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Abstract

The subgroups in the set N, (G.B) consisting of all maximal 3-local subgroups of G = Sym(n) with respect to B,
the normalizer of a Sylow 3-subgroup of G in G, is investigated. Additionally, the structure of the subgroups in N, (G.B)

was determined.
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1. Introduction

Maximal 2-local geometries of the sporadic simple
groups were first introduced by Ronan and Smith (1980).
These geometries were inspired by the theory of buildings
for the groups of the Lie type, which was developed by Tits
(1956, 1974) in the 1950s. For G, a group of the Lie type with
the characteristic p, its building is a geometrical structure
whose vertex stabilizers are the maximal parabolic subgroups,
which are also p-local subgroups of G containing a Sylow p-
subgroup. It is well known that each building has a Coxeter
diagram associated with it. Buekenhout (1979) generalized
these concepts to obtain diagrams for many geometries
related to sporadic simple groups. Ronan and Smith (1980)
pursued these ideas further and introduced the maximal 2-
local geometries. Other invariants on buildings for the spo-
radic simple groups have been defined, notably the minimal
parabolic geometries as described by Ronan and Stroth
(1984).

We now define what we mean, generally, by a minimal
parabolic subgroup. Suppose that H is a finite group and p is
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a prime dividing the order of H. Let S be a Sylow p-subgroup
of H and B the normalizer of S in H. A subgroup P of H
properly containing B is said to be a minimal parabolic sub-
group of H with respect to B if B lies in exactly one maximal
subgroup of P.

The definition of minimal parabolic subgroups in
terms of the normalizer of a Sylow p-subgroup is given in the
works of Ronan and Smith (1980) and Ronan and Stroth
(1984), in which they study minimal parabolic geometries for
the 26 sporadic finite simple groups. The connection between
minimal parabolic subgroups and group geometries is best
illustrated in the case of groups of the Lie type in their defin-
ing characteristics. For a group of Lie type, its minimal para-
bolic system is always geometric. This is not always the case
in general (see Ronan and Stroth, 1984). Many studies on the
minimal parabolic system of special subgroups have been
done over the years. For example, Lempken et al. (1998) de-
termined all the minimal parabolic subgroups and system for
the symmetric and alternating groups, with respect to the
prime p = 2. Later, Covello (2000) has studied minimal para-
bolic subgroups and systems for the symmetric group with
respect to an odd prime p dividing the order of the group.
The main results are about the symmetric groups of degree
p’; she also established some more general results. More
recently, Rowley and Saninta (2004) investigated the maximal



108

2-local geometries for the symmetric groups. Furthermore,
Saninta (2004) considered the relationship between the maxi-
mal 2-local subgroups and the minimal parabolic subgroups
for the symmetric groups.

In this paper we shall investigate maximal 3-local sub-
groups for the symmetric groups. Throughout all groups
considered, and in particular all our sets, will be finite. Let Q
be a set of cardinality n > 1. Set G=Sym(Q), the symmetric
group on the finite set Q. We also use Sym(m) or S, to denote
the symmetric group of degree m. Now let T'be a fixed Sylow
3-subgroup of G and B be the normalizer of 7'in G.

Now we define

N(G.B)={H|B<H<G and 03(H)¢1}

where O,(H) is the largest normal subgroup of H whose order
is a power of 3. Notice that the subgroup O,(H) is well
defined. Clearly, O,(H) is a characteristic subgroup of H.
Furthermore, O,(H) can be characterized in terms of the
Sylow 3-subgroups of H. By Proposition 1.2.2 of Covello
(2000), is equal to the intersection of all the Sylow 3-sub-
groups of H. Since T is the unique Sylow 3-subgroup of
B=N4(T), so Oy(B)=T=#1 and hence Be N (G.B). A
subgroup in N (G.B) is said to be a 3-local subgroup of G
with respect to B and a subgroup in N (G.B), which is maxi-
mal under inclusion is said to be a maximal 3-local subgroup
of G with respect to B. We denoted the collection of maximal
3-local subgroups of G with respect to Bby N, (G.B) . The
aim is to study the subgroups in N, (G.B).

