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Abstract

The subgroups in the set max ,  G B  consisting of all maximal 3-local subgroups of ( )G Sym n  with respect to B,
the normalizer of a Sylow 3-subgroup of G in G, is investigated. Additionally, the structure of the subgroups in max ,  G B
was determined.
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1. Introduction

Maximal 2-local geometries of the sporadic simple
groups were first introduced by Ronan and Smith (1980).
These geometries were inspired by the theory of buildings
for the groups of the Lie type, which was developed by Tits
(1956, 1974) in the 1950s. For G, a group of the Lie type with
the characteristic p, its building is a geometrical structure
whose vertex stabilizers are the maximal parabolic subgroups,
which are also p-local subgroups of G containing a Sylow p-
subgroup. It is well known that each building has a Coxeter
diagram associated with it. Buekenhout (1979) generalized
these  concepts  to  obtain  diagrams  for  many  geometries
related to sporadic simple groups. Ronan and Smith (1980)
pursued these ideas further and introduced the maximal 2-
local geometries. Other invariants on buildings for the spo-
radic simple groups have been defined, notably the minimal
parabolic  geometries  as  described  by  Ronan  and  Stroth
(1984).

We now define what we mean, generally, by a minimal
parabolic subgroup. Suppose that H is a finite group and p is

a prime dividing the order of H. Let S be a Sylow p-subgroup
of  H  and  B  the  normalizer  of  S  in  H.  A  subgroup  P  of  H
properly containing B is said to be a minimal parabolic sub-
group of H with respect to B if B lies in exactly one maximal
subgroup of P.

The  definition  of  minimal  parabolic  subgroups  in
terms of the normalizer of a Sylow p-subgroup is given in the
works  of  Ronan  and  Smith  (1980)  and  Ronan  and  Stroth
(1984), in which they study minimal parabolic geometries for
the 26 sporadic finite simple groups. The connection between
minimal parabolic subgroups and group geometries is best
illustrated in the case of groups of the Lie type in their defin-
ing characteristics. For a group of Lie type, its minimal para-
bolic system is always geometric. This is not always the case
in general (see Ronan and Stroth, 1984). Many studies on the
minimal parabolic system of special subgroups have been
done over the years. For example, Lempken et al. (1998) de-
termined all the minimal parabolic subgroups and system for
the symmetric and alternating groups, with respect to the
prime p = 2. Later, Covello (2000) has studied minimal para-
bolic subgroups and systems for the symmetric group with
respect to an odd prime p dividing the order of the group.
The main results are about the symmetric groups of degree
pr; she also established some more general results. More
recently, Rowley and Saninta (2004) investigated the maximal
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2-local geometries for the symmetric groups. Furthermore,
Saninta (2004) considered the relationship between the maxi-
mal 2-local subgroups and the minimal parabolic subgroups
for the symmetric groups.

In this paper we shall investigate maximal 3-local sub-
groups for the symmetric groups. Throughout all groups
considered, and in particular all our sets, will be finite. Let 
be a set of cardinality n > 1. Set G Sym  , the symmetric
group on the finite set . We also use Sym(m) or Sm to denote
the symmetric group of degree m. Now let T be a fixed Sylow
3-subgroup of G and B be the normalizer of T in G.

Now we define

 3andG B H B H G O H      ,

where O3(H) is the largest normal subgroup of H whose order
is  a  power  of  3.  Notice  that  the  subgroup  O3(H)  is  well
defined. Clearly, O3(H) is a characteristic subgroup of H.
Furthermore, O3(H)  can be characterized in terms of the
Sylow  3-subgroups  of  H.  By  Proposition  1.2.2  of  Covello
(2000),  is equal to the intersection of all the Sylow 3-sub-
groups of H. Since T is the unique Sylow 3-subgroup of

GB N T   , so 3 1O B T    and hence B G B  , . AA
subgroup in G B ,  is said to be a 3-local subgroup of G
with respect to B and a subgroup in G B , , which is maxi-
mal under inclusion is said to be a maximal 3-local subgroup
of G with respect to B. We denoted the collection of maximal
3-local subgroups of G with respect to B by max G B , . The
aim is to study the subgroups in max G B , .

