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This paper presents the formulation and application of the flexibility-based, reinforced concrete

frame model with bond-slip. The formulation starts from the derivation of the governing differential equa-

tions (strong form) of the problem and then the flexibility-based, reinforced concrete frame model with

bond-slip (weak form) is constructed to obtain the numerical solution of the problem. This numerical model

is derived based on the principle of stationary complementary potential energy. Tonti’s diagrams are em-

ployed to conveniently represent the governing equations for both strong and weak forms of the problem.

This numerical model can be applied to both monotonic and cyclic loadings. The reinforced concrete column

experimentally tested under cyclic loads is used to illustrate the model accuracy and to show the importance

of bond-slip inclusion.
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The accurate representation of the bond-
slip effects is important in predicting the response
of reinforced concrete (R/C) frames under both
monotonic and cyclic loads. Under the assump-
tion of full composite action between the concrete
and the reinforcing bars, the stiffness and strength
of R/C structures are overestimated, as is the
energy dissipated during the loading cycles. A
number of experimental tests on R/C subassem-
blages have shown the reduction in stiffness due
to slip in the reinforcing bars above the founda-
tions and in the beam-column connections. Bar
pullout, which may be experienced in older struc-
tures  with  insufficient  bar  anchorages  or  bar
splices, drastically reduces the strength of the R/C
members. In order to realistically describe the
behavior of R/C structures in static and dynamic
nonlinear structural analysis, the inclusion of the
bond-slip effects is essential.

In recent years, major advances in model-
ing the monotonic and cyclic response of R/C
frame structures have been accomplished. Espe-
cially, frame models relying on the fiber-section
models have found widespread uses in research
and professional practices. Fiber models are used

to compute the section interaction diagrams, beam
deflections, nonlinear static and dynamic frame
responses, etc. The main advantage of the fiber
model is that it automatically couples the interac-
tion between axial and bending effects. Existing
fiber-section models, however, are normally based
on  the  assumption  that  plane  sections  remain
plane and that there is strain-compatibility bet-
ween the concrete and the steel rebars, hence
neglecting the bond-slip effects. This leads to an
overprediction of the initial stiffness and of the
hysteretic energy dissipation of the R/C members
(Spacone et al., 1996). The simplest way to ac-
count for the bond-slip effects in frame elements
is to add nonlinear rotational springs at the ele-
ment ends (Rubiano-Benavides, 1998). Although
simple, this way needs the formulation of an
ad-hoc phenomenological moment-rotation law,
and disrupts the continuity of the fibers between
adjacent elements.

The R/C frame elements with bond-slip
proposed in this work are different from those
published to date in that different degrees of free-
dom are used for the concrete beam and for the
bars with bond-slip. In other words, the bond-slip
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between the steel bar and the surrounding con-
crete is computed directly as the difference in the
steel and concrete displacements at the bar level.
Aprile et al. (2001) have already successfully
tested the general idea with the simple, stiffness-
based formulation. The resulting model is com-
putationally robust, but not very accurate. There-
fore, a large number of elements are needed to
gain sufficient accuracy, hence requiring high
computational efforts. To date, several researchers
(e.g. Zeris and Mahin, 1988) have investigated
the use of assumed force fields for the develop-
ment of nonlinear frame elements. This interest
stems from two main observations: a) in some
simplified cases the internal force distributions in
frame elements are known “exactly”. This is for
exam-ple the case of the R/C beam element with
perfect bond;  b) in general, the force fields along
the beam are smoother than the deformation
fields, which may show large jumps in the inelas-
tic regions, particularly where plastic hinges tend
to form (i.e. in column bases, girder ends, beam-
midspan, etc.). Consequently, the uses of force-
shape functions in the flexibility-based formula-
tion are an encouraging way to improve the ac-
curacy of finite element models.