However, the general case looks already from the first
approach more complicated. In fact, a Sylow 3-subgroup of
the symmetric group is not self-normalized and significant
work needs to be done in understanding the structure of the
normalizer. For instance, in the case of Sym(3%), there is an
isomorphism between the lattice of subgroups of a cyclic
groups of order 2 and the lattice of certain over groups of the
normalizer and a similar correspondence holds also for the
case Sym(3%), with m>2.

2. Preliminary Results
This section gathers together results that will be used.

Proposition 2.1: Let A be a group and suppose that H=A4xB.
Let SeSyl,(H), where p is a prime. Then §=(SNA4)x
(SNB) and

Ny (8)=(Ny (S)NmA)x(Ny ()N B),

with Ny (S)mA=N, (SN A4) and N, (S)NB=Nyz(SNB).
Proof: See Covello (2000) (Proposition 1.1.10).

Lemma 2.2: Suppose that H = XxY is a direct product of
groups X and Y and suppose that S e Sy/ p(H ) wherep isa
prime which divides the order of both X'and Y. Assume that L
is a subgroup of H which contains B=N,(S). Then L =
(LN X)x(LNY), with LnX=(BNX)* and LNY=
(BNY)E.
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Proof: See Lempken ef al. (1998) (Lemma 2.5).

We denoted the wreath product of L by R, where L
and R are groups, by L ! R.

Lemma 2.3: Suppose that R is a transitive permutation group
of degree n. Let H=L{! R and P=K ! R, with L maxi-
mal subgroup of K, and let p be a prime dividing | K |. If L
contains the normalizer of a Sylow p-subgroup of K, then H
is a maximal subgroup of P.

Proof: See Covello (2000) (Lemma 2.6.8).

Lemma 2.4: (Jordan, Marggraf): Suppose that X is a finite set
and L is a primitive subgroup of Sym(Z).

(i) IfL contains a transposition, then L = Sym(X).

(i)) Suppose L contains a fours group which is transi-
tive on four points and fixes all the other points of £. If | Z |
>9, then L > Alt(Y).

Proof: See Wielandt (1964) (Theorem 13.3 and 13.5).

Proposition 2.5: Let Q be a set and H = Sym(Q). Let B=
{€Q....Q,} be a partition of Q into m subsets of the same
cardinality. Then the stabilizer L of B in H is isomorphic to

Sym(€y) L Sym(B).

In particular, L is imprimitive and B is a complete
block system of L.
Proof: See Covello (2000) (Theorem 3.5.1).

Corollary 2.6: Let Q2 be a set and H = Sym(Q2). Let K<H
be imprimitive and I" be a block of K. Then the stabilizer in
H of the complete block system B.={I'|keK} is isomor-
phicto Sym(I") ¢ Sym(BL). In particular, K is isomorphic to
a subgroup of Sym(T") ¢ Sym(B) .

Proof: See Covello (2000) (Corollary 3.5.2).

Lemma 2.7: Suppose p is a prime, 7 is a positive integer and
Ty €Syl,(Sym(p")). Then |Z(T )|=p.
Proof: See Saninta (2001) (Lemma 2.3.5).

Theorem2.8: Let S be a Sylow p-subgroup of Sym(p"),
where pisaprimeand n€N. Ifp>2, Shasa unique abelian
normal subgroup of order p” " and this is an elementary
abelian p-group.

Proof: See Covello (1998) (Theorem 4.4.6).

Theorem2.9: Let Sbea Sylow p-subgroup of H=Sym(p"),
where p is a prime and # €N. Then the normalizer in H of §
is contained in the normallifler in H of every abelian normal
subgroup of S of order p? .

Proof: See Covello (1998) (Theorem 4.4.11).

Theorem 2.10: Let H= Sym(Q), with | Q |=n, and let Se
Syl,(H ). Let

n=kp' +kt_1pt'1 +eotk ptik,
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with 0<k; <p , forall j=0.....7, be the p-adic decomposi-

tion of n. Then the normalizer B of S'in H is given by
B=Byx---xB,,

where, for j=0....1, B, is the normalizer of a Sylow p-

subgroup of Sym(€;) with Q,cQ and ‘Q ‘—k p’. In

particular,

t k,‘./
|BI=SITTk;'(p-1)
J=0

and the sets €3,.€).....Q), are the orbits of B on Q.
Proof: See Covello (2000) (Theorem 5.4.1).