However, the general case looks already from the first
approach more complicated. In fact, a Sylow 3-subgroup of
the symmetric group is not self-normalized and significant
work needs to be done in understanding the structure of the
normalizer. For instance, in the case of Sym(32), there is an
isomorphism between the lattice of subgroups of a cyclic
groups of order 2 and the lattice of certain over groups of the
normalizer and a similar correspondence holds also for the
case Sym(32), with m > 2.

2. Preliminary Results

This section gathers together results that will be used.

Proposition 2.1: Let H be a group and suppose that H=AB.
Let pS Syl H   , where p is a prime. Then S S A  

S B    and

H H HN S N S A N S B        ,
with H AN S A N S A       and H BN S Β N S B      .
Proof: See Covello (2000) (Proposition 1.1.10).

Lemma 2.2: Suppose that H = XY is a direct product of
groups X and Y and suppose that pS Syl H    where p is a
prime which divides the order of both X and Y. Assume that L
is a subgroup of H which contains HB= N S  . Then L =

L L X L Y     ,  with  LL X B X      and  L Y 
LB Y   .

Proof: See Lempken et al. (1998) (Lemma 2.5).

We denoted the wreath product of L by R, where L
and R are groups, by L R .

Lemma 2.3: Suppose that R is a transitive permutation group
of degree n. Let H = L R  and P= K R , with L maxi-
mal subgroup of K, and let p be a prime dividing | K |. If L
contains the normalizer of a Sylow p-subgroup of K, then H
is a maximal subgroup of P.
Proof: See Covello (2000) (Lemma 2.6.8).

Lemma 2.4: (Jordan, Marggraf): Suppose that  is a finite set
and L is a primitive subgroup of Sym().

(i) If L contains a transposition, then L = Sym().
(ii) Suppose L contains a fours group which is transi-

tive on four points and fixes all the other points of . If |  |
> 9, then L > Alt().
Proof: See Wielandt (1964) (Theorem 13.3 and 13.5).

Proposition 2.5: Let  be a set and H = Sym(). Let 
1 m  , ,  be a partition of  into m subsets of the same

cardinality. Then the stabilizer L of   in H is isomorphic to

1Sym Sym    .
In  particular,  L  is  imprimitive  and     is  a  complete

block system of L.
Proof: See Covello (2000) (Theorem 3.5.1).

Corollary 2.6: Let  be a set and H = Sym(). Let K<H
be imprimitive and  be a block of K. Then the stabilizer in
H of the complete block system k k K      is isomor-
phic to Sym Sym    . In particular, K is isomorphic to
a subgroup of Sym Sym    .
Proof: See Covello (2000) (Corollary 3.5.2).

Lemma 2.7: Suppose p is a prime, n is a positive integer and
n n

p pT Syl Sym p    .  Then npZ T p   .
Proof:  See Saninta (2001) (Lemma 2.3.5).

Theorem 2.8: Let S be a Sylow p-subgroup of nSym p  ,
where p is a prime and n.  If p > 2, S has a unique abelian
normal subgroup of order 

-1npp  and this is an elementary
abelian p-group.
Proof: See Covello (1998) (Theorem 4.4.6).

Theorem 2.9: Let S be a Sylow p-subgroup of nH = Sym p ,
where p is a prime and n. Then the normalizer in H of S
is contained in the normalizer in H of every abelian normal
subgroup of S of order 

-1npp .
Proof: See Covello (1998) (Theorem 4.4.11).

Theorem 2.10: Let H = Sym(), with |  | = n, and let S
pSyl H . Let

-1
-1 1 0

t t
t tn k p +k p + +k p+k  ,
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with 0 jk p  , for all 0j t , , , be the p-adic decomposi-
tion of n. Then the normalizer B of S in H is given by

0 tB B B   ,
where,  for 0j t , , ,  Bj  is  the  normalizer  of  a  Sylow  p-
subgroup  of jSym   with  j    and j

j jk p  . In
particular,

0
-1

jk jt

j
j=

B S k p  

and the sets 0 1 t  , , ,  are the orbits of B on .
Proof: See Covello (2000) (Theorem 5.4.1).