This paper presents the general theoretical
framework of the flexibility-based formulation
of R/C frame element with bond-slip in the steel
bars. The beam section force-deformation rela-
tions are derived from the fiber section model.
The derivation of the governing differential equa-
tions (strong form) of the R/C frame element with
bond interfaces is presented first. The flexibility-
based element formulation (weak forms) is pre-
sented next and establishes the core of this paper.
The flexibility-based element is derived from the
principle of stationary complementary potential
energy functional. The Tonti’s diagrams are used
to concisely illustrate the governing equations of
both the strong and the weak forms. The flexibil-
ity-based element is implemented in a finite ele-
ment analysis program, FEAP (Taylor, 1998) and
the experimental result of the laterally loaded
R/C column is used to validate the element accu-
racy  and  to  show  the  effects  of  reinforcement

slippages.

Equations of R/C frame element with bond-slip

(strong from)

Equilibrium

The free body diagram of an infinitesimal
segment dx of R/C frame element with n bars
with bond interfaces is shown in Figure 1. Only
bond stresses tangential to the bars are consi-
dered in this formulation. The dowel effect in the
bars is neglected. Based on the small-deformation
assumption,  all  of  the  equilibrium  conditions
are considered in the undeformed configuration.
Axial equilibriums in the beam component and in
the bar i lead to the following equations:

   

dNB (x)
dx

+ Dbi (x) == 0
i=1

n

∑∑

dNi (x)
dx

- Dbi (x) == 0 ,  i = 1,  n
         (1)

where N
B
(x) and N

i
(x) are the axial forces in the

beam and in the bar i, respectively. D
bi
(x) is the

bond interface force per unit length between the
beam and bar i. Vertical equilibrium of the infi-
nitesimal segment dx yields :

dVB (x)
dx

- py (x) == 0          (2)

where V
B
(x) is the beam section shear force and

p
y
(x) is the transverse distributed load. Finally,

moment equilibrium yields:

  
dMB (x)

dx
- VB (x) −− yi Dbi (x) == 0

i=1

n

∑∑          (3)

where M
B
(x) is the beam section bending mo-

ment, y
i
 is the distance of bar i from the element

reference  axis  (Figure 1).  This  work  follows  the
Euler-Bernoulli beam theory, thus the shear defor-
mations are neglected.  The shear force V

B
(x) is

removed by combining Eqs. (2) and (3) to obtain

d
2

MB (x)

dx
2 −− py (x) −− yi

dDbi (x)
dxi-1

n

∑∑ == 0          (4)
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Figure 1. R/C beam element with bond-slip: Beam and bar components

Eqs. (1) and (4) represent the governing
equilibrium equations of the R/C frame element
with bond slip. Eqs. (1) and (4) can be written in
the following matrix form:

    ∂Β

Τ
DΒ (x) - ∂b

Τ
Db (x) - p(x) = 0          (5)

where D
B
(x)   {D(x) M  D

==
(x)}

Τ
 are the element sec-

tion forces, D(x) == {NB (x) MB (x)}
Τ
 are the beam

section forces,   D
==

(x) == {N1 (x) LNn (x)}
Τ
 are the bar

forces, D
b
(x) = {D

b1
(x)   LD

bn
(x)}

T
 are the bond

section forces and p(x) = {0  p
y
(x)  0   L 0}

T 
is

the element force vector. ∂Β  and ∂b  are differential
operators defined in Appendix II. It is important

to point out that there are 2n + 2 internal force
unknowns  while  only  n+2  equilibrium  equa-
tions are available at any element section. Conse-
quently, this system is internally statically inde-
terminate and the internal forces cannot be deter-
mined solely by the equilibrium conditions.