Theorem2.11: Let H = Sym(Q) with |Q|=p". Let Se
Syl,(H) and set B=N,(S). Then B is transitive on Q
and every block of B has a length of power of p. Furthermore,

for i=1....,n—1, Bhasblocks oflength p’, for all r=1....,n
Proof: See Covello (2000) (Theorem 5.2.9).

Theorem2.12: Let H=Sym(Q), with |Q|=kp" and 1<k < p.

Let SeSyl,(H) and set B=N,(S). Then B is isomorphic
to the wreath product of B by Sym(k), where B is the
normalizer in Sym(p") ofa Sylow p-subgroup of Sym(p").

In particular,

|BI=|S| k! (p-1)"*

and B is transitive on Q.
Proof: See Covello (2000) (Theorem 5.3.1).

Theorem2.13: Let H = Sym(Q), with |Q|=n and Se
Syl,(H ) . Suppose that M is a primitive subgroup of G con-
taining the normalizer in H of S. If n> p+2,then M=G.
Proof: See Covello (2000) (Theorem 5.5.2).

Corollary 2.14: Let H= Sym(Q) with \Q\ n,SeSyl (H)
and B=N,(S). Let n=k,p' +k,_ p' Ty +k1p+i'

the p-adic decomposition of 7. Suppose that M is an impri-
mitive subgroup of H containing B. Then there exists 1<r<¢
such that p” ‘n and M is isomorphic to a subgroup of
Sym(p" N Sym(n/pr) .In particular, ky =k =---=k, ; =0.
Proof: See Covello (2000) (Corollary 5.5.5).

Theorem 2.15: Let pbeaprime, p#2,3,and G=Sym(QQ),
with |Q|=p. Suppose that 7€ Sy/,(G) and B=Ng(T).
Then B is a maximal subgroup of G.

Proof: See Covello (2000) (Theorem 6.1.2).

Lemma2.16: Let G =Sym(Q), with |Q| n, TeSyl,(G)
and B=Ng(T). Suppose that n=k,;p" +k0, with a>l
and 1<ky,k <p, is the p-adic decomposition of n. Then
every transitive subgroup of G containing B is 2-transitive
on Q, such subgroups are primitive on Q.

Proof: See Covello (2000) (Lemma 6.5.1).
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3. Main Results

We maintain the notation introduced in Section 1. The
aim of this section is to describe the structure of subgroups
in NV,,,,(G.B). We start examining some specific cases. Re-

call that the normalizer of a Sylow p-subgroup of Sym(p) is
amaximal subgroup of .

Lemma3.1: Let G=Sym(Q) with |Q|=p, where p is a
prime. Suppose that T'e€Syl,(G) and B=Ng(T). Then
Ny (G.B)={B}.

Proof: Ifp =2, 3, then B=G, 0,(G)#1 and there is nothing
to prove. So assume that p¢2 3. We know that 7=C,,
where C is a cyclic group of order p. Since T'is a normal p-
subgroup of B, we have that O,(B)#1 and Theorem 2.15
implies that B is a maximal p-local subgroup of G. Let N be
a maximal p-local subgroup of G with respect to B such that
N#B.Then B<N<G and O,(N)#1. Using Theorem
2.15, N=G , which contradicts the fact that O,(G)=1. Thus
B is a unique maximal p-local subgroup of G with respect to
B, which completes the proof.

We now look at those subgroups in N, (G.B)
which act transitively on Q. Our next result concerns sub-
groupin N, (G.B), where G=Sym(3%).

2 Suppose that
Ng(T). Then Sym(3)lSym(3)e

Lemma3.2: Let G=Sym(Q) with |Q|=3
TeSyl;(G) and B=
N(G.B).

Proof: Let L=Sym(3)? Sym(3). By Theorem 2.11, using
Corollary 2.6, we know that B< L and so L is a maximal sub-
group of G. Since, by Proposition 2.5, L is isomorphic to the
stabilizer of Sym(3) acting on

{{1,2,3},{4,5,6},{7,8,9} }
in G. Therefore, Sym(3) { Sym(3)=N;(E), where

E=((1,23),(4,5,6).(7.8.9)).

