
Original Article

Computing nonstationary  s, S inventory policies via genetic algorithm

Kannapha Amaruchkul* and Surapong Auwatanamongkol

Graduate School of Applied Statistics,
National Institute of Development Administration (NIDA), Bangkapi, Bangkok, 10240 Thailand.

Received 14 February 2012; Accepted 29 October 2012

Abstract

A periodic-review inventory model with nonstationary stochastic demand under an (s, S) policy is considered.
We apply a genetic algorithm to solve for reorder points and order-up-to levels which minimize an expected total cost.
A closed-form exact expression for the expected cost is obtained from a nonstationary discrete-time Markov chain. In our
numerical experiments, our approach performs very well.

Keywords: stochastic model applications; genetic algorithm; nonstationary inventory management

Songklanakarin J. Sci. Technol.
35 (1), 115-121, Jan. - Feb. 2013

1. Introduction

We consider a periodic-review single-item inventory
problem. Demand process is nonstationary; specifically,
demand in each time period is independent but not necessar-
ily identically distributed. Demand distribution depends on
the time period. Nonstationary demand process is commonly
found in practice; e.g., repair parts of a machine in which the
demand rate varies with time, parts for preventive mainte-
nance where the maintenance schedule is pre-specified, and
a seasonal retail product.

In this article, we address an (s, S) inventory policy:
if the inventory position is less than or equal to the reorder
point, denoted by s, then an order is placed so that the
inventory position is brought back to the order-up-to level,
denoted by S. The policy is easy to implement in practice.
The control parameters, s and S, are chosen such that an
expected total inventory cost over a finite planning horizon
is minimized. We investigate the use of a genetic algorithm
(GA) to heuristically solve the optimization problem, in which
the objective function is the expected cost and the decision

variables are reorder points and order-up-to levels for all time
periods. From numerical experiments, our method is very
close to optimal for most problem instances. For a real-world
problem instance in which the optimal policy could not be
computed, our heuristic outperforms other heuristics of
which variants may be found in practice.

There are many papers concerning the (s, S) policy
under the assumption of the stationary demand process. For
instance, Sobel & Zhang (2001) show that the (s, S) policy is
optimal. Zheng & Federgruen (1991) propose an algorithm
to find the optimal s and S. Nevertheless, there are fewer
papers on the (s, S) policy under the assumption of the non-
stationary demand; e.g., Bollapragada & Morton (1999)
propose a heuristic procedure to find the control parameters.
They first transform the nonstationary problem into a sta-
tionary problem, in which a demand distribution is identical
throughout time period, and a parameter of the demand dis-
tribution is averaged over a pre-specified length of time.
Then, they apply the algorithm in Zheng & Federgruen (1991)
to find the control parameters.

Another related problem in which demand is non-
stationary (time-varying) but deterministic, known as the
dynamic lot sizing problem, has been solved by several
solution procedures, including meta-heuristics such as tabu
search, GA and simulated annealing; see Jans & Degraeve
(2007) for a review. To the best of our knowledge, this article

* Corresponding author.
Email address: kamaruchkul@gmail.com

http://www.sjst.psu.ac.th

K. Amaruchkul & S. Auwatanamongkol / Songklanakarin J. Sci. Technol. 35 (1), 115-121, 2013116

is among the first to apply the GA to the inventory model
that explicitly incorporates demand uncertainty. To a certain
extent, the nonstationary stochastic inventory is more
complex than a deterministic dynamic lot sizing model. This
article exemplifies that GA is powerful enough to deal with
such a complex model.

The rest of this article is organized as follows. We
describe the nonstationary (s, S) inventory model in Section 2
and some solution procedures, including the GA, for solving
the optimization problem in Section 3. Section 4 contains our
numerical experiments to evaluate the performance of the
proposed GA. Finally, the article is concluded in Section 5.

