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Abstract

The analyses of clinical and epidemiologic studies are often based on some kind of regression analysis, mainly linear
regression and logistic models. These analyses are often affected by the fact that one or more of the predictors are measured
with error. The error in the predictors is also known to bias the estimates and hypothesis testing results. One of the procedures
frequently used to handle such problem in order to reduce the measurement errors is the method of regression calibration for
predicting the continuous covariate. The idea is to predict the true value of error-prone predictor from the observed data, then
to use the predicted value for the analyses. In this research we develop four calibration procedures, namely probit, comple-
mentary log-log, logit, and logistic calibration procedures for corrections of the measurement error and/or the misclassifica-
tion error to predict the true values for the misclassification explanatory variables used in generalized linear models. The
processes give the predicted true values of a binary explanatory variable using the calibration techniques then use these
predicted values to fit the three models such that the probit, the complementary log-log, and the logit models under the binary
response. All of which are investigated by considering the mean square error (MSE) in 1,000 simulation studies in each case
of the known parameters and conditions. The results show that the proposed working calibration techniques that can perform
adequately well are the probit, logistic, and logit calibration procedures. Both the probit calibration procedure and the probit
model are superior to the logistic and logit calibrations due to the smallest MSE. Furthermore, the probit model-parameter
estimates also improve the effects of the misclassification explanatory variable. Only the complementary log-log model and
its calibration technique are appropriate when measurement error is moderate and sample size is high.
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1. Introduction

In  nonlinear  and  generalized  linear  models,  the
response Y is generally in terms of explanatory variables or
predictors X and a covariate Z. Such covariate may represent
those  predictors  measured  without  error  for  all  practical
purposes but those for X possibly cannot be exactly observed
for all study subjects. In assessing measurement error, atten-

tion needs to be given by a type and a nature of error as well
as sources of data which allow modeling of this error. The
analyses  of  model  using  an  unobserved  explanatory X
can often use only an observable W which is related to X,
and that W = X+U, where U is the measurement error. Thus,
model  estimators  of  the  response  Y  in  terms  of  the  direct
observed predictor W may be poor and biased (Rosner et al.,
1989, 1990; Whittermore, 1989; Gustafson and Lee, 2002).
Although, a simple and intuitive method such as regression
calibration technique is a popular method in measurement
error to correct the classical regression model since it is quite
easily implemented. However, more complicated calibration
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techniques  in  forms  of  nonlinear  models  and   generalized
linear  models  (GLMs)  (Nelder  and  Wedderburn,  1972;
McCullagh  and  Nelder,  1983;  1989)  are  still  rarely  imple-
mented, for example logistic regression that was studied for
its measurement error (Rosner et al., 1990; Thoresen and
Laake, 2000) and that for its misclassification error (Reade et
al., 1991). Consequently, it is important to include measure-
ment  error  considerations  when  planning  a  study,  both  to
enable application of measurement error analysis of data and
to ensure validity of conclusions. Moreover, in assessing of
model fit and/or its accuracy of parameter estimates for the
models through calibration techniques, researchers tend to
measure  either  its  bias  or  the  MSE  of  model  parameters,
particularly when only one covariate is used in simulation
studies  (Carroll  et  al.,  1995;  Thoresen  and  Laake,  2000;
Gustafson and Nhu, 2002). Other statistics such as deviance
statistic for GLMs will be appropriate for model checking,
especially when several covariates are included in a model.
It is a versatile statistic that is distributed as an asymptotic
chi-square. Also its equation form is equivalent to the MSE of
estimates and Pearson’s chi-square statistic (Thoresen, and
Laake, 2000; Agresti, 2002; Lawal, 2003; Ponsapukdee, 2012).
For more details see Section 2.3. The basis of a calibration
technique is the replacement of X by the calibration modeling
of the explanatory or the covariate X on other related vari-
ables, for example (Z,W) using an approximate working model
for the observed data. This procedure seems to be practical
and would be very helpful in cases where the observed data
are from using replication, validation or instrumental data for
the including X covariate (Carroll et al., 1995).

In this research, four calibration techniques are de-
veloped to predict the true unobserved discrete X covariate,
X_g|W, from the error-prone observed W. Then, the predicted
X_g is used in a case of building the nonlinear models in the
form of GLMs to improve the efficiency as well as the accu-
racy  of  the  GLMs.  The  main  purpose  is  to  investigate  the
performance of the four proposed calibration techniques, i.e.
the probit calibration, the complementary log-log calibration,
the logistic calibration, and the logit calibration techniques
through GLMs.