Theorem 2.11: Let H = Sym() with np  . Let S
pSyl H   and set HB N S   . Then B is transitive on 

and every block of B has a length of power of p. Furthermore,
for 1 1i n , , , B has blocks of length pr, for all r = 1,...,n.
Proof: See Covello (2000) (Theorem 5.2.9).

Theorem 2.12: Let H = Sym(), with nkp   and 1 k p  .
Let pS Syl H    and set HB N S   . Then B is isomorphic
to the wreath product of B  by Sym k  , where B  is the
normalizer in nSym p   of a Sylow p-subgroup of nSym p  .
In particular,

! -1 nkB S k p  
and B is transitive on .
Proof:  See Covello (2000) (Theorem 5.3.1).

Theorem 2.13: Let  H = Sym(),  with  n    and  S
pSyl H  . Suppose that M is a primitive subgroup of G con-

taining the normalizer in H of S. If +2n p , then M = G.
Proof: See Covello (2000) (Theorem 5.5.2).

Corollary 2.14: Let H = Sym(), with n  , pS Syl H  
and HB N S   . Let -1

-1 1 0
t t

t tn k p +k p + +k p+k   be
the p-adic decomposition of n. Suppose that M is an impri-
mitive subgroup of H containing B. Then there exists 1 r t 
such  that rp n  and M is  isomorphic  to  a  subgroup  of

r rSym p Sym n p    . In particular, 0 1 -1 0rk k k    .
Proof: See Covello (2000) (Corollary 5.5.5).

Theorem 2.15: Let p be a prime, p 2, 3, and G Sym  ,
with p  . Suppose that pT Syl G    and GB N T   .
Then B is a maximal subgroup of G.
Proof: See Covello (2000) (Theorem 6.1.2).

Lemma 2.16: Let G Sym  , with n  , pT Syl G  
and GB N T   . Suppose that 0

m
1n k p k  , with 1a

and 0 11 k ,k p  , is the p-adic decomposition of n. Then
every transitive subgroup of G containing B is 2-transitive
on , such subgroups are primitive on .
Proof: See Covello (2000) (Lemma 6.5.1).

3. Main Results

We maintain the notation introduced in Section 1. The
aim of this section is to describe the structure of subgroups
in max G B , . We start examining some specific cases.  Re-
call that the normalizer of a Sylow p-subgroup of Sym(p) is
a maximal subgroup of .

Lemma 3.1: Let G Sym   with p  , where p is a
prime. Suppose that pT Syl G    and GB N T   . Then

max G B B  , .
Proof: If p = 2, 3, then 1pB G O G  ,  and there is nothing
to prove. So assume that p 2, 3. We know that pT C ,
where pC  is a cyclic group of order p. Since T is a normal p-
subgroup of B, we have that 1pO B   and Theorem 2.15
implies that B is a maximal p-local subgroup of G. Let N be
a maximal p-local subgroup of G with respect to B such that
N B . Then B N G   and 1pO N  . Using Theorem
2.15, N G , which contradicts the fact that 1pO G  . Thus
B is a unique maximal p-local subgroup of G with respect to
B, which completes the proof.

We  now  look  at  those  subgroups  in max G B ,
which act transitively on . Our next result concerns sub-
group in max G B , , where 23G Sym   .

Lemma 3.2: Let G Sym   with 23  . Suppose that
3T Syl G     and  GB N T   .  Then  3 3Sym Sym   

G B , .
Proof: Let 3 3L Sym Sym     . By Theorem 2.11, using
Corollary 2.6, we know that B L  and so L is a maximal sub-
group of G. Since, by Proposition 2.5, L is isomorphic to the
stabilizer of Sym(3) acting on

1, 2,3 , 4, 5,6 , 7, 8,9    

in G. Therefore, 3 3 GSym Sym N E      , where

1, 2,3 4, 5,6 7, 8,9E      .