2. Nonstationary (s, S) Inventory Model

In this section, we present a mathematical program-
ming model for choosing the control parameters, which mini-
mize the expected total cost. Throughout this article, 1{ }A
denotes an indicator function: if condition holds, the func-
tion is equal to one and zero otherwise. Notation (y)+ =

 max{ , 0}y y
 denotes the positive part of a real number y.

2.1 Problem formulation

The planning horizon is divided into n periods, such
that in each period demand materializes once. In time period
t, let Dt denote the random demand. Assume that unsatisfied
demand is lost. Let Kt be a setup cost, ht a holding cost per
unit of left-over inventory, and bt a penalty cost per unit of
lost sale. We denote the reorder point and the order-up-to
level by st and St respectively. For each period 1 , 2, , t n  ,
the sequence of events is as follows:

1. The inventory level is reviewed. Based on the
current inventory level tX , we decide how much additional
stock to order, ta . The order is received immediately; i.e., the
replenishment lead time is zero. (This is not restrictive,
because the requirement in each period can be shifted to
take account of positive lead time, say l ; we would interpret

tD as the shifted demand t lD  .)
Under a nonstationary (,)s S policy, if the inven-

tory level at the beginning of period t is tX , then we order

 if

0 if
t t t t

t
t t

S X X s
a

X s
 

 
If the inventory level is less than or equal to ts ,

we place an order to bring the inventory level to tS ; other-
wise, we do not order.

2. Demand Dt materializes. If demand is greater than
the inventory level, then the excess demand is lost. The
amount of lost sale is   t t tD X a


    . The inventory at the

end of period t is   t t tX a D   .
3. The following cost is incurred

   (,) [1 { 0}] t t t t t t t t t t t t tc X a E K a h X a D b D X a
          

At the end of the planning horizon, if the ending
inventory is 1nX  , a terminal cost of 1 1(n nr X ) is incurred.

Let 0i be the initial inventory at the beginning of the
planning horizon, and  the maximum inventory level (e.g.,
warehouse capacity). We want to determine the control
parameter 1 1((,), , (,))n ns S s S that minimizes the expected
total cost; i.e.,

   1 1 0 0
1

min , |
n

t t t n n
t

E c X a r X X i 


 
  

 
 (1)

s.t. 0 t ts S    for each 1 , 2, ,t n  (2)

For short-hand, the expected total cost in (1) is denoted by
1 1 0((,), , (,);)n ns S s S i  .

2.2 Procedure to calculate expected cost

We propose a procedure to evaluate the expected total
cost 1 1 0((,), , (,);)n ns S s S i  , based on some properties of
a discrete-time MC. Assume that demands 1 2, , , nD D D are
independent but not necessarily identically distributed. For
practical purpose, let tD be a nonnegative integer-valued
random variable.

Let tZ be the inventory level at the beginning of
period t after order ta is received but before demand tD
materializes. After the first order is received, the inventory
level 1Z becomes

1 0 1
1

0

if

otherwise
S i s

z
i


 


(3)

For each 1 , 2, , 1t n   , we have the following recursive
equation:

1 1
1

1

if
if

t t t t
t

t t t t t

S Z D s
Z

Z D Z D s
 




 
    

 (4)

Equation (4) can be explained below. Note that ()t tZ D is
the inventory level after demand in period materializes. If it
is less than or equal to the reorder point 1ts  , then the
inventory level is brought back to the order-up-to level 1tS  .

Let 0 1 2 max{ , , , , }u
t ts i S S S  and { 1, , }u

t t ts sS    .
Note that tS is not empty, since 0t tS s  and 0 0i  . Under
the policy with the control parameter 1 1((,), , (,))n ns S s S ,
we have that 1 u

t t ts Z s   ; i.e., for each 1 , 2, , t n 

t tZ S  (5)

We explain (5) as follows. In period t, clearly t tZ s , since ts
is a reorder point. From our assumption that 1 2, , D D  are
integer-valued random variables, tZ takes on integers: t tZ s
is equivalent to 1 t tZ s  . From (3), the largest possible
value of 1Z is 1 0max{ , }S i . From (4), the largest possible
value of 2Z is the maximum of 2S and 1 0max{ , }S i , which is

2 1 0max{ , , }S S i . Continuing in this fashion, we have that the
largest possible value of tZ is 0 1 2 1max{ , , , , , }t ti S S S S .

