus and adeno-associated virus (AAV) derived vectors provide an efficient delivery vehicle for transient shRNA expression (Gao *et al.*, 2004). Particularly, the Ad-gutless vector is used for liver directed systemic delivery with prolonged silencing effects (Hosono *et al.*, 2004) while a conditionally replicating adenovirus (CRAd) is designed to replicate and kill tumour cells specifically (Carette *et al.*, 2004). Retroviruses on the other hand provide a major advantage to incorporate the transgenic siRNAs into the host cell genome. Potential retroviral vectors used for RNAi therapeutics are Moloney murine leukaemia virus (Mo-MuLV) and lentivirus such as human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV) or equine infectious anaemia virus (EIAV) (Poeschl, 2003). Several studies indicated that the Mo-MuLV and lentivirus based-vectors are efficient delivery system, which can significantly silence expression of target genes in a specific manner (Amendola *et al.*, 2009; Frka *et al.*, 2009; Sun and Rossi, 2009; Ye *et al.*, 2009).

Despite the high transfection efficiency demonstrated by viral systems, this approach raises safety concerns for human use because of the associated oncogenic potential and immunological complications.

Additional examples of recent RNAi mediated approaches against viral infection, cancer and metabolic diseases are summarized in Table 1.

2.2 Off-target effects

Despite the specific mechanism of RNAi, some studies reported that siRNAs can have off-target effects. For example, strings of dsRNAs (pri-siRNAs/pri-miRNAs) can trigger non-specific cellular innate immune response such as the interferon response. Cullen (2006) demonstrated that longer dsRNAs (more than 30 nucleotides in length) could induce interferon response by binding to double-stranded-RNA-activated protein kinase (PKR), 2', 5'-oligoadenylate synthetase-RNase L system or several Toll-like receptors (TLRs) (Hornung *et al.*, 2005). Therefore, the use of longer dsRNAs raises concern over the risk of increased immune stimulation. Analysis of interferon response can be done by checking the level of expression of an interferon-response gene such as oligoadenylate synthase-1 (OAS1) (Bridge *et al.*, 2003; Fish and Kruithof, 2004). In addition, saturation of the RNAi machinery due to high concentration of shRNA transfection is reported to cause toxic non-specific effects. Competition assays showed that over-expression of shRNA inhibited miRNA function and saturated the Exportin 5 pathway. Therefore, it is important to transfect the minimum amount of the siRNA duplex to eliminate the off-target effects

(Cullen, 2006).

3. Clinical Trials for RNAi Therapies

The process of new drug development begins with extensive pre-clinical studies, which involve *in vitro* and *in vivo* experiments for obtaining pharmacokinetic information including efficacy and toxicity of the new drug. Pre-clinical studies of RNAi therapeutics have been widely conducted against cancer using the mouse model. For example, siRNAs were used to silence the colorectal cancer-associated gene beta-catenin, the oncogene H-ras to inhibit tumour growth of human ovarian cancer, the oncogenic K-ras to inhibit cancer cells (Brummelkamp *et al.*, 2002; Liu *et al.*, 2007). Results from pre-clinical studies showed that the siRNAs were sufficiently selective as they only silenced expression of tumour genes. The results therefore hold promise for further RNAi therapeutic development.

According to the U.S. National Institutes of Health (NIH), clinical trials for new drugs can be classified into five types based on purpose of the trials: prevention trials, screening trials, diagnosis trials, treatment trials and quality of life trials (The US National Institutes of Health, 2007). They are conducted following four phases. Phase I trials treat a small group of people (20-80) for determining a safe dosage range and identifying side effects. Phase II trials treat a larger group of people (100-300) for evaluating efficacy and safety. Phase III trials study a large group of people (1,000-3,000) to verify the effectiveness of the drug and compare its effects with current conventional drugs. Phase IV trials consist of post-approval studies involving safety surveillance such as risk-benefit analysis and optimal usage (National Cancer Institute). The process of new drug development will normally proceed through all four phases over many years. Clinical trials for RNAi therapies have already begun and they belong to the category of treatment trials.