Using Theorem 2.8, E is a unique elementary abelian normal
3-subgroup of order 3’ of 7. As E <N (E), we have that
O;(Ng(E))#1. 1t follows that Sym(3)1Sym(3) =Ng(E)
eN(G.B).

Lemma3.3: Let G=Sym(Q) with |Q]=3. Suppose that
TeSyl(G) and B=Ng(T).If Ne N, (G.B), then Nis
isomorphic to Sym(3) ! Sym(3).

Proof: Let L=Sym(3)! Sym(3). Since N is a subgroup of
G containing B, by Theorem 2.13, we may assume that N is
imprimitive. By the transitivity of B, it follows that every
subgroup containing B can only have blocks of length 1, 3
and 3°. So every nontrivial block of N must have length 3
and by Corollary 2.6, N is isomorphic to a subgroup of L.
By Lemma 3.2, we have that Sym(3)? Sym(3) e N'(G.B),
hence N =Sym(3) ! Sym(3).
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Theorem3.4: Let G=Sym(Q) with |Q|=3", where meN
such that m>1. Suppose that T €Sy5(G) and B=N(T).
If Ne N, (G.B), then N leaves invariant a block system
with blocks of size 3. In particular, N is isomorphic to
Sym(3) 1 Sym(3" ).
Proof: We have that N is transitive on Q. We argue by induc-
tion on m starting with the case m = 2. For m = 2, the lemma
clearly holds. Since N is a subgroup of G containing B, by
Theorem 2.13, we may assume that N is imprimitive. Let
B={A,,A,,...,A;} beanon-trivial block system invariant
under N. Since N is transitive on Q, it follows that N acts
transitivelyon 3. Set #=|Q|/k . Then ¢=|A, | for i=1...k
and so ¢ is a power of 3. Set M = Stab;(B). Then
T<BSN<M=Sym(t)! Sym(k).
For i=1.....k,put K,=Sym(A,) and K=K xK,x---xK .
Then for i=l...k,as K,;<K<aM 1R =TnNK,eSyl,
(K;), TnK= R1><R2 kaeSyl3(K) and B;=BnNK;=
N (R;) . Sincetis apower of 3, R, is transitive on A, for all
i. Suppose that O;(N)NK=1. Since [O;(N).NNK]<O;l
(N)NK, this gives [O5(N).NNK]=1. As R<NNK,
for all i, Oy(N) centralizes R, and because of the structure
of Sym(t) 2 Sym(k) this forces O L (N)<K . But now O(N)
NK =0;(N)#1, a contradiction. Therefore O;(N)NK #1.
Let ¢;: K—K; be the projection map of K onto K,
and set L;=¢,(NNK). We see that R, <B,<L,<K; and
that L, is transitive on A, If O5(L;)=1, then O;(NNK)<
H,¢1K Forall neN ,as O (NmK)<1N we then have
03(NmK) 03(NmK) <(H1¢1K ) Letle{l... .k} . We
may choose an n€N soas A;=A, . Therefore (H_MK_,)”

k
=[1,.K; , hence it follows that O;(NNK)<(I],,,K;)=1,
i1

Jj#1
a contradiction. Hence Os(L;)#1.So L, e N'(K;.B;) for all
i=l...k. Let HeN,,(K,.B) be such that H,>L,.
Since H, is transitive on A , by induction /7, leaves invariant
a block system with blocks of size 3. Then /, contains E,

anormal elementary abelian 3-subgroup of order 3‘ 3 _ t/ 3

Hence E, <L, and it follows that E\<INNK . Put E—
(E ). By the Fratt1n1 argument, N = N vITNK)YNNK).

So E-(EINN(TN()>SNF\K . Since N is transitive on B,
Ny(T'nK) istransitive on B. Let geNy(TNK) be such
that R} =
abelian normal 3-subgroup of R, of order 3/ 3. Therefore,

E is an elementary abelian normal 3-subgroup of T of order
kt /3 -1
=3’ . Thus, using Theorem 2.8, up to conjugacy we

see that
E=((,2,3),(4,5,6),.. .,(3'" -2,3"-1,3" ).

