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Abstract

In this work, we consider the stability and stabilization of complex fractional Liu system. We assume the fractional
calculus in sense of the Caputo derivatives (real and complex). The method based on stability theory of fractional-order
systems. Numerical solutions are imposed. Moreover, conditions of unique solution are established.
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1. Introduction

Liu et al. (2004) deduced a new chaotic system.
Fractional Liu system is studied in (Jun and Chong, 2007),
(Wang and Wang, 2007), (Gao, 2011), (Ibrahim, 2013). Complex
chaotic systems are discussed by many contributors
(Mohmoud, 2012), (Ibrahim & Jalab,2013). The five dimen-
sional complex Lorenz model is often utilized to explain and
simulate the physics of tuned lasers. These studies have their
origin in the molding expression by Haken (1975) of the
isomorphism between the three equations of the real Lorenz
model and the three real equations for a single mode laser
operating with its resonant cavity tuned to resonance with
the material transition. In this work, we study the stability and
stabilization of fractional complex Liu model (five equations).
The fractional calculus are assumed in sense of the Caputo
derivatives. Caputo initial value problem holds for both
homogeneous and nonhomogeneous conditions. For this
reason choice Caputo derivative is the best fractional deriva-
tives. The method based on stability theory of fractional-
order systems. Numerical solutions are computed.

The Riemann-Liouville fractional operators are
defined as follows (Podlubny,1999):
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Definition 1.1 The fractional order integral of the function %
of order p >0 is defined by

7'_),u -1
()
When a=0, we write 7)A(t) = h(t)*¢,(t), where (*)

1ihe) = [0 =D irydr.

u—l1
denoted the convolution product, ¢, (¢) = ﬁ,t >0 and

¢,(#)=0,t<0 and ¢, —> 5(¢) as u—>0 where 5(¢) is

the delta function.
Definition 1.2 The fractional order derivative of the function

hof order 0 < <1 is defined by

D h(t) = j F(l (r)dz' = %1;“11(;).

Definition 1.3 The Caputo fractional derivative of order
w1 >0 is defined, for a smooth function /(?)

LK)
C(n— )% (t—¢)*"
where n=[u]+1, (the notation [u] stands for the largest

“D"h(1) = d¢,

integer not greater than p).

In this paper, we study the stability and stabilization
of complex fractional Liu system (with five real variables).
We assume the fractional calculus in sense of the Caputo
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derivatives (real and complex). The method based on stability
theory of fractional-order systems. Numerical solutions are
imposed. In addition, we establish conditions of unique
solution. Caputo’s derivative admits higher conditions of
regularity for differentiability: to compute the fractional
derivative of a function in the Caputo sense, we have
compute its derivative. Caputo derivatives are defined only
for differentiable functions while functions that have no first-
order derivative might have fractional derivatives of all orders
less than one in the Riemann-Liouville sense.

2. Stability of Fractional Complex System

A complex Liu system has been defined in the form

& =—0¢, +0¢,
&, = p&, — 68,8,
53 = _7/53 +77§151*,

where & and &, are complex variables, i.e. § =u, +iu,,
E =u, —iu, and &, = u, +iu, & = u, —iu, but & = u,
is a real variable and p,c,5,y and 1 are real parameters.
It assumed that u, ,k =1,...,5 is a function in . Here, we let
the following fractional complex Liu system, in sense of the

Caputo derivative:
‘D" & =—0¢,+ 08,
CDﬂzéz = p&, — 65,8, M

CD#3§3 =&+ 775151*7

where 0 <, <1,j=1,2,3; in this note we let x; >0.95.
For real variables, system (1) implies

“D"'u, = —ou, +ou,

“D"u, = —ou, +ou,

“D"u; = pu, —uus @
“D"u, = pu, — O

“Dug = —yus +n(uf + 1),

In this section, we investigate the stability of the
system (2).

Definition 2.1 The zero solution of the equation “D*u =
f(¢t,u(®)),u €(0,1] is said to be stable if, for any initial values
u,, there exists £ >0 such that ||u(t)|| <¢&,Vt>t,. The zero
is said to be asymptotically stable if it is stable and
)] = 0, — .

Lemma2.1 Assume the system of the form
“D*u= Au(t)+ h(u(t)),u € (0,1], 3)

where  u(t) = (uy,...,u,(t))" eR", AeR™, If
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| arg (spec(A)) > um/2, uld||>1, spec(4) denotes the
eigenvalues of 4 and Ml denotes the [, norm; and limu-o
(|A@u@))|/ |u()[) = 0, then the system (3) is asymptotically

stable.

Lemma 2.2 Assume the controller system with the linear feed-
back control input

“D*u=(A+ BK)u(t)+h(u(t)),u € (0,1], @)
where K eR"™ is a feedback, BeR"™, u(t) =
(U 5eou, (1)) €R", 4 eR™™. If |arg(spec(A))|> ur /2,
A+ BK|>1, and fimue-o([2@@)]/ [u@)]) =0, then the
system (5) is asymptotically stable.