The first application of RNAi therapy is for age-related macular degeneration (AMD) using siRNAs to inhibit the vascular endothelial growth factor (VEGF) pathway that causes abnormal growth of blood vessels behind the retina. This treatment is designed to be administered directly to the eye (Takeshita and Ochiya, 2006). In addition, the RNAi therapies have been extended to investigate infectious disease from viruses such as hepatitis C (HCV), HIV and Rous sarcoma virus (RSV). Examples of current trials for RNAi therapy is summarised in Table 2.

Subsequently, the results of these trials will address whether RNAi therapeutics cause unpredictable side effects.

4. Conclusion

The RNAi pathway has emerged as a powerful tool for the study of gene function as well as a new promising therapeutic approach. Despite challenges such as off-target effects, toxicity and the need for safe delivery methods, RNAi therapeutics appears to hold promise in the treatment of dis-

Table 1. RNAi used for inhibiting specific genes that link to cancer or human disorders

Target genes	RNAi expression system	Delivery methods	Models	Effects/Duration	References
Enhancer of zeste homolog 2 (EZH2) in tumorigenesis and liver metastasis of pancreatic cancer	Pol III promoter-shRNA plasmid expressing vectors	Lentiviral expression system	- Human pancreatic cancer SW1990 and PANC-1 cells. - Athymic nude mice.	RNAi-mediated knockdown of EZH2 expression can inhibit tumour growth in the mouse model. Duration: 45 days	(Chen <i>et al.</i> , 2010)
Human apurinic or apyrimidinic endonuclease/redox factor-1 gene (APE1/Ref-1) associated with human pancreatic cancer	Chemically synthesized small interfering RNA (siRNA)	Lipofectamine 2000 (Invitrogen)	Human pancreatic cancer, SW1990 cells	Down regulation of APE1/Ref-1 gene expression significantly sensitize the SW1990 cells to gemcitabine and enhance cell apoptosis Duration: 3 days	(Xiong <i>et al.</i> , 2010)
C-MYC gene associated with gastric tumour	A vector-based siRNA system	Liposome reagent	Human gastric cancer cell SGC7901 and the gastric cell line HFE145	Down regulation of C-MYC can restrain the growth and proliferation of gastric cancer cells Duration: 7 days	(Zhang <i>et al.</i> , 2010)
Bcl-2 gene associated with tumour cells	Human telomerase RT promoter expressing mi-Bcl2	Lipofectamine 2000, Invitrogen)	Tumour Lung cell lines A549, Hela-S3 and HepG2	Down regulation of Bcl-2 and induction of apoptosis Duration: 7 days	(Zhang <i>et al.</i> , 2009)
Insulin-like growth factor-I receptor (IGF-IR) in colon cancer	ShRNA plasmid expressing vectors	Liposome (FuGene6, Roche)	Human colon cancer cell line SW480	Reduction of IGF-IR and inhibition of tumour growth Duration: 2 days	(Yavari <i>et al.</i> , 2009)
Amyloid precursor protein (APP) in Swedish variants	Short-hairpin RNA (shRNA)	Recombinant adeno-associated virus	Transgenic mouse model	Reduction of soluble Ab peptide Duration: 35 days	(Rodriguez-Lebron <i>et al.</i> , 2009)
Influenza M2 gene	H1-promoter-driven shRNA cassettes	Recombinant Lentiviral vectors	Madin-Darby cannie kidney and Human embryonic kidney 293T cells	Inhibition of viral replication. Duration: 3 days	(Sui <i>et al.</i> , 2009)
NS5-1, NS5-2, E NS1 genes in Yellow Fever Virus	H1-promoter shRNA expression plasmid	Lipofectamine 2000, Invitrogen)	Vero E6 cells and mouse model	Inhibition of YFP replication Duration: 10 days	(Pacca <i>et al.</i> , 2009)
Anti-hepatitis B virus pre-miR DNA	Pol II cassettes encoding primary (pri)-miR-31	Lipofectamine 2000 (Invitrogen) and injection	HuH-7 cells and mouse model	Inhibition of HBV replication Duration: 5 days	(Ely <i>et al.</i> , 2008)

ease along with more conventional approaches.

