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Abstract

We present a system for improving fall detection performance using a short time min-max feature based on the specific
signatures of critical phase fall signal and a neural network as a classifier. Two subject groups were tested: Group A involving
falls and activities by young subjects; Group B testing falls by young and activities by elderly subjects. The performance was
evaluated by comparing the short time min-max with a maximum peak feature using a feed-forward backpropagation network
with two-fold cross validation. The results, obtained from 672 sequences, show that the proposed method offers a better
performance for both subject groups. Group B’s performance is higher than Group A’s. The best performances are 98.2%
sensitivity and 99.3% specificity for Group A, and 99.4% sensitivity and 100% specificity for Group B. The proposed system
uses one sensor for a body’s position, without a fixed threshold for 100% sensitivity or specificity and without additional

processing of posture after a fall.
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1. Introduction

The number of elderly (i.e. people aged over 60 years)
is growing faster than any other age group, and is estimated
to reach almost two billion by 2050 (United Nations, 2009).
Falls in the elderly, and consequential injures, are major
public health problems. The World Health Organization
reported that major causes for fall-related hospital admissions
are hip fractures, traumatic brain injuries, and upper limb
injuries, and their healthcare costs are increasing significantly
(World Health Organization, 2008), ranging from US$ 6,646
in Ireland to US$ 17,483 in the USA is the average cost of
hospitalization for fall-related injuries for people aged 65
years and older (Carey et al., 2005; Roudsari et al., 2005). The
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severity of the injury and the cost could be reduced if the
elderly could get help immediately after a fall.

The two most popular techniques for fall detection
research utilize image processing and sensors (Noury et al.,
2008). Sensor methods perform very well (Lin ef al., 2007,
Kangas et al., 2008; Kangas ef al., 2009; Chao et al., 2009;
Bourke et al., 2007; Bourke et al., 2008; Bourke et al., 2010;
Jantaraprim et al., 2009; Jantaraprim et al., 2010; Jantaraprim
et al., 2012) without limitation of lighting and framing, while
the limitation appears in image processing method (Huang
etal.,2007; Nyan et al.,2008; Lee et al., 2007; Lai et al., 2008).

For ethical reasons and due to safety and health
concerns, all fall experiments were performed by young
subjects falling onto a mattress. Normal activities or Activities
of Daily Living (ADL) were performed by young/elderly
subjects. A young subject for Lin’s study (Lin ef al., 2007)
with results of 98-100% sensitivities, nine micro mercury
switches and an optical sensor attached to ten places around
a coat to detect fall after impact. Three middle aged subjects
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for Kangas’s study (Kangas et al., 2008), a tri-axial accelero-
meter attached to the waist or head for fall detection. Two or
more phases of a fall event were employed in his study: the
beginning of the fall, falling velocity, fall impact, and subse-
quent posture of the person. Using a simple threshold with
three different detection algorithms (impact + posture, start
of fall + impact + posture, and start of fall + velocity + impact
+ posture) and setting a threshold for 100% specificity, his
studies reported a sensitivity of 97-98%. Recently, he studied
the same algorithms with more subjects, 20 middle-aged
subjects performed both intentional falls and ADL, and 21
older people performed only ADL. His study obtained a
sensitivity of 97.5% and a specificity of 100% (by setting
thresholds) (Kangas ef al., 2009). Chao (Chao et al., 2009),
whose study involving seven young males performed both
fall and ADL, proposed the acceleration cross-product (AC)
as a parameter for fall detection, and compared to the acce-
leration magnitude (AM). The AC leads to a larger area under
a receiver operating characteristic curve than the AM.
Furthermore, false alarm ratios were reduced for including
post-fall posture (PP) recruitment for both AC-based method
and AM-based method. Sitting-to-lying motion was reported
to produce false alarms in his study. Bourke, whose studies
involving ten young subjects performed fall and ten elderly
subjects performed ADL, studied fall detection using a
biaxial gyroscope (Bourke et al., 2008), a tri-axial accelero-
meter (Bourke et al., 2007), and an inertial sensor (a tri-axial +
a gyroscope) (Bourke et al., 2010). Using a threshold-based
algorithm, 100% sensitivity (by setting thresholds) and 100%
specificity was reported in his studies. However, our study of
the same algorithm (Jantaraprim et al., 2009) used in Bourke’s
study (Bourke et al., 2007) found that some false positives
occur in the case of quick movements. This was confirmed
in his recent work with scripted and unscripted activities
(Bourke et al., 2010), which utilized thresholds for velocity,
impact, and posture to achieve 100% sensitivity (by setting
thresholds) and 100% specificity. His study (Bourke et al.,
2010) needs signal from both an accelerometer and a gyro-
scope to find velocity.

