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Abstract

Distillation is one of the dominating separation processes, but there are some problems as inseparable mixtures are
formed in some cases. This phenomenon is called as azeotropy. It is essential to understand azeotropy in any distillation
processes since azeotropes, i.e. inseparable mixtures, cannot be separated by ordinary distillation. In this study, to construct
a model which predicts the azeotropic formation at any pressure, a novel approach using support vector machine (SVM) is
presented. The SVM method is used to classify data in the two classes, that is, azeotropes and non-azeotropes. 13 variables,
including pressure, were used as explanatory variables in this model. From the result of the SVM models which were con-
structed with data measured at 1 atm and data measured at all pressures, the 1 atm model showed a higher prediction per-
formance to the data measured at 1 atm than the all pressure model. Thus, for improving the performance of the all pressure
model, we focused on intermolecular forces of solvents. The SVM models were constructed with only data of the solvents
having same subgroups. The accuracy of the model increased and it is expected that this proposed method will be used to
predict azeotropic formation at any pressure with high accuracy.
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1. Introduction

Many chemical processes in industrial productions
involve purification and separation. Distillation is the domi-
nating separation process and there are many cases to form
certain inseparable mixtures where vapor compositions and
liquid ones at equilibrium are equal. These specific mixtures
are called azeotropes. Information on the occurrence of azeo-
tropes in a mixture is essential in any distillation processes
since these azeotropes can make a given separation by using
ordinary distillation impossible (Horsley, 1973; Kamath et al.,
2005; Modla et al., 2008). Segura et al. (1999) used an equa-
tion of state as the thermodynamic model to calculate azeo-
tropes for binary mixtures and Dong ef al. (2010) proposed
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four methods to predict azeotropes based on the UNIFAC
model without any experimental data. UNIFAC (Gmehling
et al., 1993) is the thermodynamic equation for the activity
coefficient between two liquids and it is one of the most fre-
quently used methods to predict azeotropic formation. But
UNIFAC also has drawbacks as its applicability is restricted
to low pressures and the total number of the energy para-
meters is required as many as the squared number of the
groups.

Reflecting the importance of whether a given mixture
will form an azeotrope in the distillation or not, numerous
data of azeotropes have been reported and accumulated by
many researchers. In this work, we focused on this large
amount of data and we acknowledge that chemoinformatic
methods are the best techniques for managing these azeo-
tropic data. Chemistry has produced an enormous amount of
data until now and it has been required novel approaches for
handling these data. Chemoinformatics is the application of
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computational methods to solve the chemical problem with
the mixing of information resources (Gasteiger ef al., 2006).
The term was introduced in the late 1990s and there are many
areas that can be developed from the application of chemo-
informatic methods. In this paper, we constructed a model
judging azeotropic formation by using a statistical method,
i.e. support vector machine (SVM). Azeotropic data of the
Dortmund Data Bank was used for this study (Lohmann et
al.,2001).

2. Research Methodology

This chapter gives an introduction to the SVM method
to discriminate the occurrence of azeotropy and the method
to evaluate the SVM model. Then, we will explain how to
classify the solvents for hydrogen bond and apply the
proposed method.

2.1 Support Vector Machine

SVM is the method used to train the classifiers which
can be applied to classify data in two classes. This method
was developed by Vapnik (1999) and has been widely used
to solve various pattern recognition and classification
problems. Assuming a set of data of two classes, SVM
constructs a hyperplane that separates two different classes
of vectors with a maximum margin (Vapnik, 1995; Vapnik,
1999). It is separated by finding the vector w and the para-
meter b that minimizes ||w]||’. It satisfies the following condi-
tions:

WX, +b > +1, for y; =+1 (positive) )

WX, +b <—1, for y, =—1 (negative) ()

where w is a weight vector to the hyperplane, x, and y, denote
training data. In addition, |b|/|[w]|| shows the perpendicular
distance from the origin to the hyperplane, where ||w||* means
the Euclidean norm of w. If w and b are determined, a vector
X, can be classified as follows:

£ (x) = sign[wx, +b] G)
In nonlinear systems, SVM allocates the data into a

higher dimensional input space and establishes an optimal

separating hyperplane using a kernel function such as
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Table 1. Confusion matrix.
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where o is a tuning parameter of the kernel function and re-
present the width of the Gaussian kernel. The adjustable
parameter ¢ plays a major role in the performance of the
kernel. Linear SVM is then applied to this feature space, and
then, the decision function is given as follows:

!
f(x)=signy. o y,K(x,x;)+b] )

i=1
where the coefficients ocl,o and b are maximized by Lagrangian
expression:
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The positive and negative classes are determined by
positive or negative value from Equation 3 or 5.