Acknowledgement

NP is funded by the Research Grant for New Scholar (co-funded by TRF and CHE, Grant Number: MRG5380104); The Kasetsart University Research and Development Institute Grant (Grant number: 45.53) and ScRF Grant from Faculty of Science, Kasetsart University (Grant number: ScRF-E13/2553)

References

Aagaard, L. and Rossi, J.J. 2007. RNAi therapeutics: principles, prospects and challenges. *Advanced Drug Delivery Reviews*. 59, 75-86.
 Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G. and Tuschl, T. 2003. A uniform system for microRNA annotation. *RNA*. 9, 277-279.

Table 2. Example of current trials for RNAi therapy (The US. National Institutes of Health, 2012)

Condition	Target	Drug/ intervention	Sponsor	Status
Age-related macular degeneration; choroidal neovascularization	Vascular endothelial growth factor receptor-1 (VEGFR-1)	AGN211745, modified siRNA Sirna duplex - Single intravitreal injection	Therapeutics, Inc	Completed phase I, II
Pachyonychia Congenita (keratin disorder)	Pathogenic mutation in keratin K6a	TD101, siRNA duplex - Injection into a callus on the bottom of patient's feet	Pachyonychia Congenita project	Completed Phase 1
Cancer/Solid tumour	M2 subunit of ribonucleotide reductase (R2)	CALAA-01, targeted nanocomplex that contains anti-R2 siRNA - Administration	Calando Pharmaceuticals	Active phase I
Diabetic Muscular Edema	VEGF	Bevasirnanib (or Cand5), modified siRNA duplex with 2 deoxyribose at the 3' end	Opko Healths, Inc.	Completed phase II
Advanced cancer Metastatic cancer Solid tumour	Stahmin1/oncoprotein 18 (STMN1)	Pbi-shRNA™ STMN1 LP, shRNA expression plasmid complex with bilamella invaginated vesicle - A single intratumoral injection	Gradalis, Inc	Active phase I
HCV- infection	HCV gene	SPC3649, mir-122 - Administration 5 weekly dose	Santaris Pharma A/S	Completed phase I
HIV-1 infection	HIV Tat protein, HIV TAR RNA, human CCR5	pHIV7-sh1-TAR-CCR5RZ, lentivirus vector-expressed RNAi in autologous T- cells of HIV-patents	City of Hope Medical Centre	Terminated phase 0
RSV	RSV nucleocapsid	ALN-RSV01, modified siRNA duplex - Administration by nebulization once daily for 3 days	Alnylam Pharmaceuticals	Completed phase II

Amendola, M., Passerini, L., Pucci, F., Gentner, B., Bacchetta, R. and Naldini, L. 2009. Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. *Molecular Therapy*. 17, 1039-1052.

Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell*. 116, 281-297.

Beverley, S.M. 2003. *Protozoomics: trypanosomatid parasite genetics comes of age*. *Nature Reviews Genetics*. 4, 11-19.

Bollman, K.M., Aukerman, M.J., Park, M.Y., Hunter, C., Berardini, T.Z. and Poethig, R.S. 2003. HASTY, the *Arabidopsis* ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. *Development*. 130, 1493-1504.

Bosher, J.M. and Labouesse, M. 2000. RNA interference: genetic wand and genetic watchdog. *Nature Cell Biology*. 2, E31-E36.

Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. and Iggo, R. 2003. Induction of an interferon response by RNAi vectors in mammalian cells. *Nature Genetics*. 34, 263-264.

Brummelkamp, T.R., Bernards, R. and Agami, R. 2002. Stable suppression of tumorigenicity by virus-mediated RNA interference. *Cancer Cell*. 2, 243-247.

Carette, J.E., Overmeer, R.M., Schagen, F.H., Alemany, R., Barski, O.A., Gerritsen, W.R. and Van Beusechem, V.W. 2004. Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. *Cancer Research*. 64, 2663-2667.