Compatibility

The  element  section  deformation  vector

conjugate of D
B
(x) is d

B
(x) =   {d(x) M  d

=

(x)}
T

, where

d(x) ==  {ε
B 
(x)  κ

B
(x)}

T
 are the beam section defor-

mations (axial strain ε
B
 at reference axis and cur-

vature κ
B
) , and   d

=

(x) == {ε1 (x) L  ε n (x)}
T

contains
the axial strains of the n bars.  The following
displacements are defined at the element level:

  u(x) == {u(x) M  u
=

(x)}
T

are the displacement fields



217
Songklanakarin J. Sci. Technol.

Vol. 25  No. 2 Mar.-Apr. 2003

Reinforced concrete frame

Limkatanyu, S. and Samakrattakit, A.

along the element, where u(x) == {uB (x)        vB (x)}
T

contains the beam axial and transverse displace-

ments, respectively, and   u
=

(x) == {ui (x) L  un (x)}
T

contains the axial dis-placements of the n bars.
From the small deformation assumption, the

element deformations are related to the element
displacements through the following compatibi-
lity relations: ε

B
(x) = du

B
 (x)/dx, κ

B
(x) = d

2
v

B
(x)/

dx
2
, and ε

i
(x) = du

i
(x)/dx , which can be written

in the following matrix form:

d B (x) == ∂Bu(x)          (6)

The bond slips are determined by the fol-
lowing compatibility relation between the beam
and the bar displacements:

ubi (x) == ui (x) −− uB (x) + yi

dvB (x)

dx
            (7)

where  u
bi
(x)  is the bond slip between the beam

and bar i . If the bond deformation vector d
b
(x) =

{u
b1

(x)   L u
bn

(x)}
T
 is introduced, Eq. (7)  can be

written in the following matrix form:

d
b
(x) = ∂bu(x)          (8)

Force-Deformation relations

The nonlinear nature of the proposed ele-
ments derives entirely from the nonlinear rela-
tion between the section forces  D

B
(x) ,  D

b
(x)

and the section deformation d
B
(x) , d

b
(x) .   In the

proposed formulations, the fiber section model
shown in Figure 2 is used to derive the constitu-
tive law D

B
 = D

B
(d

B
) . The fiber model automati-

cally accounts for the coupling between axial and
bending responses.   The Kent and Park (1971)
law is used for the concrete fibers. The Menegotto
and Pinto (1973) law is used for the bars. The ex-
plicit expression for the fiber beam section force
deformation is given in Spacone et al. (1996). For
the bond-slip constitutive relations D

b
 = D

b
(d

b
) ,

the Eligehausen et al. (1983) law is used. All of
these uniaxial laws are shown in Figure 2.

In the following formulations, the section
and bond-slip nonlinear laws are linearized ac-

Figure 2. R/C beam element: Section fiber discretization and material uniaxial laws
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cording to the following forms:

DB (x) == DB

0

(x) + ∆DB (x) == DB

0

(x) + k B

0

(x)∆d B (x)

Db (x) == Db

0

(x) + ∆Db (x) == Db

0

(x) + k b

0

(x)∆d b (x)
 (9)

where DB

0

(x),  Db

0

(x),  k B

0

(x)  and  k b

0

(x)  are the sec-
tion and bond force vectors and stiffness matrices
at the initial point. The consistent inverse of (9)
can be expressed in the following forms:

dB (x) == d B

0

(x) + ∆d B (x) == d B

0

(x) + f B

0

(x)∆DB (x)

db (x) == d b

0

(x) + ∆d b (x) == d b

0

(x) + f b

0

(x)∆Db (x)
 (10)

where d B

0

(x),  d b

0

(x),  f B

0

(x) and f b

0

(x) are the sec-
tion and bond deformation vectors and flexibility
matrices at the initial point. In the above equations
and throughout the paper, superscript 0 indicates
the value of a vector or matrix at the initial point
of the nonlinear scheme.

The compatibility, equilibrium and consti-
tutive equations for the R/C frame element with
bond-slip presented above are conveniently repre-
sented in the classical Tonti’s diagram of Figure
3. This diagram is going to be modified for the
different element formulations.  Finally, for sim-
plicity, the transverse load p

y
(x) is omitted in the

following derivations.