2.2 Evaluation of SVM models
In this work, to evaluate the performance of a SVM

model, accuracy rate, precision, and detection rate were used
and defined as follows:

Accuracy rate = & 8
4 at+tb+c+d ®)
Precision = O
a+c
Detection rate = 10
a+b (10)

Table 1 shows a confusion matrix for a two-class
classifier. A confusion matrix (Kohavi and Provost, 1998)
contains information on actual classifications and those
which predicted by a classifier. Classification accuracy, preci-
sion and detection rate can be defined by using the elements
of the confusion matrix. Here, “a” and “d” represent the
number of exact prediction about azeotropy and non-
azeotropy, respectively, whereas “b” and “c” denote the
number of wrong prediction in the same way.

2.3 Classification of solvents

The most important single cause of deviation from
ideal behavior in liquid mixtures is hydrogen bonding (Ewell

Prediction data
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Table 2. Classification of organic solvents according to hydrogen bonding.

Class 1

Solvents capable of forming three-dimensional networks of strong

hydrogen bonds: water, glycol, glycerol, amino alcohols, amides, etc.

Class 2

Solvents containing both donor atoms and active H atoms in the

same molecule: alcohols, acids, phenols, oximes, ammonia, primary

and secondary amines, etc.

Class 3

Solvents containing donor atoms but no active hydrogen atoms:

ethers, ketones, aldehydes, esters, etc.

Class 4

Solvents containing active hydrogen atoms but no donor atoms

such as molecules having two or three chlorine on the same carbon
atom and one or more chlorine atoms on adjacent carbon atoms:
CHCI,, CH,Cl,, CH,CI-CH,CI, CH,CI-CHCl,, etc.

Class 5

All other solvents having no hydrogen bond forming capabilities:

hydrocarbons, carbon disulfide, sulfides, non-metallic elements
such as iodine, phosphorus, etc.

et al., 1944). Solvents having hydrogen atom bind to the
electronegative atom strongly and have abnormal boiling
points. This characteristic is caused by hydrogen bonds and
hydrogen can coordinate between two molecules such as
oxygen, nitrogen, or fluorine (Snyder ef al., 1974). Table 2
shows classification of organic solvents according to hydro-
gen bonding. The lower number of class means higher class
in this paper and higher class solvents have stronger hydro-
gen bonding.

2.4 Classification by subgroups

In this work, we took advantage of the fact that each
solvent was composed of a few functional groups. Azeo-
tropes are formed due to differences in intermolecular forces
of attraction, like a hydrogen bonding among the mixture
components (Ewell et al., 1944). Thus, the solvents are
divided into subgroups such as H,O, ACH and CH, to express
intermolecular forces before constructing the SVM models.

2.5 Procedure of proposed method

Figure 1 shows the overall strategy of this study. The
procedure of an azeotropy discriminant model is largely
divided into the part of data grouping to classify solvents
that have same subgroups with binary azeotropes and the
part of calculation to discriminate whether there is an azeo-
trope formation or not with the SVM method.

3. Results and Discussion
3.1 Data

The Dortmund Data Bank contains approximately
48,000 datasets for binary azeotropic systems and 3,000 sets

for ternary azeotropic systems. It also contains approximate-
ly 2,000 kinds of solvents involving physical properties.
Duplicated data sets were removed and about 30,000 data
sets for binary azeotropic systems were used here. About
20,000 data sets were measured at 1 atm in the binary data
sets. Figure 2 shows the number of data sets of major
solvents, which are contained in the binary azeotropic data.

In order to build the SVM model, it is necessary to
properly quantify the structure and characteristics of each
compound regarding azeotropy. Therefore, it is decided to
use the structure descriptors as explanatory variables and
Table 3 shows the descriptors.