Using Theorem 2.8, E is a unique elementary abelian normal
3-subgroup of order 33 of T. As GE N E  , we have that

3 1GO N E   . It follows that 3 3Sym Sym    GN E  
G B  , .

Lemma 3.3: Let G Sym   with 23  . Suppose that
3T Syl G    and GB N T   . If maxN G B  , , then N is

isomorphic to 3 3Sym Sym    .
Proof: Let 3 3L Sym Sym     . Since N is a subgroup of
G containing B, by Theorem 2.13, we may assume that N is
imprimitive.  By  the  transitivity  of  B,  it  follows  that  every
subgroup containing B can only have blocks of length 1, 3
and 32. So every nontrivial block of N must have length 3
and by Corollary 2.6, N is isomorphic to a subgroup of L.
By Lemma 3.2, we have that 3 3Sym Sym    G B  , ,
hence 3 3N Sym Sym     .



P. Patthanangkoor & S. Dhompongsa / Songklanakarin J. Sci. Technol. 35 (1), 107-113, 2013110

Theorem 3.4: Let G Sym   with 3m  , where m
such that 1m . Suppose that 3T Syl G    and GB N T   .
If maxN G B  , , then N leaves invariant a block system
with blocks of size 3. In particular, N is isomorphic to

-13 3mSym Sym    .
Proof: We have that N is transitive on . We argue by induc-
tion on m starting with the case m = 2. For m = 2, the lemma
clearly holds. Since N is a subgroup of G containing B, by
Theorem 2.13, we may assume that N is imprimitive. Let

1 2 k       be a non-trivial block system invariant
under N. Since N is transitive on , it follows that N acts
transitively on  . Set t k  . Then it    for 1i= k, ,
and so t  is a power of 3. Set GM = Stab   . Then

T B N M Sym t Sym k        .
For 1i= k, , , put i iK Sym    and 1 2 kK = K K K   .
Then for 1i= k, , , as iK K M  , 31 i i iR T K Syl K     

3i i iR T K Syl K      , 1 2 3kT K R R R Syl K         and i i K iB B K N R    
ii i K iB B K N R     . Since t is a power of 3, Ri is transitive on i  for all

i. Suppose that 3 1O N K   . Since 3 3O N N K O N K      ,

3 3O N N K O N K       , this gives 3 1O N N K    , .  As iR N K  ,
for all i, 3O N   centralizes Ri and because of the structure
of Sym t Sym k     this forces 3O N K  . But now 3 3O N K O N    

3 3 1O N K O N     , a contradiction. Therefore 3 1O N K   .
Let i iK K :  be the projection map of K onto Ki

and set i iL N K    . We see that i i i iR B L K    and
that Li is transitive on i. If 3 1iO L  , then 3O N K K  

1 jjO N K K   .  For all n N , as 3O N K N   , we then have
3 3 1

n n
jjO N K O N K K        . Let 1l k  , , . WeWe

may choose an n N  so as n
i l  . Therefore 1 1

n
j jj jK K    

1 1
n

j jj jK K     , hence it follows that 3 1
1

1
k

jj
i=

O N K K     ,

a contradiction. Hence 3 1iO L  . So i i iL K B  ,  for all
1i= k, , . Let 1 max 1 1H K B  ,  be such that 1 1H L .

Since H1 is transitive on 1, by induction H1 leaves invariant
a block system with blocks of size 3. Then H1 contains E1,
a normal elementary abelian 3-subgroup of order 1 3 3

3 3
t

 .
Hence 1 1E L  and it follows that 1E N K . Put E E 

1
NE E  . By the Frattini argument, NN N T K N K      .

So 1
NN T KE E N K      . Since N is transitive on  ,

NN T K    is transitive on  . Let Ng N T K     be such
that 1

g
jR R  for some j.  Since 1 1 1

gE R E ,  is an elementary
abelian normal 3-subgroup of Rj of order 

3
3

t
.  Therefore,

E is an elementary abelian normal 3-subgroup of T of order
-13 33 3

mkt
 .  Thus, using Theorem 2.8, up to conjugacy we

see that

1, 2,3 4, 5, 6 3 2 3 1 3m m mE       , , .