Chen, Y., Xie, D., Yin Li, W., Man Cheung, C., Yao, H., Chan, C.Y., Chan, C.Y., Xu, F.P., Liu, Y.H., Sung, J.J. and Kung, H.F. 2010. RNAi targeting EZH2 inhibits tumour growth and liver metastasis of pancreatic cancer *in vivo*. *Cancer Letters*. 297, 109-116.

Cullen, B.R. 2006. Enhancing and confirming the specificity of RNAi experiments. *Nature Methods*. 3, 677-681.

Ebbesen, M., Jensen, T.G., Andersen, S. and Pedersen, F.S. 2008. Ethical perspectives on RNA interference therapeutics. *International Journal of Medical Science*, 5, 159-168.

Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. *Nature*. 411, 494-498.

Ely, A., Naidoo, T., Mufamadi, S., Crowther, C. and Arbuthnot, P. 2008. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently *in vitro*.

and *in vivo*. Molecular Therapy. 16, 1105-1112.

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature, 391, 806-811.

Fish, R.J. and Kruthof, E.K. 2004. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors, BMC Molecular Biology. 5, 9.

Frka, K., Facchinello, N., Del Vecchio, C., Carpi, A., Curtarello, M., Venerando, R., Angelin, A., Parolin, C., Bernardi, P., Bonaldo, P., Volpin, D., Braghetta, P. and Bressan, G.M. 2009. Lentiviral-mediated RNAi *in vivo* silencing of Col6a1, a gene with complex tissue specific expression pattern, Journal of Biotechnology. 141, 8-17.

Gao, G., Lebherz, C., Weiner, D.J., Grant, R., Calcedo, R., McCullough, B., Bagg, A., Zhang, Y. and Wilson, J.M. 2004. Erythropoietin gene therapy leads to autoimmune anaemia in macaques. Blood. 103, 3300-3302.

Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. Nature. 404, 293-296.

Han, M.H., Goud, S., Song, L. and Fedoroff, N. 2004. The *Arabidopsis* double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proceedings of the National Academy of Sciences. 101, 1093-1098.

Han, S.E., Kang, H., Shim, G.Y., Suh, M.S., Kim, S.J., Kim, J.S. and Oh, Y.K. 2008. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. International Journal of Pharmaceutics. 353, 260-269.

Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., de Fougerolles, A., Endres, S. and Hartmann, G. 2005. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine. 11, 263-270.

Hosono, T., Mizuguchi, H., Katayama, K., Xu, Z.L., Sakurai, F., Ishii-Watabe, A., Kawabata, K., Yamaguchi, T., Nakagawa, S., Mayumi, T. and Hayakawa, T. 2004. Adenovirus vector-mediated doxycycline-inducible RNA interference. Human Gene Therapy. 15, 813-819.

Hu-Lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E. and Triche, T.J. 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumour growth in a murine model of metastatic Ewing's sarcoma. Cancer Research. 65, 8984-8992.

Ichim, T.E., Li, M., Qian, H., Popov, I.A., Rycerz, K., Zheng, X., White, D., Zhong, R. and Min, W.P. 2004. RNA interference: a potent tool for gene-specific therapeutics. American Journal of Transplantation. 4, 1227-1236.

Inoue, A., Sawata, S.Y. and Taira, K. 2006. Molecular design and delivery of siRNA, Journal of Drug Targeting. 14, 448-455.

Jones, D. 2009. Teaming up to tackle RNAi delivery challenge. Nature Reviews Drug Discovery. 8, 525-526.

Kawasaki, H. and Taira, K. 2003. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Research. 31, 700-707.

Khvorova, A., Reynolds, A. and Jayasena, S.D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell. 115, 209-216.

Kosciolek, B.A., Kalantidis, K., Tabler, M. and Rowley, P.T. 2003. Inhibition of telomerase activity in human cancer cells by RNA interference. Molecular Cancer Therapeutics. 2, 209-216.

Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A., Salvaterra, P. and Rossi, J. 2002. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology. 20, 500-505.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V.N. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature. 425, 415-419.

Li, L. and Shen, Y. 2009. Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opinion on Biological Therapy. 9, 609-619.

Liu, G., Wong-Staal, F. and Li, Q.X. 2007. Development of new RNAi therapeutics, Histology and Histopathology. 22, 211-217.

Liu, Q., Wu, K., Zhu, Y., He, Y., Wu, J. and Liu, Z. 2007. Silencing MAT2A gene by RNA interference inhibited cell growth and induced apoptosis in human hepatoma cells. Hepatology Research. 37, 376-388.

McBride, J.L., Boudreau, R.L., Harper, S.Q., Staber, P.D., Monteys, A.M., Martins, I., Gilmore, B.L., Burstein, H., Peluso, R.W., Polisky, B., Carter, B.J. and Davidson, B.L. 2008. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proceedings of the National Academy of Sciences. 105, 5868-5873.

McNamara, J.O., 2nd, Andrechek, E.R., Wang, Y., Viles, K.D., Rempel, R.E., Gilboa, E., Sullenger, B.A. and Giangrande, P.H. 2006. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnology. 24, 1005-1015.

Minakuchi, Y., Takeshita, F., Kosaka, N., Sasaki, H., Yamamoto, Y., Kouno, M., Honma, K., Nagahara, S., Hanai, K., Sano, A., Kato, T., Terada, M. and Ochiya, T. 2004. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and *in vivo*. Nucleic Acids Research. 32, e109.

Naqvi, A.R., Islam, M.N., Choudhury, N.R. and Haq, Q.M. 2009. The fascinating world of RNA interference, International Journal of Biological Sciences. 5, 97-117.

Nelson, P.T., Hatzigeorgiou, A.G. and Mourelatos, Z. 2004. miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA. 10, 387-394.

Omi, K., Tokunaga, K. and Hohjoh, H. 2004. Long-lasting RNAi activity in mammalian neurons. FEBS Letters. 558, 89-95.

Pacca, C.C., Severino, A.A., Mondini, A., Rahal, P., D'Avila S, G, Cordeiro, J.A., Nogueira, M.C., Bronzoni, R.V. and Nogueira, M.L. 2009. RNA interference inhibits yellow fever virus replication *in vitro* and *in vivo*. Virus Genes. 38, 224-231.

Pan, Q., Tilanus, H.W., Janssen, H.L. and van der Laan, L.J. 2009. Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opinion Biological Therapy. 9, 713-724.

Panjaworayan, N. and Brown, C.M. 2011. Effects of HBV genetic variability on RNAi strategies. Hepatitis Research Treatment. 2011, 1-8.

Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. 2000. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Molecular Cell. 6, 1077-1087.

Poeschla, E.M. 2003. Non-primate lentiviral vectors. Current Opinion Molecular Therapeutic. 5, 529-540.

Poethig, R.S., Peragine, A., Yoshikawa, M., Hunter, C., Willmann, M. and Wu, G. 2006. The function of RNAi in plant development, Cold Spring Harbour Symposia on Quantitative Biology, 71, 165-170.

Quon, K. and Kassner, P.D. 2009. RNA interference screening for the discovery of oncology targets. Expert Opinion on Therapeutic Targets. 13, 1027-1035.

Ramadan, N., Flockhart, I., Booker, M., Perrimon, N. and Mathey-Prevot, B. 2007. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nature Protocols. 2, 2245-2264.

Rodriguez-Lebron, E., Gouvion, C.M., Moore, S.A., Davidson, B.L. and Paulson, H.L. 2009. Allele-specific RNAi Mitigates Phenotypic Progression in a Transgenic Model of Alzheimer's disease. Molecular Therapy. 17, 1563-1573.

Schmidt, F.R. 2009. The RNA interference-virus interplay: tools of nature for gene modulation, morphogenesis, evolution and a possible mean for aflatoxin control. Applied Microbiology and Biotechnology. 83, 611-615.

Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P.D. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115, 199-208.

Shiraishi, T., Hamzavi, R. and Nielsen, P.E. 2008. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells. Nucleic Acids Research. 36, 4424-4432.

Sioud, M. and Sorensen, D.R. 2003. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochemical and Biophysical Research Communications. 312, 1220-1225.

Song, E., Lee, S.K., Dykxhoorn, D.M., Novina, C., Zhang, D., Crawford, K., Cerny, J., Sharp, P.A., Lieberman, J., Manjunath, N. and Shankar, P. 2003. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. Journal of Virology. 77, 7174-7181.

Song, E., Zhu, P., Lee, S.K., Chowdhury, D., Kussman, S., Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., Marasco, W.A. and Lieberman, J. 2005. Antibody mediated *in vivo* delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnology. 23, 709-717.

Sui, H.Y., Zhao, G.Y., Huang, J.D., Jin, D.Y., Yuen, K.Y. and Zheng, B.J. 2009. Small interfering RNA targeting m2 gene induces effective and long term inhibition of influenza A virus replication. PLoS One. 4, e5671.

Sun, G. and Rossi, J.J. 2009. Problems associated with reporter assays in RNAi studies. RNA Biology. 6, 406-411.

Takeshita, F. and Ochiya, T. 2006. Therapeutic potential of RNA interference against cancer. Cancer Science. 97, 689-696.

The US National Institutes of Health. 2007. Understanding clinical trials. <http://clinicaltrials.gov/ct2/info/understand> [April 29, 2012].

The US National Institutes of Health. 2012. ClinicalTrials.gov. <http://clinicaltrials.gov/ct2/results?term=siRNA> [April 29, 2012].

Vorhies, J.S. and Nemunaitis, J. 2007. Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies. Expert Review of Anticancer Therapy. 7, 373-382.

Watts, J.K., Choubdar, N., Sadalapure, K., Robert, F., Wahba, A.S., Pelletier, J., Pinto, B.M. and Damha, M.J. 2007. 2'-fluoro-4'-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Research. 35, 1441-1451.

Wilson, J.A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I.G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S. and Richardson, C.D. 2003. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proceedings of the National Academy of Sciences. 100, 2783-2788.

Xiong, G.S., Sun, H.L., Wu, S.M. and Mo, J.Z. 2010. Small interfering RNA against the apurinic or apyrimidinic endonuclease enhances the sensitivity of human pancreatic cancer cells to gemcitabine *in vitro*. Journal of Digestive Diseases. 11, 224-230.

Yavari, K., Taghikhani, M., Maragheh, M.G., Mesbah-Namin, S.A. and Babaei, M.H. 2009. Knockdown of IGF-IR by RNAi inhibits SW480 colon cancer cells growth *in vitro*. Archives of Medical Research. 40, 235-240.

Ye, X., Liu, T., Gong, Y., Zheng, B., Meng, W. and Leng, Y. 2009. Lentivirus-mediated RNA interference reversing the drug-resistance in MDR1 single-factor resistant cell line K562/MDR1. Leukaemia Research. 33, 1114-1119.

Zhang, J., Huang, S., Zhang, H., Wang, H., Guo, H., Qian, G., Fan, X., Lu, J., Hoffman, A.R., Hu, J.F. and Ge, S. 2009. Targeted knockdown of Bcl2 in tumour cells using a synthetic TRAIL 3'-UTR microRNA. International Journal of Cancer. 126, 2229-2239.

Zhang, L., Hou, Y., Ashktorab, H., Gao, L., Xu, Y., Wu, K., Zhai, J. and Zhang, L. 2010. The impact of C-MYC gene expression on gastric cancer cell. Molecular and Cellular Biochemistry. 344, 125-135.

Zhang, M., Bai, C.X., Zhang, X., Chen, J., Mao, L. and Gao, L. 2004. Downregulation enhanced green fluorescence protein gene expression by RNA interference in mammalian cells. RNA Biology. 1, 74-77.