By Theorem 2.9, we have that B<N;(E), thus, as N;(E)

>Nand NeN,, (G.B), N;(E)=N . Therefore N leaves
invariant a block system with blocks of size 3. This completes
the proof of Theorem.

R for somej. Since E; <R, E1 is an elementary
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Theorem3.5: Let G=Sym(Q) with |Q=k-3", where
m,keN such that k<p and m>1. Suppose that T €
Syl;(G) and B=N4(T).1f Ne N, (G.B), then Nis iso-
morphic to (Sym(3) Sym(3™1)) ¢ Sym(k).

Proof: Since N is a subgroup of G containing B and, by
Theorem 2.12, B=Ng (3,”)(T) ! Sym(k) where T eSyl,
(Sym(3™)), so we have that, using Corollary 2.14, N <
Sym(3") ! Sym(k) . Therefore, by Theorem 3.4,

N=Sym(3)2 Sym(3"™ )€ Ny (Sym(3™ Ny o (T))

and N is a maximal subgroup of Sym(3™). Thus, by Lemma
2.3, NU1Sym(k) is a maximal subgroup of Sym(3")?
Sym(k). 1t follows that N<N Sym(k). As Oy(N)#1,
O,(N ! Sym(k))#1 and hence N ! Sym(k)e N'(G.B). There-
fore, N=N{ Sym(k).

Lemma3.6: Let G=Sym(Q) with |Q|=3" +1, where meN.
Suppose that T € Sy,(G) and B=Ng;(T'). Then every proper
subgroup of G containing B is contained in Stab (w)
=Sym(3™), fixes weQ.

Proof: We know that T and B fix a unique point @€ and
operates transitively on Q —{w}. Suppose that L £Stab;(®)
and G>L>B. Then L is 2-transitive on 2, and, as B
contains a transpositions, Lemma 2.4 (i) implies that L=G.
Thus, all proper subgroups of G which contain B are
contained in Stab;(w)=Sym(3™).

Lemma3.7: Let G =Sym(Q) with |Q|=3"+1, where meN.
Suppose that T e Sy, (G), B—NG(T) and put H =Stab; (o),
fixed 0€Q. Then N, (G.B)=N,, (H.B).

Proof: Let Ne N, (G.B). Since B is transitive on Q—{w},
Lemma 3.6 implies that N is contained in H =Sym(3"). It
follows that N, (G.B)c N, (H.B). But H<G, so that

Nyax(H.B)YS N, (G.B) and the lemma is complete.

max

Lemma3.8: Let G=Sym(Q) with |Q|=k,-3" +k, is the
3-adic decomposition of n. Suppose that 7' Syl;(G) and
B=Ng(T).If n>5 and NeN,,, (G.B), then N < Sym
(k3" )xSym(ky).

Proof: Let U =Sym(k,-3")xSym(ky) . By Theorem 2.10,
U contains B and we know that U is a maximal subgroup
Assume that N €U . Then N fuses the two orbits of Uon Q.
Thus, by Lemma 2.16, N is primitive on €2. Then Theorem
2.13 implies that N=G. Hence N<U .

Theorem3.9: Let G =Sym(Q) with |Q|=k, -3" +k, is the
3-adic decomposition of n. Suppose that T € Syl;(G) and B=
Ng(T).If n=5 and Ne N, (G.B),then N=NxSym(k,)
where N isamaximal 3-local subgroup of Sym(k,-3") with
respect to BNSym(k,-3").

max
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Proof: By Lemma 3.8, N<UxV where U =Sym(k,-3")
and V' =8Sym(k,). Using Proposition 2.1, T'=(T nU )x
(TV) with TNU eSyl,(U), TNV eSyly(V') and B =
(BAU)(BAV) with BAU=N,(T~U), BAV=N,
(TV). As TV =1 and 1#0;(N)<T, we have 1 #
O;(N)NTNU) < O;(N)NU. Since N<UXV, O5(N)N
U< N and so 1#£05(N)NU<O;(NV'). Therefore NV e
N(G.B) and, hence, as Ne N,,,(G.B), N=NV .So V<N
which implies, using Dedekinds’ Modular Law that N =
(NNU)Y . Now, as NnU e N (U,BNU), we may choose
NeN,, (UBNU) with NnU<N . Since 1£05(N)<
Oy;(NV) and BSNV, NVeN(G.B) and so, as N =
(NNU)V<NV,N=NV.