The logistic calibration is particularly intended to use
with only a continuous explanatory variable X_c. In contrast,
the  logit  calibration  is  aimed  to  use  only  a  discrete  or  a
categorical explanatory variable X_g. In fitting GLMs with
correcting the measurement error and misclassification error,
only three models are desinged, such that the probit, the
complementary log-log, and the logit models (Agresti, 2002),
because the logit model used here includes only a binary
covariate  of  which  the  values  are  predicted  from  both  the
logistic calibration and the logit calibration, once at a time.
All  four  calibration  procedures  and  the  three  model
approaches will be investigated considering the deviation of
estimates from the true parameters of the models with regard
to the mean squared error (MSE) of estimates of the model
parameters.  A  thousand  simulations  studies  at  each  condi-
tion  of  sample  sizes,  calibration  techniques,  model-para-

meters conditions and the GLMs models were performed. All
work was processed by using our developed macro program
running with the SAS 9.1®.

2. Methodology

The article focuses on fitting the statistical models or
GLMs  relating  a  binary  response  Y,  to  data  formulated  in
terms of well-defined but unobservable X, using information
on measurements W that are less than perfectly correlated
with X. Problems of this nature are called measurement error
problems. The statistical models and methods for analyzing
such  data  are  called  measurement  error  models.  Then,
methods  are  organized  in  three  main  issues:  1)  models  of
interest, 2) the proposed calibration techniques, and 3) the
assessing of goodness-of-fit.

2.1 Models of interest

The  fundamental  concepts  of  the  three  models  are
defined. These models will be fitted by using the results from
the four calibration techniques with the distinct covariates.

2.1.1  Probit model for the binary response

Probit model is defined as

 1
01 ,P Y x x        (1)

where ,  is the standard normal cdf. This link function is
called the probit link function, -1(·), and the parameters 0
and  are model parameters. The model in (l) was fitted using
the four calibration techniques separately.

2.1.2  Complementary log-log model for the binary response

Complementary log-log model is given

   0log log 1 1 .P Y x x        (2)

Then, it can be written in a form,

   01 1 exp exp .P Y x x       
The  complementary  log-log  link  is  in  a  form  of

  log log 1 1P Y x      since the log-log link applies to the

complement of  1 .P Y x  It is asymmetric and  1P Y x
approaching  zero  fairly  slowly  but  approaching  1  quite
sharply.  On  the  other  hand,  the  logit  and  probit  links  are
symmetric about 0.5. The model in (2) was fitted using the
four calibration techniques separately.

2.1.3  Logit model for the binary response

When an GLMs covariates X consists of at least one
or all categorical explanatory variables, it is usually called
the model as a logit GLM given in (3). By contrast, the name
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logistic model which has similar form as (3) usually permits
at least one or all continuous explanatory variables in the
model (Agresti, 2002).

 
  0

1
log ,

1 1
P Y x

x
P Y x

 


 
  (3)

where, 0 and  are model parameters and the link function is
called the logit link.

For  the  model  in  (3),  the  logit  model  is  fitted  by  a
binary predicted covariate which is carried out from using
both the logit calibration (with a categorical covariate, w_g)
and  the  logistic  calibration  (with  a  continuous  covariate,
w_c), separately. Thus, the model in (3) will also be fitted us-
ing the four calibration techniques, separately, once at a time.

The above GLMs differ from the traditional general
linear models (for example, a regression model is a special
case)  in  two  major  aspects.  Firstly,  the  distribution  of
response variable can be explicitly non-normal, i.e. it can be
binomial, Poisson, negative binomial, hypergeometric, multi-
nomial or even product multinomial. Secondly, the response
values are predicted from a linear combination of explanatory
variables, which are also generalized to mixed categorical and
continuous or either of them, and connected to the response
variable via a link function. In some situations, the probit link
models give the best power of the tests for every test statistic
(Pongsapukdee and Sukgumphaphan, 2008). In classical
general  linear  models,  the  response  variable  values  are
expected to follow the normal distribution and the link func-
tion is a simple identity function. For GLMs, the response
variable follows the exponential family distribution models
and the most often used link functions include logit, probit,
complementary-log-log, and also the log links.

2.2 Proposed calibration techniques

In this part, four calibration procedures was intro-
duced for the correction of the measurement error and the
misclassification error to predict the true values for the mis-
classification  explanatory  variables  used  in  GLMs  as  the
following.