The above-mentioned studies involving only elderly
ADL (Bourke et al., 2007; Bourke et al., 2008; Bourke et al.,
2010) can achieve a better performance than those using
young ADL (Lin et al., 2007; Kangas et al., 2008; Kangas et
al., 2009;Chao et al., 2009). This was confirmed in our pre-
vious studies (Jantaraprim et al., 2009), comparing about
different subject groups. Even though most studies give high
performance, a posture after fall is needed such as addition
of posture after a fall for Kangas’s works (Kangas et al., 2008;
Kangas et al., 2009), post-fall posture recruitment for Chao’s
work (Chao et al., 2009), and posture after a fall for Bourke’s
work (Bourke et al., 2010). These added features require
more processing. Some studies showed performance using
a fixed threshold of 100% sensitivity or specificity. However,
it is better to exhibit performance without a fixed threshold.

During the critical phase of a fall, the body moves
suddenly towards the ground, ending with a vertical shock.
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During post-fall phase, the body remains inactive, frequently
lying on the ground (Noury ef al., 2008). The body action
during critical and initial post-fall phases produces high
negative and positive peak of resultant acceleration of the
torso. The short time min-max feature was proposed for our
previous study (Jantaraprim et al., 2012) for fall detection for
the elderly. The feature used in the study employs specific
characteristics of high negative and positive resultant acce-
leration peaks in short time, which occur during the critical
phase fall signal, to detect falls. Even though high negative
and positive resultant acceleration peaks are displayed in
critical and initial post-fall phase, they occur in the critical
before the initial post-fall phase. Thus, these specific charac-
teristics are detected in critical before initial post-fall phase.
The short time min-max feature can distinguish falls from
ADL, which usually have low negative and/or positive result-
ant acceleration peaks.

The aim of this study was to show that the system
consisting of short time min-max feature observed during a
critical phase fall signal of a torso and a neural network can
distinguish falls from ADL. In addition, there is no need for
processing of the posture after a fall and no need for com-
puting a fixed threshold to achieve 100% sensitivity or speci-
ficity. The performance of the proposed system was validated
and compared with a maximum peak feature, which is a classi-
cal feature involved in previous research using a tri-axial
accelerometer (Kangas ef al., 2008; Kangas et al.; Chao et al.,
2009; Bourke et al., 2007; Bourke et al., 2010). Results show
that the proposed system can achieve a better performance
for both ADL subject groups, Group A: ADL by young
subjects and Group B: ADL by elderly subjects. In addition,
the improvement from a neural network in this study is better
than that from the support vector machine shown in our
previous work (Jantaraprim et al., 2012). The rest of this paper
is organized as follows. Section 2 describes materials and
methods; Section 3 presents results; Section 4 contains dis-
cussion. Finally, conclusions are given in Section 5.

2. Materials and Methods

Two subject groups were tested in this study. Group A
involved the simulated falls and ADL by young subjects.
Group B was the simulated falls by young subjects (the same
from Group A) and ADL by elderly subjects. This experiment
used data from our previous study (Jantaraprim et al., 2010),
and added more subjects.

2.1 Experimental setup

As in our previous study (Jantaraprim et al., 2012),
two dual-axis MEMS accelerometers (Analog Devices
ADXL321) were constructed as a tri-axial accelerometer, and
attached to a person’s torso as shown in Figure 1. The x, y,
and z axes are anterior-posterior, left-right, and superior-
inferior, respectively. Signals from each axis were transmitted
by wires connected to each accelerometer, transformed from
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analog to digital by NI-USB6008, and recorded for later
offline processing. All signals were acquired at 12-bit resolu-
tion with a 1-kHz sampling frequency, and processed by a
second order low-pass Butterworth digital filter with a cut-
off frequency of 20 Hz. The trial protocols were approved by
the Research Ethics Committee of the Electrical Engineering
Department of Prince of Songkla University. Written informed
consent was obtained from all subjects prior to the experi-
ments.