117K. Amaruchkul & S. Auwatanamongkol / Songklanakarin J. Sci. Technol. 35 (1), 115-121, 2013

Denote the (one-step) transition probability pij(t) =
1() (|)ij t tp t P Z j Z i   for each 1 , 2, , 1t n   . The transition

probability function pij(t) is given as follows:

1. For each 1 ti s  ,

  11 { }ij tp t S j  (6)

2. For each 1 1 t ts i S   ,

 
 
 

1 1

1 1

if
 if

0 otherwise

t t t

ij t t t

P D i j s j S
p t P D i s j S

 

 

    
   



 (7)

3. For 1 ti S  ,

 
   

1 1

1 1

if
() 0 if

0 otherwise

t t t

ij t t t t

P D i j s j S
p t P D i s P D j S

 

 

    
     



(8)
4. For each 1ti S  ,

 
   
 

1 1

1 1

1

 if
 if

()
if

0 otherwise

t t t

t t t t
ij

t t

P D i j s j S
P D i s P D i j j S

p t
P D i j j S

 

 



    
      

  


(9)

Below, we explain how to obtain formulae (6)—(9).
Suppose that tZ i : At the beginning of period t after the
order is received but before demand materializes, the inven-
tory level tZ i .

1. If 1 ti s  , in the next period we must place an
order so that 1 1 t tZ S  with probability one. Thus, the
transition probability becomes

1
1

1

1,
(|)

0,
t

t t
t

if j S
P Z j Z i

if j S






   

which is equivalent to (6).
2. If 1 1 t ts i S   . Event 1 1 t tZ j S   occurs when

we do not place an order at the beginning of period (1)t  .
It can be implied from (4) that 1 t t tZ Z D   ; i.e., tD i j  .
Event 1 1 t tZ j S   occurs when we place an order at the
beginning of period (1)t  . It can be implied from (4) that

1 t t tZ D s   ; i.e., 1 t tD i s   . Transition probability (7)
is obtained.

3. If 1 ti S  . Logic for (8) is similar to that for (7)
except that 1 1 t tZ j i S    implies that 1 t tD i s   or that

 0tD  .
4. If 1 ti S  . Logic for (9) is similar to that for (7)

except that now there is a possibility that 1 1 t tZ j S   .

Define a t-step transition probability as   t
ijp 

1 1 (|)t
ij tp P Z j Z i   for each tj S


. From the one-step transi-

tion probabilities found in (6)-(9), we can compute the t-step
transition probabilities by conditioning on the previous state:

     
1 1

1
, 1 1 1 , (|) (|)

t t

t t
z j t t t zj z z

z S z S

p P Z j Z z P Z z Z z p t p 


 

      
 

After obtaining these probabilities, we are ready to
evaluate the objective function.

Steps in calculating the expected cost 1 1((,), ,s S 
0(,);)n ns S i are as follows:

1. Compute the one-step transition probabilities
from (6)-(9)

a.
1

2,{ (1) : }z jp j S


.
b. For each 2, 3, , 1t n   , { () : , tijp t i S



1 }tj S 


2. Compute t-step transition probabilities

a.  
1 1

1
, , (1)z j z jp p for all 2 j S



b. For each 2, 3, , 1t n   ,

     
1 1

1
, ,

t

t t
z j zj z z

z S

p p t p 






 for all 1tj S 


3. Compute expected costs
a. Expected total setup cost

        1 1 0 1 0 1 2 1 1 2, , , , ; 1 – K n nc s S s S i K i s K P D z s    

 
1

2
1 ,

3

 ()
t

n
t

t t z z
t z S

P D z s p 


 