Our next result concerns subgroups in N,.,.(G.B)
which do not act transitively on €. Recall that if n =
k, .3t-|-kt_l 3! +---tky-3+k,, where k_is an integer with
OSkj <3,forall j=0.,1,...¢,isthe 3-adic decomposition of
n, then T has #+1 orbits on Q. Let €).€.....Q3, denote
these orbits where ‘Qi‘zki-f for i€{0,1,....t}. Note, that
T'=T,xT,x---xT, , where T, e Syl;(Sym(})), i€{0.1.....t}
and, moreover, each T} is the direct product of k; factors
each isomorphic to a Sylow 3-subgroup of G=Sym(A),
with |A|=3" (see Findlay, 1904).

Theorem 3.10: Let G =Sym(Q), with |Q|=n, TeSyL(G)
and B=Ng(T). Let n=k, -3 +k -3+ -tk 3+k,,
where 0<k; <3, for all J=0.1.....t, be the 3-adic decompo-
sition of n and Q=0 VO U---LUQ,, with ‘Qi‘=k_i-3'i, for
all j=01....z, be the corresponding partition of Q into
B-orbits. Let J be a proper subset of /={01....¢} . Set
A=JQ, U=Sym(A) and ¥ =Sym(Q-A). Suppose that
NER, (G.B) and NSUxXV |

(@ If O5(N)NU=#1, then N=NyxV where

Ny eN . (UBNU).
@) If O;(N)nV#1, then N=UxN, where
N, eN, .. V.BOV).

Proof: First we examine the case when O;(N)NU#1. Since
NSUXV, O;(N)NU <N and so 1#05(N)NULO5(NV).
Therefore NV € N'(G.B) and hence, as Ne N, (G.B),
N =NV .So V<N which implies, using Dedekinds’ Modu-
lar Law that N=(NNU)V.Now,as NNnU e N (U.BNU),
we may choose Ny €N, (UBNU) with NNU<N, .
Since 1#0y(Ny)<O5(NyV) and BN, V, N,V eN(G.B),
and so, as N=(NNU)V<N,V, N=N, V. If we have
O;(N)nV #1, the same argument yields N=UxN,, for
some Ny, e N, (V.BNV).

Theorem3.11: Let the hypothesis of Theorem 3.10 holds.
Suppose that 0<k;<l for all j=01l...r. Then either
N=NyxV ,where N, e N, (U.BNU) and Ny, is tran-
sitiveon A, or N=UxN,,, where N, e N, (V.BNV)
and Ny, is transitiveon Q—A .

Proof: Thanks to the study carried out in Theorem 3.10,

we only need to eliminate the situation O;(N)NU=1=
O;(N)NV . From

[O5(N). T, 1S O;(N)N T, <O5(N)NU =1
and

[O;(N).T, 1< O;(N)NT, <O;(N)nV =1,
where T, € Syl;(U), T, eSyl;(V), we deduce that O;(N)<Z(T).
Therefore, C;(Z(T))<Ci;(O5(N))SNG(O5(N))=N .

Let 1#0€05(N), so 0€Z(T). For any geN,

04 €05(N) < N and hence 0 €Z(T). Since T=H7;
where, for iel, T, e Syl,(Sym(€Y)), Z(T):HZ(Ti)l.E[By
Lemma 2.7, Z(T;)=<0'l-> where o; has ordef; and cycle
type 33i_] .Nowlet 1# e Z(T) with u#c.Soo=[] o}
keK

and u=[] o\, where K. K'cl with K#K' and conse-
keK'
quently, as ¢t > ¢-1>--->1, o and p have different cycle

types. Therefore of=c and then N<C,(o). Since
(0)SZ(Co(0)SO0y(Cy(0)), Co(a)eN(G.B). This
implies that N=Cg (o) for all 120€05(N), as Ne
N .. (G.B) . We see that

Cs(o)=11 CSym(Qk)(o-k)XSym( U @)

keK ielK

andso (o, | ke K)<Z(Cg;(o)).Inparticular, (o, | ke K)<
0;(Cy;(0))=0;(N). Now either (o, | ke K)nT, #1 or
(o] keK)NT, #1 because Os(N) < T=T;xT},, a con-
tradiction.