Theorem 2.11f y > (0,0 > 0 then the system (2) is asympto-
tically stable at the equilibrium point p, = (0,0,0,0,0).
Proof. System (2) can be recognized as in the form (3), where

- 0 o 0 O 0

0 -0 0 o O 0

0 0 0 0 —u
a=| P and  h(u)= s
0 p 0 0 0 — Suug
0 0 0 0 —y n(u’ +ul)

Obviously A(u) satisfies

\/(—5141145)2 + (_5142”5)2 + 772 (u]2 + u22)2
u(zl)n;lo \/(”1 Y +(u,) +(u3)2 +(u,) +(”5)2

_ \/52u52(u]2+u22)+772(u]2+u22)2
< lim

@] _

s Juco)]

0 2 2

u(t)—! \/u] +u2

_ .. 22 2,2 2

= lim O us +1°(u; +u,)
u(t)—0

=0.

In addition the characteristic equation of the system
satisfies (y +A)[A*+0d—pc]’=0. But y>0,0>0,
therefore

T T .
larg(4;) > 27 M= max (i =1,2,3). (5)

Moreover, for some y > 0,0 >0, we have ”A"E >1,
M= min(y;). According to Lemma 3.1, it implies that the
equilibrium point p,, of system (2) is asymptotically stable.
This ends the proof.

The system (2) can be considered as in (4), we impose
the following result:

Theorem2.2 If b> 0,0 > 0 then the controlled system (2)

is asymptotically stable at the equilibrium point p, =
(0,0,0,0,0).
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Proof. Employing control input v(t) = BKu(t) on (2), where
B=(1,1,1,1,)" and K=(1,1,1,1,1) such that
| arg (spec(A+ BK)) |> H Furthermore, u ||A + BK" >1;
thus in view of Lemma 3.%, controlled system (2) is asympto-
tically stable at p,.

3. Stabilizing p,

In this section, we fix a controller for fractional-order
Liu chaotic system (2) via fractional-order derivative. For this
aim, we use the following result which can be found in
(Diethelm & Ford, 2002):

Lemma3.1 The fixed points of the following nonlinear com-
mensurate fractional-order autonomous system:

“D'u= f(u)ue0,), ©)
is asymptotically stable if all eigenvalues (1) of the Jacobian
matrix evaluated at the fixed points satisfy | argA |> 0.57zu,
where 0< u<l,ueR",f:R" — R" are continuous non-
linear vector functions, and the fixed points of this nonlinear
commensurate fractional-order system are calculated by
solving equation f(u)=0.

Theorem 3.1 Assume the controlled fractional-order Liu
chaotic system

D", = —ou, + ou,
c M —
D', = —ou, +ou,

L‘Dﬂzus = pu, —ouyus + f(u;) ™

“D"u, = pu, — Oyt

“D"us = —yus +n(u] +uy),
where f,(u,) =~k D" u, —ku, is the fractional-order
controller, and k,;,i =1,2 is the feedback coefficient. If
n>0,0>0,

1+k,>0, and k,=p+k, o,
then system (7) will asymptotically converge to the unstable
equilibrium point p,.

Proof. The Jacobi matrix of the controlled fractional-order
Liu chaotic system (7) at p, is

-o 0 o 0 0
0 -o 0 o 0
J p+ko-k, O ko 0 0
0 P 0 0 0
0 0 0 0 —y

Since k,, = p +k,,0, we have
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-o 0 0O O

0 -o 0 o 0

0 0 ko 0 0
J=

0 P 0 O

0 0 0 —y

Thus the characteristic equation carries the form
(y + ) (e + V)X +o(k, + DA + Ao (k0 —0)— pc’k,]=0.
Since > 0,0 >0, and 1+k,, > 0 therefore,

|argh, > 0.5zu, i=1,..,5,
where u := max H;,j =1,2,3. Lemma 4.1 implies that the
equilibrium point p, of system (7) is asymptotically stable,
that is, the unstable equilibrium point p, in fractional order
Liu system (7) can be stabilized via fractional-order deriva-
tive. The proof'is completed.

In similar manner of Theorem 4.1, we have the follow-
ing results:

Theorem 3.2 Assume the controlled fractional-order Liu-
chaotic system

D", = —ou, +ou,

“D"u, = —ou, +ou,

“D"u; = pu, — Suyu; ®)
CD#2u4 = pu, —Ouus + f,(u,)

“D"ug =~y +n(u +ul),

where f,(u,)=—k, ‘D"'u, —k,u, is the fractional-order
controller, and k,,,i =1,2 is the feedback coefficient. If
y>0,0>0,

1+k,,>0, and k,,=p+k,0,
then system (8) will asymptotically converge to the unstable
equilibrium point p,.