  


b. Expected total holding cost

   
1

(1)
1 1 0 1 1 1 ,

2

((,), , (,);) []]
t

n
t

h n n t t z z
t z S

c s S s S i h E z D h E z D p
 




      


c. Expected total penalty cost

   
1

(1)
1 1 0 1 1 1 ,

2

((,), , (,);) []
t

n
t

g n n t t z z
t z S

c s S s S i b E D z b E D z p  




      


d. Expected total cost

      
1

(1)
1 1 0 1 ,, , , , ;

n

t
n n n n z z

z S

s S s S i E r z D p 




    


1 1 0 ((,), , (,);)K n nc s S s S i 

1 1 0 ((,), , (,);)h n nc s S s S i 

1 1 0((,), , (,);) g n nc s S s S i 

3. Solution Procedures

The periodic-review nonstationary inventory problem
considered in this article can be formulated as a Markov deci-
sion process (MDP); see Section 3.1 below. However, directly

K. Amaruchkul & S. Auwatanamongkol / Songklanakarin J. Sci. Technol. 35 (1), 115-121, 2013118

using this approach may become computationally infeasible
for large problem instances. We consider heuristics, which
can deal with a large problem instance by applying the steps
previously developed in Section 2.2. We are interested in
two heuristics; the first in Section3.2 is simple and easy to
implement, and the latter in Section 3.3 is based on a genetic
algorithm.

3.1 Optimal policy

An optimal policy can be constructed from an MDP;
see, e.g., Yang et al. (2008) and Section 3.2 in Puterman
(2005). The corresponding MDP has n decision periods t.
In period, the state is the inventory level at the beginning,

tX , and the action is the amount of stock to order, ta .
For each i a   , let   1| , (| ,t t tg j i a P X j X i  

)ta a the probability that the inventory level at the begin-
ning of period 1t  is j given that in the previous period it is
i and the order of size a is placed.

 
 
 

if 0
| , if 1,2, ,

0 if

t

t t

P D i a j
g j i a P D i a j j i a

j i a

   
      
  

(10)

Let *()tv i be the value (cost-to-go) function for period t
given the current state i, i.e., the optimal cost from period t
until the end of horizon given that at the beginning of period
the inventory level is i. The value function satisfies the
following optimality equations:

   * *
10, 1, , –

0

() min (,) | , () for each 1 , 2, ,
i a

t t t ta i
j

v i c i a g j i a v j t n



 


      
  



  *
1 1() n nv j r j 

The optimal cost is *
1 0().v i In period t, if the inventory level

at the beginning of the period is i, an optimal action is to
place an order quantity of

 * *
1

0

() argmin (,) | , () 0,1 , 2, , .
i a

t t t t
j

a i c i a g j i a v j a i





       
  



The optimal solution can be derived from exhaustive enume-
ration (e.g., the backward induction algorithm). An optimal
order quantity *()ta i depends not only on the current inven-
tory level i but also the current period due to nonstationarity.

The MDP can also be solved via linear programming
(LP). A randomized policy is specified by

 { (,)| 1 , 2, , , , 0,1 , , , 0,1, , }td i a t n i a i       
where (,)td i a is the probability that an order of size a is
placed given that in period t the inventory level at the begin-
ning of the period is i. The convenient decision variable for
the LP model is the unconditional probability that an order
of size a is placed in period t and the inventory level at the
beginning of the period is i, denoted by (,)tz i a .

Once the (,)tz i a values are obtained, we have

0

(,)(,) .
(,)

t
t i

ta

z i ad i a
z i a






By optimality of deterministic Markov policy, only one
(,) 0tz i a  for each i and t. Hence, (,)td i a is either zero or

one; i.e., given that in period t the inventory level at the
beginning of the period is i

  1 if an order of size is placed
,

0 otherwiset

a
d i a 

 


The LP formulation for our MDP is

         
1

1
1 0 0 0 0

min , , | , ,
n i

t t n n n
t i a i a

c i a z i a g j i a z i a r j
    


    

 
1

0 0

(,) 1 ; 1 , , t
i a

z i a t n
  

 

   (,) 1 ; 1 , , z i a t n   (11)