By Theorem 2.9, we have that GB N E   , thus, as GN E 
> N and maxN G B  , , GN E Ν  . Therefore N leaves
invariant a block system with blocks of size 3. This completes
the proof of Theorem.

Theorem 3.5: Let  G Sym    with  3mk   ,  where
m k,  such that k < p  and 1m> . Suppose that T Syl G  

3T Syl G    and GB N T   . If maxN G B  , , then N is iso-
morphic to -13 3mSym Sym Sym k        .
Proof: Since  N  is  a  subgroup  of  G  containing  B  and,  by
Theorem  2.12,  3mSymB N T Sym k        where  3T Syl Sym   

3 3mT Syl Sym    , so we have that, using Corollary 2.14, N <
3mN Sym Sym k     . Therefore, by Theorem 3.4,

1
max 33 3 3 m

m m
SymN Sym Sym Sym N T

         ),

and N  is a maximal subgroup of 3mSym  . Thus, by Lemma
2.3,  N Sym k    is  a  maximal  subgroup  of  3mSym Sym k   

Sym Sym k    . It follows that N N Sym k   . As 3 1O N   ,
3 1O N Sym k    and hence N Sym k G B   , . There-

fore, N= N Sym k  .

Lemma 3.6: Let G Sym   with 3 1m   , where m.
Suppose that 3T Syl G    and GB N T   . Then every proper
subgroup  of  G  containing  B  is  contained  in  StabG()

3mStab Sym     , fixes  .
Proof: We know that T and B fix a unique point   and
operates transitively on   . Suppose that GL Stab   
and  G L B  .  Then  L  is  2-transitive  on   ,  and,  as  B
contains a transpositions, Lemma 2.4 (i) implies that L=G.
Thus,  all  proper  subgroups  of  G  which  contain  B  are
contained in 3m

GStab Sym    .

Lemma 3.7: Let G Sym   with 3 1m   , where m .
Suppose that 3T Syl G   , GB N T    and put GH = Stab  ,
fixed  . Then max maxG B H B   , ,  .
Proof: Let maxN G B  , . Since B is transitive on  ,
Lemma 3.6 implies that N  is contained in 3mH Sym   . It
follows that max maxG B H B   , ,  . But H G , so that

max maxH B G B   , ,   and the lemma is complete.

Lemma 3.8: Let G Sym   with  1 03mk k     is the
3-adic decomposition of n.  Suppose that 3T Syl G    and

GB N T   . If 5n  and maxN G B  , , then N <  Sym

1 03mN Sym k Sym k      .
Proof: Let 1 03mU Sym k Sym k      . By Theorem 2.10,
U  contains  B  and  we  know  that  U  is  a  maximal  subgroup
Assume that N U . Then N fuses the two orbits of U on  .
Thus, by Lemma 2.16, N is primitive on  . Then Theorem
2.13 implies that N G .  Hence N U .

Theorem 3.9: Let G Sym   with 1 03mk k     is the
3-adic decomposition of n. Suppose that 3T Syl G   and B =

GB N T   . If 5n  and maxN G B  , , then  0N N Sym k   
where N  is a maximal 3-local subgroup of 1 3mSym k    with
respect to 1 3mB Sym k    .
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Proof: By Lemma 3.8, N U V   where 1 3mU Sym k   
and 0V Sym k   . Using Proposition 2.1, T T U T V    

T T U T V      with 3T U Syl U    , 3T V Syl V     and B =
B B U B V      with UB U N T U     , VB V N T V    

VB V N T V     . As 1T V   and 31 O N T   , we have 1 
3 31 O N T U O N U        . Since N U V  , 3O N 

O N U N    and so 3 31 O N U O NV      . Therefore NV
NV G B  ,  and, hence, as maxN G B  , , N NV . So V N

which implies, using Dedekinds’ Modular Law that N =
N N U V   . Now, as N U U B U    , , we may choose

maxN U B U   ,  with N U N  . Since 31 O N  

3 3O N O NV      and B NV , NV G B  ,  and so, as N =
N N U V NV    , N NV .