The partial equalization of orbital electronegativity
(PEOE) value shown in Table 3 is a descriptor, which has
been developed by Gastiger et al. (1980), which calculation is
based on the electronegativity of the atoms in the molecule.
The electronegativity of each atom in the molecule is
acquired first, and the charge transfer between the atoms
adjacent to each other was calculated by the empirical for-
mula. Next, the electronegativity of each atom is recalculated
based on the value of the electric charge, and this cycle is
performed until the value of the electric charge is convergent.
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Figure 1. Problem-solving strategy.
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Figure 2. Number of data sets of binary azeotropic solvents.

It makes possible to express an electric charge in the mole-
cule to do such calculation, and PEOE is used for the calcu-
lation of pKa, actually. The maximum electric charge of the
hydrogen and the maximum negative charge of an atom
calculated by PEOE were used as explanatory variables.

Marbin sketch (Miller ef al., 1979), a software of Chem
Axon company, is used for the calculation of pKa and pKb.
This software is able to detect atomic groups having high
acidity and alkalinity such as amino group or carboxylic acid.
pKa and pKb values are calculated by the empirical formula
based on the calculated values of polarizability and PEOE
charge in the atomic group.

3.2. Construction of models predicting the presence of
azeotropy according to pressure

In order to predict the presence of azeotropy at any
pressure, the explanatory variables include pressure. We
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calculated and compared azeotropic prediction models with
data measured at 1 atm and all pressures, respectively, which
were constructed with 13 variables described in Section 3.1
using the SVM method. The results are shown in Table 4.

According to Table 4, the estimated results of two data
sets were approximately equal but in the case of using all
pressure data, estimation performance were slightly higher.
Thus, it is expected that this model is able to predict the
presence of azeotropy at any pressure levels.

3.3 Analysis of the constructed models

In order to compare the models, which were con-
structed by using all pressure data (model ) and 1 atm data
(model, ), the presence of azeotropy with data measured at
1 atm was estimated by the model . The results are shown in
Table 5. It is obvious that the model,  has a higher predic-
tion performance than the model  for 1 atm data.

From the results of Table 5, the solvents data of two
cases were collected. One is the case that the prediction is
correct by the model, | but the prediction is incorrect by
the model  (Case 1). The other is the case that the prediction
is incorrect by the model,  but the prediction is correct by
the model  inversely (Case 2). The results are given in Table
6,7,8and9.

To improve the performance, the prediction about
solvents in Table 6 is important. From the above results, it
was found that the solvents in the Table 6 almost belong to
the low class, which is described in Section 2.3 and the
model ; could not predict the presence of azeotropy when
the solvents belong to the low class. Furthermore, the results
of Table 8 show that the model  could not predict the
presence of azeotropy of the low class solvents appropriate-

Table 3. Character of solvents and explanatory variables.

Character

Explanatory variables

Bond
(hydrogen bond, polarity)

Calculated values of electric charge of hydrogen by PEOE
Number of hydrogen bond acceptor and donor

Size of molecule

Number of atom, Number of ring, Number of double bond,

Maximum distance among atoms in the molecule

Acid or base pKa, pKb

Number of amino group, Number of carboxyl group

Pressure

Measured pressure

Table 4. Estimation results according to pressure.

Accuracy rate Precision Detection rate

Pressure
(%)
1 atm 91.8
All pressures 92.6

(%) (%)
93.0 893
94.0 92.7
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ly. Thus, the method predicting the presence of azeotropy of
the low class solvents more precisely was required. On the
other hand, although we anticipated that high class solvents
would be in Table 9, there were some low class solvents,
which are explained in the next chapter.

3.4. Construction of models predicting the presence of
azeotropy according to subgroups

The number of acceptors or donors was used as ex-
planatory variables to reflect the influence of hydrogen
bonds. But low class solvents show a tendency not to be
predicted accurately from the results of Table 6 and 8. Thus,
it is important to improve the accuracy of prediction for low
class solvents by dividing solvents by subgroups.

First, the solvent names were inputted, then, the
binary azeotrope data sets, which have the same subgroups
with the input solvents were extracted. On the basis of these
data sets, the model to discriminate the presence of azeo-
tropy is calculated with the SVM method. In order to confirm
the limit of application of method, the prediction was calcu-
lated both for high class and low class solvents. Table 10
shows the results of Sample 1 (low class), Sample 2 (low
class), and Sample 3 (high class) as a case study. According
to Table 10, the results of each sample improved the predic-
tive accuracy, compared to the results of all pressures in
Table 4.