2.2.1  Probit calibration procedure

The  probit  calibration  procedure  is  somewhat  miti-
gated by the need to develop and to fit a calibration model
as the model of X on the other continuous covariate w_c, or
the categorical covariate, w_g as mentioned previously that
in  practice  an  unobserved  explanatory  X  often  can  be
observed or collected only an observable W such that W =
X+U, where  U is the measurement error. In the case of probit
calibration technique, the observed explanatory W was gen-
erated in order to predict or estimate the X’s binary values
which will be denoted by x*_g. Hence, in predicting the true
values  of  variable  X_g  from  w_c  or  w_g,  say  x*_wc  or
x*_wg, respectively, will be evaluated by using the probit

calibration  procedure  of  the  form,  for  the  continuous  co-
variate w_c,

 1
0 1_ 1 _ _P x g w c w c       

and for the categorical covariate ,

 1
0 1_ 1 _ _P x g w g w g       

2.2.2  Complementary log-log calibration procedure

Alternatively to those used in the probit calibration
technique, by replacing the probit link function to the comple-
mentary log-log link, the complementary log-log calibration
procedure was obtained by the form, for the continuous
covariate w_c,

   0 1log log 1 _ 1 _ _P x g w c w c       
and for the categorical covariate w_g,

   0 1log log 1 _ 1 _ _ .P x g w g w g       

2.2.3  Logistic calibration procedure

The logistic calibration technique which uses only
the continuous explanatory variable w_c, to estimate or to
predict the variable X, say x*_g, has a form

 
  0 1

_ 1 _
log _ .

1 _ 1 _
P x g w c

w c
P x g w c

 


 
 

2.2.4  Logit calibration procedure

The logit calibration technique which uses only the
categorical or grouped explanatory variable w_g, to estimate
or to predict the variable X, say x*_g, has a form

 
  0 1

_ 1 _
log _ .

1 _ 1 _
P x g w g

w g
P x g w g

 


 
 

2.3 Assessing of goodness of fit

In the context of GLMs, likelihood ratio model com-
parison using the deviance is usually investigated by con-
sidering two models: M0 with fitted values 0̂ , and M1 with

1̂ , with M0 a special case which is nested within M1. The
likelihood ratio test (G2) (or also the log- likelihood ratio test)
was  originally  defined  by  Wilks  in  1938,  where  G2 =

   0 1
observed ˆ ˆ2 observed log 2 log ; log ; .

fitted
L y L y          


The deviance (D) was also originally introduced by Nelder
and Wedderburn (1972), where  0 1ˆ ˆ2 log log ; log ; .D L y L y     

 0 1ˆ ˆ2log log ; log ; .D L y L y       Thus, the deviance is equivalent to the likeli-
hood ratio test by definitions and the simpler models have
larger  deviances.  A  model  based  on  p  parameters  with  n
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observations would have its computed test statistic distri-
buted as 2 .n p   For example, in a case of Poisson observa-
tions D can be directly calculated. However, for some other
distributions, D may be indirectly computed directly in spite
of any nuisance parameters. For the normal distribution, it

can be shown that  22 ˆ ,i iD y    where ˆi  denotes the
MLE of i. The PROC GENMOD in SAS® can obtain 2D =

 2ˆi iD y    and gives the scale parameter which is an esti-

mate of 2 in term of MSE, i.e. 2ˆ .D
n p

 


 Therefore, the

term MSE can be obtained by the deviance D. For the one
way multinomial, both G2 and D have an asymptotic 2 distri-
bution with p-1 degrees of freedom in the case of specified
probabilities. In this simulation study under model conditions
with one covariate and known model parameter, the MSE of
the estimated model parameter is straight forward computed
and  investigated  for  1,000  sets  by  comparing  among  the
least-MSE of all combinations of calibration techniques and
models of interest in each condition.