Our next result concerns subgroups in max G B ,
which do not act transitively on  .  Recall that if n =

-1
-1 1 03 3 3t t

t tn k +k + +k +k    , where 
jk  is an integer with

0 3jk  , for all 0 1j t , , , , is the 3-adic decomposition of
n, then T has 1t  orbits on  . Let 0 1 t  , , ,  denote
these orbits where 3i

i ik    for 0 1i t  , , , . Note, that

0 1 tT T T T    , where 3i iT Syl Sym    , 0 1i t  , , ,

and, moreover, each iT  is the direct product of ik  factors
each isomorphic to a Sylow 3-subgroup of G Sym  ,
with 3i   (see Findlay, 1904).

Theorem 3.10: Let G Sym  , with n  , 3T Syl G  
and GB N T   .  Let -1

-1 1 03 3 3t t
t tn k +k + +k +k    ,

where 0 3jk  , for all 01j t , , , , be the 3-adic decompo-
sition of n and 0 1 t    , with 3 j

j jk   , for
all 0 1j t , , , , be the corresponding partition of   into
B-orbits. Let J be a proper subset of 0 1I t  , , , . Set

i
i I

  , U Sym   and V Sym  . Suppose that

maxN G B  ,   and N U V  .
(i): If 3 1O N U   ,  then  UN N V    where

maxUN U B U   , .
(ii): If 3 1O N V   ,  then  VN U N    where

maxVN V B V   , .
Proof: First we examine the case when 3 1O N U   . Since
N U V  , 3O N U N    and so 3 31 O N U O NV      .
Therefore NV G B  ,  and hence, as maxN G B  , ,
N NV . So V N  which implies, using Dedekinds’ Modu-
lar Law that N N U V   . Now, as N U U B U    , ,
we may choose maxUN U B U   ,  with UN U N  .
Since 3 31 U UO N O N V     and UB N V , UN V G B  , ,
and so, as UN N U V N V    , UN N V . If we have

3 1O N V   , the same argument yields VN U N   for
some maxVN V B V   , .

Theorem 3.11: Let the hypothesis of Theorem 3.10 holds.
Suppose that 0 1jk   for all 01j t , , , . Then either

UN N V  , where maxUN U B U   ,  and UN  is tran-
sitive on  , or VN U N  , where maxVN V B V   ,
and VN  is transitive on  .
Proof:  Thanks  to  the  study  carried  out  in  Theorem  3.10,
we only need to eliminate the situation 3 31O N U O N V     

3 31O N U O N V       . From

3 3 3 1U UO N T O N T O N U          ,

and

3 3 3 1V VO N T O N T O N V          , ,

where 3UT Syl U  , 3VT Syl V  , we deduce that 3O N Z T   .
Therefore, 3 3G G GC Z T C O N N O N N          .

Let 31 O N    , so Z T   . For any g N ,

3
g O N N      and hence g Z T    . Since i

i I
T T




where, for 3i ii I T Syl Sym    , , i
i I

Z T Z T


    . By

Lemma 2.7, i iZ T    where i  has order 3 and cycle

type 
-133

i
. Now let 1 Z T     with   . So k

k K
 


 

and k
k K

 


  , where K K I,  with K K   and conse-

quently, as 1 > 1t t -  ,   and   have different cycle

types.  Therefore   g    and  then  GN C    .  Since

3G GZ C O C         ,  GC G B   , .  This
implies that GN C     for all 31 O N    , as N

maxN G B  , . We see that

kG Sym k i
k K i I\K

C C Sym  
 

       

and so k G| k K Z C        . In particular, k | k K   

3 3k G| k K O C O N          .  Now either 1k U| k K T     or
1k V| k K T     because 3 U VO N T T T    , a con-

tradiction.
Aiming for a contradiction we assume UN  is not tran-

sitive of  . Thus UN X Y U    where i
i K

=

 , X =

X = Sym    and Y = Sym    for some K J . Applying
the previous part to maxUN U B U   ,  we deduce that
either U XN N Y   where maxXN X B X   ,  or  NU =