Flexibility-based (force-hybrid) formulation

(weak form)

The  flexibility-based  formulation  stems
from the flexibility-based steel-concrete compo-
site beam element with partial interaction pro-
posed by Salari et al. (1998). The flexibility-based
formulation  is  derived  from  the  total  comple-
mentary potential energy functional and is the
dual of the stiffness-based formulation. The ele-
ment internal force fields D

B
(x) and D

b
(x) serve

as the primary unknowns and are expressed in
terms of the element nodal forces through appro-
priate force shape functions.  The force shape
functions are derived such that the equilibrium
equations (5) are satisfied point-wise along the
element. On the other hand, the beam compatibil-
ity equation (6) and the bond compatibility equa-
tion (8) are satisfied only in an integral sense.
The steps involved in the flexibility-based formu-
lation are schematically represented in the Tonti's
diagram of Figure 4.

The total complementary potential energy
functional ∏

CPE
 is :

ΠCPE [DB (x),  Db (x)] =

     DB

T

(x)(d B (x) - ∂Bu(x))dx +
L
∫∫

     Db

T

L
∫∫ (x)(d b (x) - ∂bu(x))dx        (11)

According  to  the  principle  of  stationary
complementary potential energy, the compatible
configuration  is  obtained  when  

CPE   
reaches  a

Figure 3. Tonti’s diagram for R/C beam with bond-slip: Differential equations (strong form)
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Figure 4. Tonti’s diagram for R/C beam with bond-slip: Flexibility-based formulation

stationary value, i.e. when

   δΠCPE [δDB (x),  δDb (x)] = δDB

T

(x)(d B (x) - ∂Bu(x))dx +
L
∫∫  δDb

T

L
∫∫ (x)(d b (x) - ∂bu(x))dx  = 0 (12)

Upon substitution of the section linearized laws (10) , (12) is written

      δΠCPE δDB

T

(x)(d B

0

(x) + f B

0

(x)∆DB (x)
L
∫∫ −− ∂Bu(x))dx + δDb

T

(x)(d b

0

(x) + f b

0

(x)∆Db (x)
L
∫∫ −− ∂bu(x))dx = 0    (13)

where δD
B
(x) and δD

b
(x) are virtual, equilibrated section and bond-interface force fields, respec-

tively, and f B

0

(x)  and f b

0

(x) are the initial flexibi-lity matrices of the section and of the bond-interfaces,
respectively. Integration by parts of (13) and substitution of the equilibrium equation (5)
lead to the following matrix equation:

δDB

δDb



L

∫∫
(x)
(x)





T

 f B

0

(x)
      0






    0

 f b

0

(x)






∆DB

∆Db





 (x)
  (x)





dx == δQ
T

U −−
δDB

δDb



L

∫∫
(x)
(x)





T

 
d B

0

d b

0







  (x)

  (x)






 dx               (14)

where δQ
T

U is the boundary term and represents the external virtual work done by δQ  (the virtual

element nodal forces without rigid body modes) on U (the corresponding element nodal displacements
without rigid body modes). The element is formulated without rigid body modes in view of
its implementation in a general-purpose finite element code, which requires inversion of the
element flexibility matrix (Spacone et al. 1996). Eq. (14) is the backbone equation of the flexibility-
based finite element formulation. To obtain the discrete form of (14), the section forces D

B
(x) and the

bond-interface forces D
b
(x) are expressed in terms of the element nodal forces without rigid body modes

Q  and of the bond-interface forces Qb
 at selected reference points along the interface, according to the

following matrix relation:

DB

Db





(x)
(x)





=
N BB

F-B

(x)

NbB

F-B

(x)








  
N Bb

F-B

(x)

Nbb

F-B

(x)








Q

Qb












(15)

where the superscript F-B denotes the flexibility-based formulation, and N BB

F-B

(x), N Bb

F-B

(x), NbB

F-B

(x),  Nbb

F-B

(x)

are the force shape functions. Substitution of (15) into (14) and from the arbitrariness of δQ   and δQb ,
the following matrix expression results:
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FBB