3. Simulation Experiments

From  the  models  and  the  calibration  techniques  in
Section 2, the simulation studies were conducted for the di-
chotomous response categories Y with the model parameters:
0 = -2.25 and 1 = 0.371 (Thoresen and Laake, 2000). For the
measurement  error  terms,  U  is  generated  from   20, UN 
where  2

U  = 0.75, 1, and 3. The explanatory variables X_c
is from N(0,1). The continuous observable covariate W_c is
in a term of W_c = X_c+U and the categorical observable
covariate W_g is obtained by if W_c > 0, then W_g = 1 and
W_c = 0 elsewhere. Data are simulated under the sample sizes
of 100, 500, and 1,000, according to that the samples needed

to achieve the power 0.90-0.95, and when using the Bernoulli
(0.5) explanatory variable, the sample units would be closing
1,000 (Shieh, 2001). In each condition of sample sizes and
that of parameters of covariates’ distributions and the model
parameters,  the  calibration  techniques  are  performed  to
obtain the probabilities P(x_c) and the probabilities P(x_g).
Then,  the  X*_(·)  values  can  be  attained  by  x*_wc = 1  if
P(x_c) > u  and  x*_wc = 0  elsewhere.  As  a  same  fashion,
x*_wg = 1 if P(x_g) > u and x*_wg = 0 elsewhere, where u is
from U(0,1). Therefore, the response outcomes yj, j =1,2,...,n
and the P(Y = 1|x) estimates were then computed through the
correctly specified models in each case of sample size. Each
condition was carried out for 1,000 repeated simulations using
random  response  outcomes  of  Y  with  the  same  set  of  all
X*_(·) values from the calibration techniques. The developed
macro was run on SAS 9.1®. Statistical analyses for assess-
ing the accuracy of the models and all calibration techniques
are based on the MSE statistics obtained from the models
fitted under their corresponding conditions.

4.  Results

The  results  in  terms  of  the  minimum  value  of  MSE
from the comparison among the four calibration techniques
are evaluated for each condition and model fitted. The cali-
bration procedures with w_c or w_g under 2

U = 0.75, classi-
fied by the sample size and the model fitted indicated that
the logistic procedure can give the least MSE (0.07389) under
the probit model with the continuous covariate (w_g) for the
sample size of 100 (Table 1).  Meanwhile, the logit calibration
procedure provides the least MSE (0.01063, 0.00592) with the
categorical covariate (w_c) for the sample sizes of 500 and
1,000, respectively (Table 1). Therefore, when the 2

U = 0.75
the minimum MSE is from the logit calibration procedure
under the probit model (Table 1 and Figure 1).

Table 1. Least-MSE calibration procedure with w_c or w_g under 2 0.75U   classified
by the sample size and the model fitted.

                 Calibration Procedure2
U Sample size Model

w_c w_g

0.75 100 Probit Logistic (0.07389) Comp-log-log (0.08029)
Comp-log-log Logistic (0.10414) Comp-log-log (0.11015)
Logit Logistic (0.18961) Comp-log-log (0.20601)

500 Probit Logistic (0.01084) Logit (0.01063)
Comp-log-log Logistic (0.01363) Logit (0.01338)
Logit Logistic (0.02769) Logit (0.02717)

1,000 Probit Logistic (0.00607) Logit (0.00592)
Comp-log-log Logistic (0.00772) Logit (0.00752)
Logit Logistic (0.01548) Logit (0.01511)

Each value in parenthesis is the least MSE value, or the minimum value which is compared
among four calibration techniques under the same set of 2

U , Sample size and Model.
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Similarly, comparison results when 2
U = 1.00 and 2

U
= 3.00  showed  that  the  minimum  MSE  is  from  the  probit
calibration procedure under the probit model, for both the
sample size of 500 and 1000 with MSE = 0.01096, 0.00607
(Table 2) and MSE = 0.01137, 0.00619 (Table 3), respectively.
However, the next smallest MSE is from the logistic calibra-
tion procedure under the probit model, MSE = 0.09056 (Table
3).  Therefore,  for  the  final  results,  it  is  shown  that  the
proposed probit calibration procedure is probably chosen
and  would  be  the  most  appropriate  procedure  for  the
generalized linear models under the probit model when the
analysis considering the measurement error and misclassi-
fication error (Table 2-3 and Figure 2).

5. An application of the propose procedures

In this section, the results of the proposed tests on
the calibrations techniques and the models of interest are
presented to show their application in a real example on anti-
biotics/SIDs  data  from  Greenland  (1988).  The  data  involve
a case-control study of the association of antibiotic use by
mother during pregnancy X, and the occurrence of sudden
infant death syndrome (SIDs) Y. The error-prone measure-
ment  of  antibiotic  use  (W)  is  based  on  a  self  report  from
mother.  The  main  study  data  of  428  women  are  randomly
selected to be a training set. Another validation set of 428
women are also determined the true antibiotic use (X) for

Figure 1. MSE plots of calibration techniques with the continuous covariate w_c, classified by the sample size, variance U  2
U  and the

model fitted (model).

