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Abstract

In this work, we consider the stability and stabilization of complex fractional Liu system. We assume the fractional
calculus  in  sense of the Caputo derivatives (real and complex). The method based on stability theory of fractional-order
systems. Numerical solutions are imposed. Moreover, conditions of unique solution are established.
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1.  Introduction

Liu  et  al.  (2004)  deduced  a  new  chaotic  system.
Fractional Liu system is studied in (Jun and Chong, 2007),
(Wang and Wang, 2007), (Gao, 2011), (Ibrahim, 2013). Complex
chaotic  systems  are  discussed  by  many  contributors
(Mohmoud, 2012), (Ibrahim & Jalab,2013). The five dimen-
sional complex Lorenz model is often utilized to explain and
simulate the physics of tuned lasers. These studies have their
origin  in  the  molding  expression  by  Haken  (1975)  of  the
isomorphism between the three equations of the real Lorenz
model and the three real equations for a single mode laser
operating with its resonant cavity tuned to resonance with
the material transition. In this work, we study  the stability and
stabilization of fractional complex Liu model (five equations).
The fractional calculus are assumed in sense of the Caputo
derivatives.  Caputo  initial  value  problem  holds  for  both
homogeneous and nonhomogeneous conditions. For this
reason choice Caputo derivative is the best fractional deriva-
tives.  The  method  based  on  stability  theory  of  fractional-
order systems. Numerical solutions are computed.

The  Riemann-Liouville  fractional  operators  are
defined as follows (Podlubny,1999):

Definition 1.1 The fractional order integral of the function h
of order 0>  is defined by
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the delta function.
Definition 1.2 The fractional order derivative of the function
h of order 1<0   is defined by
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0>  is defined, for a smooth function )(th

,
)(

)(
)(

1:=)( 1

)(

0





 
 d

t
h

n
thD n

ntc
 

where 1,][= n  (the notation ][  stands for the largest
integer not greater than ).

In this paper, we study the stability and stabilization
of complex fractional Liu system (with five real variables).
We assume the fractional calculus  in sense of the Caputo
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derivatives (real and complex). The method based on stability
theory of fractional-order systems. Numerical solutions are
imposed.  In  addition,  we  establish  conditions  of  unique
solution. Caputo’s derivative admits higher conditions of
regularity  for  differentiability:  to  compute  the  fractional
derivative  of  a  function  in  the  Caputo  sense,  we  have
compute its derivative. Caputo derivatives are defined only
for differentiable functions while functions that have no first-
order derivative might have fractional derivatives of all orders
less than one in the Riemann-Liouville sense.

2.  Stability of Fractional Complex System

A complex Liu system has been defined in the form
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is a real variable and  ,,,  and   are real parameters.
It assumed that 1,...,5=, kuk  is a function in t. Here, we let
the following fractional complex Liu system, in sense of the
Caputo derivative:
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where 1,2,3;=1,<0 jj   in this note we let 0.95.j
For real variables, system (1) implies
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In  this  section,  we  investigate  the  stability  of  the
system (2).

Definition 2.1 The  zero  solution  of  the  equation  =c D u

( , ( )), (0,1]f t u t    is said to be stable if, for any initial values
,0u  there exists 0>  such that 0( ) , > .u t t t   The zero

is  said  to  be  asymptotically  stable  if  it  is  stable  and
( ) 0, .u t t 

Lemma 2.1 Assume the system of the form
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Lemma  2.2 Assume the controller system with the linear feed-
back control input

(0,1],)),(()()(=   tuhtuBKAuDc (4)
where nK  1R  is a feedback, 1 nB R , u(t) =
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system (5) is asymptotically stable.

Theorem  2.1 If 0>0,>   then the system (2) is asympto-
tically stable at the equilibrium point ).(0,0,0,0,0=0p
Proof. System (2) can be recognized as in the form (3), where
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In addition the characteristic equation of the system
satisfies  0.=])[( 22     But  0,>0,> 
therefore
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Moreover, for some 0,>0,>   we have > 1,A 
:= ( )imin  . According to Lemma 3.1, it implies that the

equilibrium point 0p  of system (2) is asymptotically stable.
This ends the proof.

The system (2) can be considered as in (4), we impose
the following result:

Theorem 2.2 If 0>0,> b  then the controlled system (2)
is  asymptotically  stable  at  the  equilibrium  point  p0 =
(0,0,0,0,0).
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Proof.  Employing control input )(=)( tBKutv  on (2), where
TB )(1,1,1,1,1=  and )(1,1,1,1,1=K  such that

.
2

|>))((| BKAspecarg   Furthermore, > 1;A BK 
thus in view of Lemma 3.2, controlled system (2) is asympto-
tically stable at  p0.