0

FBb

0
 T








  
FBb

0

Fbb

0







∆Q

∆Qb












==

U

  0












−−

r
0

  
r b

0












          (16)

where FBB

0

, FBb

0
 , Fbb

0
 are the following flexibility

terms:

  

FBB

0

== N BB

F-B
 T

 f B

0

  N BB

F-B

+  NbB

F-B
 T

 f b

0

  NbB

F-B





dx
L
∫∫

FBb

0

== N BB

F-B
 T

 f B

0

  N Bb

F-B

+  NbB

F-B
 T

 f b

0

  Nbb

F-B





dx
L
∫∫

Fbb

0

== N Bb

F-B
 T

 f B

0

  N Bb

F-B

+  Nbb

F-B
 T

 f b

0

  Nbb

F-B





dx
L
∫∫

      (17)

r
0

and r b

0

 represent the displacements at the element
and bond degrees of freedom, respectively, com-

patible with the internal deformations d B

0

 and d b

0

:

      

r
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== N BB

F-B
 T

 d B

0

+  NbB

F-B
 T

 d b

0

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r b

0
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 T

 d B

0

+  Nbb
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 T

 d b

0





dx
L
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       (18)

In fact, U -  r
0
and - r b

0

 represent the element

nodal and bond displacement residuals, respec-
tively, in the flexibility equation (16). The zero
term on the right-hand side of (16) implies that
the relative bond-slips at the selected reference
points along the interfaces are equal to zero. This
condition is similar to the known displacement
conditions that are used to determine the redun-
dant forces in statically indeterminate structures
by the classical force method.

The  redundant  force  unknowns  ∆Qb
  are

eliminated through static condensation in (16).
The  second  equation  in  (16)  yields  ∆Qb ==

−−(Fbb

0

)
-1

(FbB

0

∆Q + r b

0

) , which substituted in the first

equation yields

           F
0

∆Q = U −− UB

0

−− Ub

0
       (19)

where F  is element flexibility matrix defined as:

         F
0

= FBB

0

−− FBb

0

(Fbb

0

)
-1

FbB

0
       (20)

and UB

0

 , Ub

0

 are the contributions of the beam com-
ponent and of the bond-interfaces, respectively,
to the element nodal displacements U

0

without
rigid body modes:

       

UB

0

== N BB

F-B
 T

−− FBb

0

(Fbb

0
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-1

 N Bb

F-B
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
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d B

0

 dx
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 Nbb
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
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d b

0

dx
L
∫∫

     (21)

The right-hand side vector U - UB

0

- Ub

0  of

(19) represents the element nodal displacement
residuals corresponding to the weak form of the
compatibility conditions (6) , (8) and vanishes
when the compatible configuration is reached.

Figure 5 shows the 2-node flexibility-based
R/C frame element with and without rigid body
modes. Adding the rigid body modes to the ele-
ment of Figure 5b or filtering-out the rigid body
modes from the element of Figure 5a is accom-
plished through matrix transformations based on
equilibrium and compatibility between the two
systems.

In structures that are internally statically
determinate, such as the R/C beam with perfect
bond of Spacone et al. (1996), the internal force
distributions can be determined exactly from
equilibrium. It is also important to remark that in
this case only beam deformation contributes to
the total complementary potential energy func-
tional ∏

CPE 
. In the R/C beam model with bond-

slip  of  Figure 5,  which  is  internally  statically
indeterminate, the internal force distributions can-
not be exactly determined from equilibrium only,
except  for  some  special,  simple  linear-elastic
structures. The bond-interface forces serve as the
redundant forces in this element. Assumptions on
the bond force distributions are made. This proce-
dure is identical to that followed by Salari et al.
(1998) for the steel-concrete composite beam with
deformable shear connectors.  In the proposed
formulation of a R/C element with bond-slip, the
bond-force distributions are assumed to be cubic
functions.  During the element development, a
quadratic bond-interface force distribution was
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Figure 5. 2-Node flexibility-based R/C element with bond-slip

also tested, but it was discarded because it did not
accurately represent the actual bond distribution.
The beam axial force and bending moment and
the bar axial force distributions corresponding to
the cubic bond-interface force distributions are
quartic functions.