Table 2. Least-MSE calibration procedure with w_c or w_g under 2 1.00U   classified by
the sample size and the model fitted.

                 Calibration Procedure2
U Sample size Model

w_c w_g

1.00 100 Probit Logistic (0.07944) Comp-log-log (0.07604)
Comp-log-log Logistic (0.10687) Comp-log-log (0.10386)
Logit Logistic (0.20344) Comp-log-log (0.19478)

500 Probit Probit (0.01187) Probit (0.01096)
Comp-log-log Logistic (0.01493) Probit (0.01383)
Logit Probit (0.03033) Probit (0.02799)

1,000 Probit Comp.log-log (0.00611) Probit (0.00607)
Comp-log-log Comp.log-log (0.00776) Probit (0.00811)
Logit Comp.log-log (0.01559) Probit (0.01550)

Each value in parenthesis is the least MSE value, or the minimum value which is compared
among four calibration techniques under the same set of 2

U , Sample size and Model.
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Table 3. Least-MSE calibration procedure with w_c or w_g under 2 3.00U   classified by
the sample size and the model fitted.

                 Calibration Procedure2
U Sample size Model

w_c w_g

3.00 100 Probit Logistic (0.09056) Probit (0.09440)
Comp-log-log Comp-log-log (0.13113) Probit (0.12944)
Logit Logistic (0.23261) Probit (0.24185)

500 Probit Logistic (0.01149) Probit (0.01137)
Comp-log-log Logistic (0.01448) Probit (0.01431)
Logit Logistic (0.02936) Probit (0.02905)

1,000 Probit Logistic (0.00624) Probit (0.00619)
Comp-log-log Logistic (0.00792) Probit (0.00787)
Logit Logistic (0.01591) Probit (0.01579)

Each value in parenthesis is the least MSE value, or the minimum value which is compared
among four calibration techniques under the same set of 2

U , Sample size and Model.

women  as  determined  from  medical  records  (Table  4).  The
analysis results from the application of the proposed calibra-
tions procedures on this real clinical trial example provides
an example in practice that the proposed probit calibration
technique demonstrates the best properties in terms of the
estimated  MSE  and  deviance  (Table  5).  This  is  consistent
with the rational underlying the proposal and it is confirmed
by the simulation studies in Section 3.

6. Conclusions

In  conclusion,  the  results  show  that  the  calibration
techniques that perform adequately well, are respectively

from the probit calibration procedure with both w_c and  w_g
covariates,  the  logistic  procedure  with  w_c,  and  the  logit
calibration  procedure,  with  w_g.  The  probit  calibration
procedure and the probit model is superior to the logistic
and logit calibration procedures due to the smallest MSE.
Furthermore,  the  probit  model  parameter  estimates  do
improve the effects of the misclassification explanatory vari-
able. Hence, the results indicate that use of the calibration
procedures in generalized linear models, the probit calibra-
tion procedure has most statistically accuracy results and is
probably able to use safely. In addition, it is shown that the
logistic  calibration  procedure  is  appropriate  with  w_c  and
the  logit  calibration  procedure  is  appropriate  with  w_g.

Figure 2. MSE plots of calibration techniques with the continuous covariate w_g, classified by the sample size, variance U  2
U and the

model fitted (model).
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Table 4. Application of real data with training and validation data sets.

Control (Y = 0) Cases (Y = 1)
X X

0 (no use) 1 (use) 0 (no use) 1 (use)

Training Data Set

0 (no use) 94 88 76 95
W

1 (use) 22 17 16 20

116 105 92 115

Validation Data Set

0 (no use) 168 16 143 17
W

1 (use) 12 21 22 29

180 37 165 46

Table 5. Application results of estimated least MSE and
deviance under the best calibration procedure
classified by the model fitted.

Model Calibration Procedure Deviance

Probit Probit Calibration (0.0078) 591.993
Logit Probit Calibration (0.0144) 592.417

Comp-log-log Probit Calibration (0.0126) 592.328

Figue 3.  The estimated MSE plots of the three calibration techniques from the discrete real data set classified by the model fitted.
Note : There are only three calibration techniques since all real data set used in this application are discrete or categorical data.
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However, only the complementary log-log model and its cali-
bration procedure are appropriate when the measurement
error is moderate and the sample size is large.
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