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Abstract

In this paper, we consider the Hyers-Ulam stability for the following fractional differential equations, in the sense of
complex Caputo fractional derivative defined, in the unit disk: D’ 12)=G(f{(z), ‘D f(z),zf (z);z) 0<a<I<fB<2. Furthermore,
a generalization of the admissible functions in complex Banach spaces is imposed and applications are illustrated.
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1. Introduction

A classical problem in the theory of functional equa-
tions is that: Ifa function f approximately satisfies functional
Equation E, when does there exist an exact solution of E
which f approximates. Ulam (1964) imposed the question of
the stability of Cauchy equation and in 1941, solved it
(Hyers, 1957). Rassias (1978) provided a generalization of
Hyers theorem by proving the existence of unique linear
mappings near approximate additive mappings. The problem
has been considered for many different types of spaces
(Hyers, 1983; Hyers and Rassias,1992; Hyers et al.,1998).
Recently, Li and Hua (2009) discussed and proved the Hyers-
Ulam stability of spacial type of finite polynomial equation,
and Bidkham et al. (2010), introduced the Hyers-Ulam stabil-
ity of generalized finite polynomial equation. Finally, Rassias
(2011) imposed a Cauchy type additive functional equation
and investigated the generalized Hyers-Ulam ‘product-sum’
stability of this equation.

The class of fractional differential equations of
various types plays important roles and tools not only in
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mathematics but also in physics, control systems, dynamical
systems and engineering to create the mathematical model-
ing of many physical phenomena. Naturally, such equations
required to be solved. There are different fractional operators
appeared during the past three decades such as Riemann-
Liouville operators, Erdélyi-Kober operators, Weyl-Riesz
operators and Griinwald-Letnikov operators (Podlubny,
1999).

The main advantage of Caputo fractional derivative
is that the fractional differential equations with Caputo frac-
tional derivative use the initial conditions (including the
mixed boundary conditions) on the same character as for the
integer-order differential equations (Podlubny, 1999). In the
present work, we will show another advantage of Caputo
fractional derivative based on admissible functions in
complex Banach spaces.

2. Preliminaries

Let U:={zeC:|z|<1} bethe open unit disk in the
complex plane C and H denote the space of all analytic
functions on U . Here we suppose that H as a topological
vector space endowed with the topology of uniform conver-
gence over compact subsets of U. Also for a€C and
meN, let Hla,m] be the subspace of H consisting of
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functions of the form

f(n=a+a,z" +a, z"" +..., zeU.

Srivastava and Owa (1989) posed definitions for
fractional operators (derivative and integral) in the complex
z-plane C as follows:

Definition 2.1 The fractional derivative of order
0< a <1 is defined, for a function f(z) by

I f(é’)

Dif(z)=1

’

oc) dz
where the functlon f (z) is analytic in simply-
connected region of the complex z-plane C containing the
origin and the multiplicity of (z—¢)™ is removed by re-
quiring log(z—¢) tobe real when (z—-¢) > 0.
Definition 2.2 The fractional integral of order o > 0
is defined, for a function f(z), by

I f(2): _ﬁj =8y "dgsa >0,

where the function f(z) is analytic in simply-connected
region of the complex z-plane (C) containing the origin and
the multiplicity of (z—¢)“ is removed by requiring
log(z—{¢) tobereal when (z—¢) > 0.

Note that Definition 2.1 and 2.2 correspond to the
Riemann-Liouville derivative and integral respectively in the
real form.

Remark 2.1
pozt = LD ue o
i Fu-a+1)

and

Tt
Fu+a+1)

It was shown that (Ibrahim and Darus, 2008)

IZDZ f(2)=DIIZ f(2)= f(2), [f(0)=0.

Definition 2.3 The Caputo fractional derivative of
order p > 0 is defined, for a function f(z) by

£
L

),u —n+l

I7z" > 1.