Aiming for a contradiction we assume N, is not tran-

sitive of A. Thus Ny SXxY<U where 0=JQ, X =
Sym(6) and Y=Sym(A—-60) for some KCJI.EII(Applying
the previous part to N, e N, . (U.BNU) we deduce that
either N SN xY where Ny e N, (X.BNX) or N,=
XxNy where NyeN (Y. BNY). Without loss of
generally we assume the former to hold. Since O5(Ny )#1

and T<N, xSym(Q-0), clearly N;(O5(Ny))e N(G.B).
However we have that

N=NyxV < NyxYxV < NyxSym(Q-0) < Ng(Oy(Ny)),

a contradiction. Therefore we conclude that N, is transitive
on A and hence the proof of the theorem is complete.
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Below we give some examples of the subgroups in
N .. (G.B) which illustrate some of the results proved
earlier. Recall that G =Sym(Q) with |Q|=n, T eSy,(G)
and B=Ng(T).

If n=3_ then T=((1,2,3)) with |T|=3 and B =
((1,2,3),(2,3))=G with |B|=6 and Os(B)=T #1. There-
fore N'(G.B)={B}=N,.(G.B).

If n=4, then T=((1,2,3)) with |T|=3 and B =
((1,2,3),(2,3))=Sym(3) with |B|=6 and O,(B)=T #1. Since
((1,2,3)) and ((2,4,3)) are Sylow 3-subgroups of G
such that ((1,2,3))"{(2,4,3))=1, so O;(G)=1 and we
have that Ge¢ N'(G.B). Therefore N (G.B)={Sym(3)}=
N,ax (G.B).

If n=5, then T={((1,2,3)) with |T|=3 and B =
((1,2,3),(4,5),(2,3)) with |B|=12 and Os(B)=T=#1,
Therefore the subgroup in N, (G.B) is B=Sym(3)x
Sym(2).

If n=6, then T=((1,2,3),(4,5,6)) with |T|=9 and
B=((4,5,6),(1,2,3),(4,5), (2,3)(4,6),(1,4,3,6)(2,5))
with | B|=72. We also have that the subgroup in N, (G.B)
is B=Sym(3) ! Sym(2).

If n=9, then T=((1,2,3),(4,5,6),(7,8,9),(1,4,7)
(2,5,8)(3,6,9)) with |T|=81 and ((1,5,9)(2,6,7)(3,4,8),
(7,8,9),(4,5,6),(1,2,3),(4,9)(5,7)(6,8),(2,3)(4.,8,5,7,6,9))
with |B|=324. We have that G has a unique maximal 3-local
subgroup with respect to B, which is N =8ym(3) Sym(3)
'ZNG(E), where E=((1,2,3),(4,5,6),(7,8,9)). That is,
N=((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8),(1,4,7)
(2,5,8)(3,6,8), (1,4)(2,5)(3,6)) with |N|=1296.

If n=27 and

x,=(1,2,3),

x,=(1,4,7)(2,5,8)(3,6,9),

x,=(1,10,19)(2,11,20)(3,12, 21)

(4,13,22)(5,14,23)(6,15,24)
(7,16,25)(8,17,26)(9,18,27).

are its generators. The normalizer B of T in G can be

described as B=Tx{h, h,, h;), with

h=(2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20, 21)(23, 24)(26, 27),

hy=(4,7)(5,8)(6,9)(13,16)(14,17)(15,18)(22, 25)(23, 26)(24,27),

hy=(10,19)(11,20)(12, 21)(13,22)(14,23)(15, 24)(16, 25)(17, 26)
(18,27).

We have that the subgroup in N, (G.B) is N =
Sym(3) ! Sym(9).
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Studying maximal p-local subgroups of the symmetric
groups where p is a prime number is an interesting task for
future research.
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