   1 1
0 0 0

(,) | , , 0; 1 , , , 0, ,
j i

t t t
a i a

g j a g j i a z i a t n j
   

 
  

      

(,) | , , 0; 1 , , , 0, , g j a g j i a z i a t n j       (12)

 , 0;tz i a  1 , 2, , , 0, , , 0, , t n i a i       

The number of decision variables

 (,) | 1 , 2, , , 0,1 , , , 0,1, , tz i a t n i a i       
is (1)(2) / 2,n   and the number of functional constraints
(11)-(12) is (2) .n  The size of the LP problem is not small.
For instance, in the real-world problem instance (Experiment
2) in Section 4, the number of planning horizon is 1 2 n
months, and the capacity is 648  units, the number of
decision variables is 62.531 10 , and the number of func-
tional constraints is 7800. Some LP optimizers (e.g., MS Excel
Solver Add-In, AMPL student edition) cannot handle such a
large problem instance.

3.2 Simple heuristic procedure

The simple heuristic procedure that might be imple-
mented in practice is described below:

In period t the reorder point and order-up-to level are

  1 Φ (/()) var() t t t t t ts E D b b h D  

 2 [] /t t t t tS s K E D h 

rounding to the nearest integer. This approximation is based
on the assumption that demand tD is normally distributed,
and it can be found in some operations management text-
books; see, e.g., page 293 in Nahmias (2009), page 45 in
Simchi-Levi et al. (2008) and Section 8.5 in Silver et al. (1998).
The reorder point, st, is the sum of the average demand and

119K. Amaruchkul & S. Auwatanamongkol / Songklanakarin J. Sci. Technol. 35 (1), 115-121, 2013

the safety stock, which is the safety factor 1Φ (/())t t tb b h 
times the standard deviation of demand. The order-up-to
level, St, is the sum of st and the economic order quantity,

2 [] / .t t tK E D h

3.3 Genetic algorithm

GA has proven to be a powerful tool for solving opti-
mization problems. Although the algorithm does not guaran-
tee to get the optimal solution for a problem, it can find nearly
optimal or useful solutions for the problem. GA mimics a
biological metaphor of genetic evolution. It evolves a popula-
tion of candidate solutions or chromosomes, encoded in a
form of strings of genes, through genetic operators, i.e.
selection, crossover, mutation and replacement; see Reeves
(2003). The evolution process is performed repeatedly lead-
ing to gradual improvement of fitness (objective function)
values of candidate solutions and eventually convergence
to optima. The procedure of a simple GA is described in
Table 1.

3.3.1 Chromosome encoding

Since the goal is to determine parameters 1 1((,), ,s S 
(,))n ns S that minimize the expected total cost, each candi-
date solution or chromosome consists of n genes. Each gene
comprises of a pair of integers representing each pair of the
parameters. To be a valid solution, the values of the two inte-
gers of each pair must satisfy the constraint 0 t ts S   
for 1,2, , t n  . . During the course of the GA, all members
of population must represent valid solutions so the condi-
tion must be held for all the members.

3.3.2 Initialize population

Each member of population is created by randomly
assigning an integer value to each member of a pair (,)t ts S .
First, is assigned with a random integer value between 0 and

1  ; i.e., ts is randomly selected from a uniform distribu-
tion on a set {0,1 , , 1}  . Then tS is assigned with a
random integer value between the value of 1 ts  and .

This initialization scheme guarantees that values of the two
integers meet the required constraints.

3.3.3 Selection criteria

Parent chromosomes are selected from the current
population based on their fitness. The selection criteria must
ensure that chromosomes with good fitness have high
chance to be selected as a parent for crossover. Fitness pro-
portionate, tournament or ranking selection schemes are
commonly used selection strategy. The tournament selection
scheme is used in this case as it is simpler and produces
reasonably good results. The scheme randomly picks two
chromosomes from the population and selects the one with
higher fitness as a parent with a predefined probability (e.g.,
0.7). With the probability that is greater than 0.5, the fitter
chromosome has higher chance to be selected.