Low-Moehle Specimen 1 (Low and Moehle,

1987)

A series of R/C cantilever columns with
rectangular cross section were tested by Low and
Moehle (1987). A constant axial force represent-
ing the gravity load and cyclic lateral displace-
ments representing seismic actions were applied
to the columns. One of these columns, referred as
Low-Moehle Specimen 1, was modeled by Spacone
et al. (1996) to validate the flexibility-based for-
mulation of a R/C frame element with perfect
bond. Though the correlation study between ex-
perimental and numerical results was rather satis-
factory in aspects of strength, the experimental
result was more flexible than the numerical solu-

tion. This is due to the fact that the model with
perfect bond could not represent the base rota-
tions resulting from the large slips of the reinforc-
ing bars in the anchorage zone. The same speci-
men is used herein to verify the proposed model
accuracy and to show the effects of reinforcement
slippages.

Figure  6  shows  the  specimen  geometry.
The  column  was  subjected  to  a  constant  axial

compression of 44.5 kN (approximately 5% f c

'

Ag )
and a cyclic lateral displacement causing flexure
about the weak axis. According to the report by
Low and Moehle (1987) and using the labeling of
Figure 6, the material properties are: f

y
 447.5 MPa

for rebar set I, f
y
 444 MPa for rebar set II and

f
y  

504 MPa for rebar set III. The ultimate com-
pressive strengths of unconfined and confined
concrete are 36.54 MPa and 42.13 MPa, respec-
tively.  The tensile strength of concrete, though
considered in the analyses, does not affect the
results, except at the very early loading stages,
before the base section cracks. As for the bond
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Figure 6. Geometry and loads of Low-Moehle Specimen 1

stress-slip relation, in the test bond did not fail or
reach the plateau shown in Figure 2, thus only the
ascending branch of the bond-slip envelope is of
interest.  The simple linear model is used with
stiffness of 8.75 MPa/mm for bar set I (bars #3)
and 9.05 MPa/mm for bar set II and III (bars #2).
These  values  are  based  on  a  set  of  formulas
developed by Monti et al. (1994) from the regres-
sion analysis on a number of pullout tests avail-
able in the published literature. In the numerical
model, the column is discretized into 1 element,
plus 1 element representing the anchorage zone.
In the original test specimen, the rebars were
hooked 7 in. (177.8 mm) into the foundation. To
simulate the effect of the hooks, the bar nodes are
assumed fully anchored 7 in. into the foundation
(Figure 6).

Figure 7a compares the tip force-displace-
ment response from the experimental test with
the numerical result obtained with the flexibility-
based  R/C  frame  element  with  perfect  bond
(Spacone et al., 1996), while Figure 7b superim-
poses the tip force-displacement response from
the experimental test with the numerical result
obtained with the flexibility-based R/C frame ele-

ment with bond-interfaces proposed in this study.
As expected, both models predict the same column
strength.  Bond-slip mostly affects the column
stiffness and the shape of the unloading-reloading
curves. The model without bond-slip over-predicts
the hysteretic energy of the specimen. During un-
loading, initial unloading is followed by closing of
the crack, reloading and yielding of the steel in
tension. With the model with bond-slip, when the
column unloads, closing of the crack is accompa-
nied by slip of the rebars at the column base. This
gives a more flexible response, and yielding of
the rebars in tension is delayed. It should be noted
that the initial unloading stiffness predicted by
the proposed model is somehow more flexible
than the experimental one. This is mostly due to
the selection of a linear unloading branch for the
bond law. A more refined curve would yield a
smoother trend, but the overall response of the
model would be unaffected. The specimen initial
stiffness is also smaller for the model with bond-
slip, since some slip is present from the initial
phases of loading, as shown in a number of tests
on R/C columns and frames.