U YN X N    where  maxYN Y B Y   , .  Without  loss  of
generally we assume the former to hold. Since 3 1XO N 
and XT N Sym    , clearly 3G XN O N G B    , .
However we have that

3U X X G XN = N V N Y V N Sym N O N            ,
a contradiction. Therefore we conclude that UN  is transitive
on   and hence the proof of the theorem is complete.
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Below we give some examples of the subgroups in

max G B ,   which  illustrate  some  of  the  results  proved
earlier. Recall that G Sym   with n  , 3T Syl G  
and GB N T   .

If 3n , then 1, 2, 3)T    with 3T   and B =
1, 2, 3), 2, 3)B G     with 6B   and 3 1O B T   . There-

fore maxG B B G B    , ,  .
If 4n , then 1, 2, 3)T    with 3T   and B =

1, 2, 3), 2, 3) 3B Sym      with 6B   and 3 1O B T   . Since
1, 2, 3)   and 2, 4, 3)   are Sylow 3-subgroups of G

such that 1, 2, 3) 2, 4, 3) 1    , so 3 1O G   and we
have that G G B  , . Therefore 3G B Sym    ,

maxG B Sym G B     , ,  .
If 5n , then 1, 2, 3)T     with 3T   and B =

1, 2, 3), 4, 5), 2, 3)B       with  12B    and  3 1O B T   .
Therefore the subgroup in max G B ,  is 3B Sym  

3 2B Sym Sym     .
If 6n , then 1, 2, 3), (4, 5, 6T    with 9T   and

4, 5, 6 1, 2, 3 4, 5B      , 2, 3 4, 6   , 1, 4, 3, 6 2, 5  

with 72B  . We also have that the subgroup in max G B ,
is 3 2B Sym Sym     .

If 9n , then 1, 2, 3 4, 5, 6 7, 8, 9T       , 1, 4, 7 
1, 4, 7 2, 5, 8 3, 6, 9     with 81T   and 1, 5, 9 2, 6, 7 3, 4, 8   ,

7, 8, 9 4, 5, 6 1, 2, 3     , 4, 9 5, 7 6, 8    2, 3 4, 8, 5, 7, 6, 9  

with 324B  . We have that G has a unique maximal 3-local
subgroup with respect to B , which is 3 3N Sym Sym    

3 3 GN Sym Sym N E       , where 1, 2, 3 4, 5, 6 7, 8, 9E        . That is,
1, 2, 3 1, 2 4, 5, 6 4, 5 7, 8, 9 7, 8N             , 1, 4, 7 

1, 4, 7 2, 5, 8 3, 6, 8    , 1, 4 2, 5 3, 6     with 1296N  .
If 27n  and

1 1, 2, 3x   ,

2 1, 4, 7 2, 5, 8 3, 6, 9x     ,

3 1,10,19 2,11, 20 3,12, 21x    

        4,13, 22 5,14, 23 6,15, 24   

 7,16, 25 8,17, 26 9,18, 27    .
are  its  generators.  The  normalizer  B  of  T  in  G  can  be
described as 1 2 3B T h h h  , , , with

1 2, 3 5, 6 8, 9 11,12 14,15 17,18 20, 21 23, 24 26, 27h           ,

2 4, 7 5, 8 6, 9 13,16 14,17 22, 25 23, 26 24, 27h         ,

3 10,19 11, 20 12, 21 13, 22 14, 23 15, 24 16, 25 17, 26h          

        18, 27  .

We have that the subgroup in max G B ,  is N =
3 9N Sym Sym     .

Studying maximal p-local subgroups of the symmetric
groups where p is a prime number is an interesting task for
future research.
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