2.2 Falland ADL experiments

Fall detection performance was evaluated using a
predefined set of falls and ADL common to the elderly. For
ethical reasons, all fall experiments were performed by young
subjects falling onto a mattress. Male and female numbers
were the same: 14 young subjects (7 male and 7 female, age
25.14£5.26 years) and 14 elderly subjects (7 male and 7
female, age 68.28+4.37 years). There are four categories of
fall: forward fall (FF), backward fall (BF), left side fall (LF),
and right side fall (RF), and six categories of ADL: sit-stand
(ST), stand-sit (TS), sit-lie (SL), lie-sit (LS), bend down to
pick up an object (BD), and walk (WA). Each fall and ADL
group was repeated three times for each subject. The data
comprised 672 sequences, made up of 168 fall sequences,
252 ADL sequences for the elderly, and 252 ADL sequences
for the young subjects.

2.3 Features for fall detection

Features are from our previous study (Jantaraprim et
al.,2012): maximum peak and short time min-max features.
An example of a backward fall is displayed in Figure 2 to
show how to find features. Using a tri-axial accelerometer,
the backward fall is displayed in terms of x, y, and z accele-
rations in Figure 2a and resultant acceleration (A4, =

\/( A) +(4,) +(4,)" isillustrated in Figure 2b.

2.3.1 Maximum peak feature

The maximum peak, max(4,,,), denotes impact and

acts as a baseline for measuring fall detection, because a fall
produces high resultant acceleration at impact (Figure 2c).

2.3.2 Short time min-max feature

Using the specific signatures of high negative and
positive peak resultant accelerations in critical phase fall
signal to distinguish falls from ADL, the short time min-max
feature is employed. Using a 1.5 s sliding window with 50%
overlap through the resultant acceleration signal, each
segment of data in the window is evaluated for minimum
resultant acceleration (S . ) and maximum resultant accelera-
tion (S ). Examples of S and S for a 1.5 s sliding
window are shown in Figure 2c. It is expected that this feature
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can distinguish falls from ADL when window slides through
the critical phase.

2.4 Neural network

A neural network was employed as a classifier to
separate falls from ADL. The neural network in Figure 3 sepa-
rates falls from ADL using a feed-forward backpropagation
network (Hagan et al., 1996). It is comprised of either an input
node for max(4,,) or two input nodes for § . and S _ , one
hidden layer, and an output layer. The number of nodes for
each hidden layer varies between one and two nodes. The

transfer functions for the hidden and the output layers are
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Figure 1. Position of the tri-axial accelerometer.
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Figure 3. Two layer perceptron: feed-forward backpropagation
network.

‘tansig’, and ‘purelin’. Data are normalized for training and
testing. During training, the max(4,,) for falls are recog-
nized as fall events, while others are recognized as non-fall
events for the maximum peak feature. For the short time min-
max feature, only segments involving the critical phase of
falls for S . and S are recognized as fall events, while
others are recognized as non-fall events. For each hidden
layer, three networks, which converge and display linear re-
gression higher than 0.8, were selected for testing. A network
obtained from training is shown by ‘x-node’ symbol, where
‘X’ represents a node number in the hidden layer. Outputs (for
the maximum peak feature) or segment outputs (for the short
time min-max feature), which are greater than 0 are detected
as falls. Otherwise, they are labeled as non-falls. The outputs
obtained from the three networks for each ‘x-node’ case were
averaged for later performance evaluation.

Training and testing data were swapped for two-fold
cross-validation. max(4,,,) ofall the sequences, and S__and
S .. of all the segments of all the sequences, were divided
into two groups for training and testing. The groups de-
pended on the subjects, with balanced scenarios for both
data groups:

1) 7 sets of young/elderly subjects were numbered
1-7,

2) 7 sets of young/elderly subjects were numbered
8-14.