In order to show the effects of bond-slip
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Figure 7. Experimental and analytical responses of

Low-Moehle Specimen 1 (a) Model with

perfect bond; (b) Model with bond-slip

on the section strains, Figure 8 shows the strain
distribution at the column base corresponding to a
positive tip displacement of approximately 17 mm.
The loss of section planarity is apparent from the
differences in the concrete and steel strains. In
tension, the steel strains are considerably smaller
than the corresponding concrete strains. In com-
pression, the steel strains are still in tension, be-
cause the rebars have first yielded in tension, thus
compression stresses can develop under tensile
strains. The large steel strains observed in Figure
8 conform with the strain magnitudes reported

Figure 8. Strain distributions in concrete and steel

at column base corresponding to a tip

displacement of approximately 17 mm.

in Low and Moehle (1987).
Figure 9 compares the stress-strain rela-

tions  of  bar  I  obtained  from  the  models  with
bond-slip and without bond-slip at the column-
base section during the loading history. It is clear
that in the model without bond-slip the amount
of input energy is dissipated through larger full
cycles of the stress-strain model of reinforcing
bars, while in the model with bond-slip a lesser
amount of the input energy is dissipated through
the inelastic behavior of reinforcing bars with
the remaining energy being dissipated in the slip
between concrete and reinforcing bars. This ex-
plains why the model without bond-slip of Figure
7 overpredicts the hysteretic energy.

As previously noted, bond remained mostly
elastic in the above test. The bond characteristics
and the rebar anchorage prevented bond failure
and bar pullout. In order to explore the proposed
model characteristics, the rebar anchorage of the
original column was modified. Anchorage lengths
of 1 in. (25.4 mm), 3 in. (76.2 mm), 5 in. (127 mm)
and 7 in. (177.8 mm) were considered. The bond
strength was also reduced to 25% that of the ori-
ginal value. A monotonically increasing displace-
ment was applied at the column tip. The effect of
the different anchorage lengths is shown in Figure
10. Only the column with l

an
 = 7 in. reaches the
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Figure 9. Stress-strain loading history of bar I: (a) Model without bond-slip;  (b) Model with bond-slip

strength of the original column of Figure 7. In this
case bond fails at the column base but the rebars
in tension do not totally pull-out because the steel
rebars yield before bond can fail throughout the
anchorage length.  On the other end, for shorter
anchorage lengths the column fails because of
complete bar pull-out from the foundation block,
while the steel rebars remain linear elastic.

Summary and Conclusions

This paper presents the derivation of the
governing differential equations (strong form) and

derives the flexibility-based finite element for-
mulation (weak forms) for the R/C frame element
with bond-interfaces. The flexibility-based (force
hybrid) element is derived from the principle of
stationary total complementary potential energy
functional and employs force-shape functions to
express the internal force fields in terms of force
degrees of freedom. In this element, the element
bond forces at selected reference points serve as
internal redundant forces, and are statically con-
densed out in order to implement the element into
a general-propose stiffness-based finite element
program.  As a result, the bond force continuity
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between  adjacent  elements  is  locally  relaxed.
Tonti’s diagrams are also used to schematically
represent the set of basic governing equations for
both strong and weak forms.

The correlation study between experimental
and numerical results of a R/C column subjected
to cyclic loading is used to show the importance
of bond-slip in modeling the response of R/C
structures and to validate the model formulation.
The inclusion of bond-slip effects results in a pre-

diction of the experimental results that is much
more accurate than that obtained with a fiber
model without bond-slip. The model can also trace
failure of the column by bar pull-out.  Pull-out
tests can be extended to different bar materials,
such  as  mild  steel,  prestressing  steel  and  FRP
bars. Pull-out studies can be performed to study of
the effects of bond and anchorage lengths for en-
hancing design provisions.

Figure 10. Column response with weak bond and reduced anchorage length

Notation
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