B

RYOES

dg,

where n=[u]+1, (the notation [u] stands for the largest

integer not greater than 4 ), the function f'(z) is analytic in

simply-connected region of the complex z-plane C contain-

ing the origin and the multiplicity of (z—¢)" ™" is removed

by requiring log(z—¢') tobe real when (z—¢) > 0.
Remark2.2 The following relations hold:

(1) Representation

‘Dif()=1""D!f(z), n=1<p<n;
(ii) The Caputo fractional derivative of the power function

F(;U"‘l) Z;z—a :Daz,u

¢ PH H =
: INu-a+l1)
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(iif)
1'°Dif(z)= f(2), zeU,f(0)=0,ue(0,1);

(iv) Linearity
‘DI(Af(2)+g(2))=ADIf(2) + DIg(2);

(v) Non-commutation

“DIDC f(2) # DI DI f(2).

More details on fractional derivatives and their
properties and applications can be found in Kilbas et al.
(2006); Sabatier et al. (2007); Li et al. (2009) and Li et al.
(2011).

We next introduce the generalized Hyers-Ulam stabi-
lity depending on the properties of the fractional operators.
Recently the author studied the generalized Hyers-Ulam
stability for various types of fractional differential equations
(Tbrahim, 2011; Ibrahim, 2012a,b,c,d).

Definition 2.4 Let p be areal number. We say that

Sa,2" = f(2) 0

n=0
has the generalized Hyers-Ulam stability if there exists a
constant K >0 with the following property:

for every e >0,weU =U L 0U, if

0 o a p
|Zanwn+a |§ €(Z| nn| )

n=0 n=0
then there exists some z € U that satisfies equation (1) such
that

|z —w [<eK,

(z,weU, ieN).

In the present paper, we study the generalized Hyers-
Ulam stability for holomorphic solutions of the fractional
differential equation in complex Banach spaces X and Y

DI f(2)=G(f(2),z DL f(2),2"(2);2), (€)
where

O<a<1<B<2)
and G:X’xU —>Y and f:U—> X are holomorphic
functions such that f(0) =0 (O is the zero vector in X).

3. Generalized Hyers-Ulam stability

In this section we present extensions of the general-
ized Hyers-Ulam stability to holomorphic vector-valued
functions. Let X,Y represent complex Banach spaces. The
class of admissible functions G(X,Y), consists of those
functions g: X’ xU — Y that satisfy the admissibility con-
ditions:

=l =1, G)
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We need the following results:

Lemma 3.1 (Hill, 1957)If f: D — X isholomorphic,
then || f || is a subharmonic of ze D < C. It follows that
|| f || can have no maximum in D unless || f || is of constant
value throughout D.

Lemma 3.2 (Miller and Mocanu, 2000) Let /:U — X
be the holomorphic vector-valued function defined in the
unit disk U with f(0) =0® (the zero element of X). If there
existsa z, €U such that

el = x|

B

then

xk>1.

"Zof'(zo)" = K”f(zo

b

Theorem3.1 Let GeG(X,Y). If f:U > X isa
holomorphic vector-valued function defined in the unit disk
U, with f(0)=0,then

|6 (2,25 f(2),21"(2):2)| <1

=) <1. @)
Proof From Definition 2.3, we observe that
¢y z : f'©)
z°D? f(z = d

| =07 | =l g he= g4 |
NEICI
T IQ-a)
7@l |,

re-o)

Assume that ||/ (z)|>1 for z € U. Thus, there exists a point

z, € U for which ||f(zo)|| =1. According to Lemma 3.1, we
have | f(2)|<1

(U, ={z1z1<17l= 1))
and

max /()] = [/ o) =1.

Jzl<lz,|

In view of Lemma 3.2, at the point z, there is a constant
Kk 21 such that

|20t G| = x|/ 2| = .
Therefore,
ar @l _slrel .«
re-a) I'C-a) TQC-a)

consequently, we obtain

EXDAEN

”ﬂ%mzzg:ﬂl

K

1
=—|z/"(z)|=1, x=1.
K

zZ, "Df;f(zo)

>1 and /= k; hence from Equation (3),

Weput k= K
rQ2

-a
we deduce

(I ER N ER EWAERTEN
|GCf 200, klz, “ D2 £ Rz, /(20 2,)

>1,

which contradicts the hypothesis in (4), we must have || f || <
L.