2.5 Performance evaluation

There are four possible cases for fall detection:

True positive (TP): a fall occurs and the algorithm
detects the fall;

False positive (FP): the algorithm declares a fall, but
it did not occur;

True negative (TN): a normal (no fall) movement is
performed, the algorithm does not detect a fall; and

False negative (FN): a fall occurs but the algorithm
does not announce it. This event must be avoided because
the elderly may receive serious injuries.

The performance is evaluated by sensitivity and
specificity given by (1) and (2),

TP
Sensitivity (%) =————x100, 1
ensitivity (%) TP+ FN (D)
T
Specificity (%)= N 100. ()

—x
TN + FP
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3. Results
3.1 Fall and ADL resultant accelerations

Even though three axes of acceleration are differently
changed for all types of fall, the resultant accelerations ( 4,,, =

\/(AX ) +(Ay)2 +(4,)") still appear to be specific signatures

ofhigh negative/positive peaks in the critical phase, as shown
in Figure 4 for all types of fall, i.e. forward, backward, left and
right side falls. The maximum positive peaks of falls are
generally several times the gravitational acceleration, and
higher than those of ADL, except for soft impacts. Even
though ADL resultant accelerations have positive and nega-
tive peaks like fall resultant accelerations, their positive/
negative peaks are lower, as shown in Figure 5. They are
usually in the interval (0.75-2 g), except for quick movements.
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Figure 4. Example resultant acceleration waveforms for different
categories of fall.
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Figure 5. Example resultant acceleration waveforms for different
categories of ADL.
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3.2 Maximum peak feature

The maximum peak for falls and ADL for the first and
second data groups for Group A and B are shown as quartile
box plots in Figures 6 and 7, respectively. The last character
of x-label, ‘1’ or ‘2°, means the ‘first’ or ‘second’ data group
number. The maximum peaks for the falls are usually greater
than those for ADL in both data groups. However, if only
a threshold is employed for the maximum peaks, several
scenarios tend to overlap between falls and ADL, such as
‘BF’, ‘LF’, ‘S, and ‘TS’.

3.3 Short time min-max feature

To show that § . and §__ in critical phase can dis-
tinguish falls from ADL, scatter plots of S . and S for
only segments in critical phase of falls and ADL for the first
and the second data groups are displayed in Figures 8a and
8b, respectively. In fact, there is no definition for critical phase
of ADL. However, minimum before maximum peak is a re-
presentation of S__in critical phase for ADL, and maximum
peak is a representation of S in critical phase for ADL. The
symbols ‘red-o’, ‘green-*’, and ‘blue-x’ represent data for the
critical phase of falls, young ADL, and elderly ADL, respec-
tively. These scatter plots show trends for getting better rates

of fall detection when the 1.5 s sliding window with 50%
overlap slides through the critical phase of the falls.

For all segments, most of the data for young ADL and
elderly ADL have low positive/negative peaks. Segment data
for non-critical phase of falls have both low and high §__
and §__, because there are several different event character-
istics occurring during fall events that influence fall detec-
tion. Segments of the critical phase of falls offer very low S __,
which is usually lower than that from ADL, and may offer
high or maximum §___depending on the reach of the sliding
window to the maximum peak. Also, the impacting and
rebounding period in the initial post-fall phase, may offer low
S .and S high because of different event characteristics
occurring during the fall event. Thus, the output segments of
a fall sequence can be detected as a fall for segments of
critical phase or segments of initial post-fall phase. However,
the specific characteristics of high negative/positive peaks
occur for segments involving the critical phase before initial
post-fall phase, so they are first detected in the critical phase.
Using feed-forward backpropagation network, ‘1-node” and
2-node’ networks with a linear regression higher than 0.8 are
employed. The first data group networks, obtained from
training, were tested on the second data group, and the
second data group networks, obtained from training, were
tested on the first data group for two-fold cross-validation.
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and ADL of all sequences.

The sensitivities and specificities of each network for Group
A and B are shown in Table 1 for the maximum peak feature
and Table 2 for the short time min-max feature.

4. Discussion

The sensitivities and specificities of all networks for
the short time min-max feature are greater than the maximum
peak feature for both groups. This means that FN and FP
events occurring for using the maximum peak feature are
reduced for using the short time min-max feature. A FN event
is unacceptable in fall detection because the elderly may
receive serious injuries. Although a FP event is not a serious
case like the FN event, the elderly are bothered because of
inappropriate alerts.