Table 11 shows the results of prediction about the
1 atm data by the model which was constructed with all
pressure data after being separated by subgroups, respec-
tively. It was confirmed that the model could predict not only

Table 5. Estimation results according to model. Only 1 atm
data were estimated.

Model Accuracy rate Precision  Detection rate
(7o) (7o) (7o)
Model, 91.8 93.0 89.3
Model 729 66.1 86.3
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low class solvents but high class solvents from the results
above. The prediction performance of each sample achieved
remarkably improved compared to the results of the model_
in Table 5.

For Sample 3, the number of the ten most solvents
data in the case of incorrect predictions is shown in Figure
3. As shown in Figure 3, the presence of azeotropy of the
solvents having a ring like benzene and phenol could not be
predicted accurately with only subgroup information.

Table 7. The ten solvents of the lowest proportion in Case 1.

Solvents Proportion (%) Class
1,3-Diisopropylbenzene 6.06 5
Quinoline 5.49 3
N,N-Diethylaniline 5.36 3
Propionamide 441 1
Nitromethane 426 3
Acetamide 3.13 1
Ethyl carbamate 1.96 1
Glycerol 1.92 1
N-Methylaniline 1.85 2
Monoethanolamine 1.16 2

Table 8. Theten solvents of the highest proportion in Case 2.

Solvents Proportion (%) Class
Diethyl sulfide 20.00 5
Nitrotrichloromethane 17.74 4
Glycol monoacetate 16.67 3
Methoxybenzene 16.50 3
4-Bromotoluene 15.69 5
m-Nitrotoluene 14.29 3
Di-n-propyl ether 13.51 3
1,1-Diethoxyethane 13.46 3
Diethyl ether 13.04 3
Isobutyl iodide 12.96 5

Table 6. Theten solvents of the highest proportion in Case 1.

Table 9. The ten solvents of the lowest proportion in Case 2.

Solvents Proportion (%) Class Solvents Proportion (%) Class
Bromobenzene 49.12 5 Naphthalene 0.96 5
1,2-Dichloroethane 48.36 3 4-Tsopropyltoluene 0.93 5
Methoxybenzene 4272 3 1,2-Ethanediol 0.93 2
Benzyl chloride 4231 5 1-Pentanol 0.93 2
p-Xylene 4143 5 o-Xylene 0.81 5
Acetic acid butyl ester 40.68 3 Cyclohexanol 0.80 2
Tetrachloroethylene 40.17 4 Butyric acid 0.79 1
Dimethoxymethane 39.68 3 p-Xylene 0.71 5
Carbonic acid diethyl ester 39.66 3 Indene 0.56 5
Tetrahydrofuran 39.44 3 Water 0.53 1
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Table 10. Estimation results according to subgroups.

Subgroup Accuracy rate  Precision Detection rate
(%) (%) (%)
Sample 1 Cl(C=Cy C=C/ CHCl, 98.6 98.6 9.9
Sample 2 CH,CI/CHCI, 97.6 97.7 977
Sample 3 H,O/ACH 96.6 974 95.8
Table 11. Estimation results according to subgroups by using all pressure models.
Subgroup Accuracy rate  Precision Detection rate
(%) (%) (%)
Sample 1 Cl(C=Cy C=C/ CHCl, 89.0 84.6 98.0
Sample 2 CH,CI/CHCI, 88.6 84.3 92.6
Sample 3 H,O/ACH 81.7 744 814
Naphthalene, 4-isopropyltoluene, xylene and indene, which ~ References

have one or more rings, appeared in Table 9. This may be
why there are the low class solvents in Table 9. It is conceiv-
able that the solvent having rings need to be predicted accu-
rately.

4. Conclusions

In this paper, we have proposed new approach to
predict the occurrence of azeotropy. For predicting an
azeotropy at any pressure, 13 variables including pressure
were used as descriptors. The constructed model is able to
predict the presence of azeotropy with high accuracy. More-
over, the performance of the SVM method improved by
classifying solvents according to subgroups. In this work,
we investigated only some selected cases, but should confirm
all cases. Meanwhile, it was recognized that solvents having
rings like benzene have to be handled properly before the
prediction.
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