Corollary 3.1 Assume the problem (2). If G € G(X,Y)
is the holomorphic vector-valued function defined in the
unit disk U then

| G(f(2),2DL f(2),2f"(2);2) <1

=| 1/G(f(2).2°D! f (2.7 (2):2) [<1. O

Proof By continuity of the fractional differential
equation (2) has at least one holomorphic solution f satisfy-

ing (£ (0)= £'(0)=0). According to Remark 2.2, the solu-
tion f{z) of the problem (2) takes the form

f(2)=1IG(f(2),z° D! f(2),2f"(2); 2).
Therefore, in virtue of Theorem 3.1, we obtain the Assertion
).

Theorem3.2 Let G eG(X,Y) be holomorphic
vector-valued functions defined in the unit disk U then the
Equation (2) has the generalized Hyers-Ulam stability for

z—0U.
Proof Assume that

G(z)= Z(pnz", zeU

n=0
therefore, by Remark 2.1, we have

1G(z) = Ya,z"" = f(2).

n=0
Also, z— 0U. and thus |z|—>1. According to Theorem
3.1, we have

" f(2) ||<1=|z|.

Let £ >0 and we U be such that

0 a P
|Zanwn+a |§ €(Z| nn| )

n=1 n=1
We will show that there exists a constant K independent of
& such that
W —u' [<eK, weU, ueU
and satisfies (1). We put the function

£(w) =A‘—1 S awe, ©

i n=l,n#i

(a,#0,0< A <1)



704

thus, for w e 0U, we obtain

=W =AfW)+Af(w)—u'|
Sw =Af (W) [+A| f(w)—u'|
W =AW | +A | W —u' |

[ —u'|

ol &
=w +— Z aw" |
a,‘ n=1,n#i

+A W —u'|

1 <& C
Sﬁ|2anw”+“ [+A|w —u'].
i n=1

Without loss of generality, we consider | @, |= max (4, |)

yielding

| n+a |
n

g, I(l—/l) p=

z | an
n

| n=0

W —u'] <

5|a|”] -

(1-2) (Z >

n=0

2 |a, "
<717l
(1-2)
=Ke.

This completes the proof.
4. Applications

In this section, we introduce some applications of
functions to achieve the generalized Hyers-Ulam stability.

Example 4.1 Consider the function G: X’xU —»R
by

with a20.5,5>0 and G(0,0,0,0)=0. Our aim is to
apply Corollary 3.1, this follows since
|G ks, xcts2)] = adlr] + s+ 2]+ Bl
=a(l+k+D)+b|z[2],

when ||r|| = ||s|| = ||t|| =1, zeU. Hence by Corollary 3.1, we
have : If a20.5, 5>0 and f:U — X is a holomorphic
vector-valued function defined in U, with f(0) = ©, then
ol S@ |+ =D |+] 7@
+h|zI<1=| f(2) |<1.
Consequently,
| Z2G(f(2),2°D! f(2).2f " (2):2) | <1,

thus in view of Theorem 3.2, f has the generalized Hyers-
Ulam stability.
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Example 4.2 Assume the function G: X* —» X by
G(r,s,t;2) = G(r,s,t)=rel * I'I7]
with G(0,0,0) = 0. Byapplying Corollary 3.1, we need to
show that G € G(X, X). Since
|GG e, )] = e | = 7 21,

when ||r|| = ||s|| = ||t|| =1, k=1 and ! > 1. Hence by Corollary
3.1,wehave: For f:U — X isaholomorphic vector-valued
function defined in Uwith f(0) =0, then

| f(2)e OO o
=| fe) <1

| 22G(f(2).2°D f(2).2f"(2):2) | <1,
thus in view of Theorem 3.2, f has the generalized Hyers-
Ulam stability.

Example 4.3 Let a,b,c:U — C satisfy

|a(z)+ ub(z) +ve(z) |21,
for every £ =1,v>1 and z € U. Consider the function G :
X' —>Y by

G(r,s,t;z) = a(z)r + ub(z)s +ve(2)t,

with G(0,0,0) = 0. Now for ||r|| = ||s|| = ||t|| =1, we have
| G(r,us,vt;z) || =l a(z)+ ub(z) +ve(z) 21

and thus G € G(X,Y). If f:U — X isaholomorphic vec-
tor-valued function defined in Uwith f(0) =0, then

| a(2)f(2)+b(2)z D f(2) +ze(2) f'(2) |
:" f(2) ||<1.

Hence according to Theorem 3.2, f has the generalized Hyers-
Ulam stability.
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