3.  Stabilizing  p0

In this section, we fix a controller for fractional-order
Liu chaotic system (2) via fractional-order derivative. For this
aim, we use the following result which can be found in
(Diethelm & Ford, 2002):

Lemma 3.1 The fixed points of the following nonlinear com-
mensurate fractional-order autonomous system:

(0,1),),(=  ufuDc (6)
is asymptotically stable if all eigenvalues )(  of the Jacobian
matrix evaluated at the fixed points satisfy ,0.5|>| arg
where nnn RRfRu  :,1,<<0   are continuous non-
linear vector functions, and the fixed points of this nonlinear
commensurate  fractional-order  system  are  calculated  by
solving equation 0.=)(uf

Theorem 3.1 Assume  the  controlled  fractional-order  Liu
chaotic system
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where 1121
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1111 =)( ukuDkuf c  
 is the fractional-order

controller, and 1,2=,1 ik i  is the feedback coefficient. If
0,>0,> 

,=0,>1 111211  kkandk 
then system (7) will asymptotically converge to the unstable
equilibrium point p0.

Proof.  The Jacobi matrix of the controlled fractional-order
Liu chaotic system (7) at p0 is

.

0000
0000
000
000
000

= 111211










































kkk
J

Since ,= 1112  kk   we have

.

0000
0000
0000
000
000

= 11










































k
J

Thus the characteristic equation carries the form
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Since 0,>0,> b  and 0>1 11k  therefore,

1,...,5,=,0.5|>| iarg i 
where 1,2,3.=,max:= jj  Lemma 4.1  implies that the
equilibrium point p0 of system (7) is asymptotically stable,
that is, the unstable equilibrium point p0 in fractional order
Liu system (7) can be stabilized via fractional-order deriva-
tive. The proof is completed.

In similar manner of Theorem 4.1, we have the follow-
ing results:

Theorem 3.2 Assume  the  controlled  fractional-order  Liu-
chaotic system
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where 2222
1

2122 =)( ukuDkuf c    is the fractional-order
controller, and 1,2=,2 ik i  is the feedback coefficient. If
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Theorem 3.3 Assume the controlled fractional-order Liu
chaotic system
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point .0p
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4.  Numerical Solution

In  this  section,  we  debate  a  numerical  solution  of
fractional differential equations. All the numerical simulation
of fractional-order system in this paper is based on Matignon
(1996). Put NnnhtNTh n 1,...,=,=,/=  with the initial con-
dition  (0))(0),...,( 51 uu   therefore,  the  system  (2)  can  be
depicted as follows
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follows:
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is the fractional-order controller, and 1,2=,iki  is the feed-
back coefficient. We need the following result which can be
located in Matignon (1996):

Lemma 5.1 The following linear commensurate fractional-
order autonomous system
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Since  12 = kk   then for suitable values of iu  and iv ,
we have
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Thus, the characteristic equation is of the form

0.=])[)()(( 2
1   k

Since 0<0,>0,> 1k  yields that | ( ) |> > ,
2 2iarg A  

 

= 1,...,5.i  In virtue of Lemma 6.1, we have that the equili-
brium point ,0p  of error system (12) is asymptotically stable,
and hence the fractional-order Liu chaotic systems (2) and
(11) achieved synchronization via fractional-order derivative.
The proof is completed.

6. Existence and Uniqueness

In this section we establish the existence and unique-
ness of system (2). Let 1,2,3=, jj  be in the unit disk

1}|:|{:=  zzU C  and ].[0,= TJt  In addition, we
assume that 51,...,uu  are continuous in ;J  we symbolize
this set by ).(JC  Let )}(,...,:),...,{(= 5151 JCuuuu TS
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Define the operator O : S  S by
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Because 1,|<| iu  thus a computation yields
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where 1.|<| iv  Hence by the contraction fixed point theorem,
the problem (2) has a unique solution in S.

7. Conclusion and Discussion

Using  fractional-order  derivative  (in  sense  of  the
Caputo  derivatives),  we  may  stabilize  the  unstable  equili-
brium  points  of  the  complex  fractional-order  Liu  chaotic
system  and  comprehend  chaos  synchronization  for  the
fractional order Liu chaotic system. The fractional system is
taken for different values of 1,2,3=,ii  where 1 = 0.996,

2 3= 0.997, = 0.998  .  The  parameters  are  valued  as
2.5=1,=40,=10,=   and 4.=  Figure 1 shows

the  time  series  for  system  (2)  while  Figure  2  shows  the
waveform of system (2). Figure 3, shows the asymptotically
stabile of the system for different values of ),,(   where

0>  and 0;>  in (a)- 0.8=(1,0.3),=),(   (b)-
0.8,=(1,0.3),=),(   in (c)- 0.8=(0.1,0.3),=),( 

and (d)- 0.8=,(0.1,0.03)=),(   for fixed 0.4=  and
1.4.=   We  suggested  a  controller  for  fractional-order

chaotic system (2) via fractional-order derivative based on
the method due to Diethelm and Ford. The existence and
uniqueness  are  established  in  Section  6,  by  imposing  the
sufficient condition on the coefficients of the system. The
complex variables are taken in the unit disk. From above, we
debated the fractional-order systems of complex variable and
we pointed that they are more suitable than integer-order
ones  in  biological,  economic,  and  social  systems.  These
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complex systems, of five equations, are applied to character-
ize  the  physics  of  a  laser,  rotating  fluids,  disk  dynamos,
electronic circuits, and particle beam dynamics in high energy
accelerators.
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