3.3.4 Crossover operator

The crossover operators interchange genes between
two parents and produce two chromosomes or offspring that
inherit genes from these parents. As mentioned earlier, the
population must be maintained to have only valid solutions.
The crossover operator must produce only valid offspring.
Let ,1 ,1(,)t ts S and ,2 ,2(,)t ts S be the corresponding genes
at locus/position of the two selected parents, respectively.
The crossover is performed on each pair of genes with a
probability equal to a predefined crossover rate (e.g., 0.8).
The crossover is performed on a pair as follows:

1) If ,1 ,2()t ts S and ,2 ,1()t ts S , then one of the
following three ways of interchange is performed with equal
probability (1/ 3)

1. interchange ,1ts and ,2ts
2. interchange ,1ts and ,2ts
3. do both 1 and 2

2) Otherwise, no interchange is performed as it will
create invalid solutions.

Notice that the interchange between the two parent
genes can occur only when the condition in the above
procedure is held.

Table 1. Procedure of GA

 Initialize the population
 While (termination condition is not met) do

Begin
- Evaluate the fitness value of each member of the population
- Select members of the population based on fitness
- Perform crossover on pairs of selected members to produce offspring
- Perform mutation on the offspring
- Replace members of the population with the offspring
End

level,

K. Amaruchkul & S. Auwatanamongkol / Songklanakarin J. Sci. Technol. 35 (1), 115-121, 2013120

3.3.5 Mutation operator

The mutation operator changes the values of a gene
in a given offspring with a predefined mutation rate (e.g.,
0.05). The mutation could help the search of the GA progress
toward alternative optima avoiding a premature convergence
to local optima. In our problem, each gene of an offspring is
subjected to the mutation with the same probability of the
mutation rate. To ensure that the result gene from a mutation
is a valid one, the mutation can be performed on a pair (,)t ts S
in either of the two ways as follows:

1. change the value of st to a random integer value
on {0,1 , , 1 }tS  , or

2. change the value of St to a random integer value
on { 1 , 2, , }t tS S   

Either of the two ways is chosen with no bias (i.e.,
equal probability = 0.5).

3.3.6 Replacement strategy

The GA uses a generational approach for replacement
strategy. The number of created offspring for each round of
the algorithm is equal to the number of the population and
so all of the offspring replace all the current population and
become the new population for the next round.

3.3.7 Terminating condition

The iteration process of the GA is stopped when the
number of rounds performed reaches a maximum value. The
best solution found so far during the process is kept for each
trial. Several trials can be performed to increase the chance
that the algorithm finds the global optima. The final solution
is the best solution from all trials.

4. Numerical Experiments

Two sets of experiments are conducted. The planning
horizon is 1 2n . In all experiments, cost parameters are
stationary; i.e., tK K , th h and tb b for all 1 , 2, , t n  ,

and the terminal cost is zero. Assume that demand in period
follows a Poisson distribution with mean t . The initial
inventory is assumed to be zero; i.e., 0 0i  .

The parameter setting of the GA is as follows: The
number of population is 100, the tournament selection pro-
bability is 0.7, the crossover rate is 0.8, the mutation rate is
0.05, the number of rounds is 400, and the number of trials
is 10.

Experiment 1: Generated problem instances
We systematically vary the setup cost, the holding

cost, the penalty cost, and the mean demand vector according
to a 2 2 2 1 0   factorial experiment. (The total number of
problem instances is 80.) The first factor—the setup cost—
has two levels {650,1 950}K  . The second factor—the
holding cost—has two levels {41,1 23}h . The third factor
—the penalty cost—has two levels {205, 615}b . Finally,,
the fourth factor—the mean demand vector 1 2 12(, , ,)  
—has ten levels shown in Table 2. The capacity is 75  .