For maximum peak feature, a number of BF, LF, and
RF produce FN events, while TS and SL produce FP events
for Group A. For Group B, a number of BF and SL produce
FN and FP events, respectively. Examples of a FN and a FP
event causing by BF and SL are displayed in Figures 9 and
10, respectively. A cause for FN events is a soft impact, which
gives a maximum peak like that from ADL. These FN events,
however, can be reduced by the short time min-max feature
because a negative peak in a critical phase can distinguish
falls from ADL. A cause for FP events of SL and TS is a body
movement producing a maximum peak like that from falls,
because a body sometimes impacts a mattress/chair with
acceleration greater than general. Although these cases
produce high maximum peaks, they do not usually produce
high negative peaks because of slow movement at a begin-
ning of a descent onto a mattress/chair. Thus, these cases
can be reduced for Group A and completely deleted for
Group B by the short time min-max feature.

For comparison between the result from the maximum
peak and the short time min-max feature for both subject
groups, the sensitivities and specificities for both features

Table 1. The sensitivities and specificities of each network for the
maximum peak feature for both groups.

Group A Group B
Network
Sensitivity ~ Specificity — Sensitivity — Specificity
1-node 97.0 984 97.6 98.7
2-node 96.2 984 97.8 98.5

Table2. The sensitivities and specificities of each network for the
short time min-max feature for both groups.

Group A Group B
Network
Sensitivity ~ Specificity  Sensitivity  Specificity
1-node 98.2 9.3 94 100.0
2-node 98.0 9.3 9.2 100.0
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Figure 9. An example of a left side fall producing FN for the maxi-
mum peak feature.

Sitdie

258+ B

0.5+ B

D 1 1 1 1 1
2000 2500 3000 3500 4000 4500 5000
ms

Figure 10. An example of a sit-lie producing FP for the maximum
peak feature.

for Group B are greater than that for Group A for all networks.
The results indicate that it is easier to distinguish falls in the
young from elderly ADL than to distinguish falls in the young
from young ADL, like our previous studies (Jantaraprim et al.,
2009). This is due to the fact that the speeds of movements
in the young are faster than those in the elderly. Therefore,
the maximum peak feature, or the high positive/negative peak
for the short time min-max feature of some young ADL are
greater than those from the elderly, and sometimes are similar
to those from falls. Therefore, these characteristics tend to
produce more FP events. In addition, some young ADL
movements, which produce maximum peak like soft impact
falls, make it more difficult to establish a valid decision for
the classifier. Thus, some falls with lower maximum peak than
general produce FN events.
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The results also show that the proposed system con-
sisting of the short time min-max feature and the feed-forward
backpropagation network can improve the fall detection
performance despite in the case of distinguishing falls from
young ADL, which is more difficult than distinguishing falls
from elderly ADL. The short time min-max feature offers the
better performance for both subject groups.

5. Conclusions

We propose improving fall detection performance for
different subject groups using a short time min-max feature
based on the specific signatures of critical phase fall signal
and a neural network as a classifier. The performances were
evaluated by a feed-forward backpropagation network, which
varies between one and two nodes in a hidden layer. Three
networks with linear regression higher than 0.8 for each
network case were employed to find the sensitivity and speci-
ficity. Two different subject groups were performed: Group A
considered falls and ADL by young subjects, while Group B
studied falls by young subjects and ADL by elderly subjects.
The results show a performance comparison between the
maximum peak and the short time min-max feature. For tests
involving 672 sequences, we found that the short time min-
max feature offers the performance better than that from the
maximum peak feature for both different subject groups and
all networks. One node in the hidden layer is enough for fall
detection. The short time min-max feature, 1-node network,
offers the best performance for both subject groups, which
is 98.2% sensitivity and 99.3% specificity for Group A, and
99.4% sensitivity and 100% specificity for Group B. The sen-
sitivities and specificities for both features for Group B are
greater than those for Group A for all networks. Not only
improving fall detection performance for both different
subject groups, the short time min-max feature based on the
specific signatures of critical phase fall signal gives better
performance using only one sensor on a body’s position,
without a fixed threshold for 100% sensitivity or specificity
and does not involve additional processing for posture after
afall.
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