Figure 1 shows the optimal expected cost and that
from the GA. The optimal policy is constructed from the MDP
mentioned in Section 3. From Figure 1, the gaps between the
two costs are small. This suggests that the GA performs very

Table 2. Mean demands for Experiment 1

Figure 1. Total expected costs from MDP and GA

121K. Amaruchkul & S. Auwatanamongkol / Songklanakarin J. Sci. Technol. 35 (1), 115-121, 2013

well. Over the 80 problems, the average, minimum, and maxi-
mum percent differences between the expected cost from GA
and the optimal values are 1.48, 0.00, and 11.44, respectively.

Experiment 2: Real-world problem instance
The mean demands in Table 3 are based on a real-

world problem. These are monthly average demands of a 15-
meter flexible copper pipe with 3/8'' diameter at a particular
company. Time periods 1, 2, ,1 2 correspond to January,,
February, …, December. The company supplies appliance
parts to one of the largest modern trade/retail chains in Thai-
land. In this example, one unit equals 10 pipes; for instance,

4 1 67.8  means that the average demand in April is 1678
pipes. Breakdowns of the appliances occur more often in
summer (months 3 through 8 in Thailand) than in winter, so
the mean demands in summer, except months 4 and 5, appear
to be higher than the rest. In months 4 and 5, the number of
working days are fewer than those in the other summer
months due to long holidays (Thai New Year festival in April
and some Buddhist holidays in May); so, we see average
demands drop. The setup cost is 1 300K  , the holding cost

 5h , the penalty cost 25b , and the capacity 648  .
The expected cost under the simple procedure is

22068.95, whereas that under GA is 15445.20; the cost reduc-
tion, if GA is used instead of the simple procedure, is about
30 percent.

5. Concluding Remarks

Below, we summarize this article and discuss its exten-
sion. A periodic-review min-max inventory policy is consid-
ered. Demand in each period is independent but needs not
be identically distributed. Our objective is to minimize the
expected total inventory cost over a planning horizon of
length n. We propose a nonstationary discrete-time Markov
chain to evaluate the total expected cost for given pairs of
reorder point and order-up-to level. The optimization problem
of finding the control parameter, 1 1((,), , (,))n ns S s S , is
solved via the GA. Our numerical results reveal that the GA
performs very well.

Table 3. Mean demands for Experiment 2

We can extend this model to situations when a
company wants to maintain some service levels (e.g., a stock-
out probability or a fill rate). The GA can be modified to
capture such constraints; for instance, a penalty function
may be added to the fitness function if a service level
constraint is violated.

References

Bollapragada, S., and Morton, T. E. 1999. A simple heuristic
for computing nonstationary policies. Operations
research, 47(4), 576–584.

Jans, R., and Degraeve, Z. 2007. Meta-heuristics for dynamic
lot sizing: A review and comparison of solution ap-
proaches. European journal of operational research,
177(3), 1855–1875.

Nahmias, S. 2009. Production and operations research. New
York: McGraw-Hill, Inc.

Puterman, M. L. 2005. Markov decision processes: Discrete
stochastic dynamic programming. Hoboken, NJ: John
Wiley & Sons, Inc.

Reeves, C. 2003. Genetic algorithms. In: Glover, F., & Kochen-
berger, G. A. (eds), Handbook of metaheuristics.
Norwell, Massachusetts: Kluwer Academic Publishers.

Silver, E. A., Pyke, D. F., and Peterson, R. 1998. Inventory
management and production planning and schedul-
ing. New York: John Wiley & Sons, Inc.

Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. 2008.
Designing and managing the supply chain: Concepts,
strategies and case studies. New York, NY: McGraw-
Hill, Inc.

Sobel, M. J., and Zhang, R. Q. 2001. Inventory policies for
systems with stochastic and deterministic demand.
Operations research, 49(1), 157–162.

Yang, J., Ding, H., Wang, W., and Dong, J. 2008. A new opti-
mal policy for inventory control problem with non-
stationary stochastic demand. IEEE International
Conference on Service Operations and Logistics and
Informatics, Beijing.

Zheng, Y.-S., and Federgruen, A. 1991. Finding optimal poli-
cies is about as simple as evaluating a single policy.
Operations research, 39(4), 654–665.