Theorem 3.3 Assume the controlled fractional-order Liu
chaotic system

“D"u, = —ou, +ou, + f,(us)

‘D", = —ou, +ou,

“D"u, = pu, — Suus ©)
“D"u, = pu, —Gu,us

“D"uy = —bug +n(u +u3),

where  f,(u,) = —k,, “D"2u, —k,u, is the fractional-order
controller, and k,,,i =1,2 is the feedback coefficient. If
y>0,0>0,k, =0 +k; and o+ pk;, >0 then system (9)
will asymptotically converge to the unstable equilibrium
point p,.
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4. Numerical Solution

In this section, we debate a numerical solution of
fractional differential equations. All the numerical simulation
of fractional-order system in this paper is based on Matignon
(1996). Put h=T/N,t,=nhn=1,..,.N with the initial con-
dition (u,(0),...,us(0)) therefore, the system (2) can be
depicted as follows

Il

u,(n+1)=u(0)+ [o‘(—ul”(n+1)+u3”(n+1))+Zn:,4l_]_,HI xo(=u, () +us ()],
=0

Ty +2)

u(n+1)=u,(0)+ [o(u (n+ 1) +uf (n+1) + Z”:Az.,.nu xo (=i (/) +u, ()]
=0

(s, +2)
H

1/13(n+l)=u3(0)+r h [(puf (n+1)=ul (n+1)ul(n+1))

(1, +2)

+§A;.,.m.<pu.<j>—6u.<j>u5<j»]

u4(n+l)=u4(0)+%[(puf(n+l)—5u2”(n+1)u5”(n+1))

¥4, P ()= s s )]
J=0

=}

u_;(n+l)=u§(0)+r h

— L [—yul (n+ 1)+ (n+1)+ 1 (n+1))
(4;+2)

F A Cru () @) HE G,

Jj=0

where

u’ (n+1)=u,(0)+ iBuml xo(=u,(j)+u; (7))

W (n+1) = 1,00+ S B, x0 (-1, () +14,())

=0

ug (n+1) =u;(0) + i‘,B;, Jant X (01 () = 81y ()5 (/)

Jj=0

ug (n+1)=u,(0)+ ilﬂ, Jst X (U () = 81y ()5 (1))

j=0

ug (n+1) =us(0) + ZEZBS,,-,,,H x (=yus (/) +n @’ () +u; (7))

andfor k=1,...,5

' —(n— ) (n+1)*, =0
Ay ==+ 2" 4 (0= Y 20— j+ D", 1<
L j=n+l
n ) . .
By = =1 =(n= )", 0 j<n.

The error of this approximation can be computed as
follows:

lu,(t,) =, () [= o(h"),  p=min(2,1+max p, ).
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5. Synchronizing p,

We put a feedback controller for the fractional-order
Liu chaotic system (2) via fractional-order derivative and
obtain the system

‘D", = —ov, + oV,
“D"v, =—ov, +ov,
‘D"2v, = pv, =S +V
‘D", = pv, — v,

(10)

‘DB = =5 +n (7] +vy),
where
V = k[ D"v, = D""u, ]+ k, (v, —u,) + v,y — pu,
is the fractional-order controller, and k,,i =1,2 is the feed-

back coefficient. We need the following result which can be
located in Matignon (1996):

Lemma5.1 The following linear commensurate fractional-
order autonomous system

“D*u= Au,u € (0,1), (11
is asymptotically stable if and only if | argA [> 0.57u, is satis-
fied for all eigenvalues (1) of matrix A. Furthermore, this
system is stable if and only if | argA [> 0.5z, is satisfied for
all eigenvalues (4 ) of matrix 4 and those critical eigenvalues
which satisfy | argA |= 0.57u, have geometric multiplicity
one, where 0<u<l,ueR",and A€ R"xR".

Theorem 5.1 If y > 0,06 >0,k, =—p+ko and o(k, + p) <1,
then the fractional-order Liu chaotic system (2) and the
controlled fractional-order Liu chaotic system (11) attained
synchronization via fractional-order derivative.

Proof. Define the synchronization error variables as follows:

e=v,—u, i=1,.,5.

Therefore, we obtain the system

. 1

LDllel el

. 1

LDllez 62

. 1

LD/263 _ 4 e

¢ Mo - s (12)
D 6‘4 €,

Sy}

‘D 365 €5

where
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-0 0 0 0
0 -o 0 o O
- p—ko+k, 0 ko 0 0 '
0 P —Oug 0 0 -dv,
nv+u) nv,+u,) 0 0 -y

Since k, = —p+ ko then for suitable values of u, and v,,

we have
-o 0 0 O
0 -c 0 o O
4= 0 0 ko 0 O
0 P 0 O
0 0 0 0 -y

Thus, the characteristic equation is of the form
(7 + A)(o + A) (ko — V)X +0A— pc]=0.

T 7
Since ¢ >0,y >0,k <0 yields that | argA,(4) I>E>Eu,

i=1,...,5. In virtue of Lemma 6.1, we have that the equili-
brium point p,, of error system (12) is asymptotically stable,
and hence the fractional-order Liu chaotic systems (2) and
(11) achieved synchronization via fractional-order derivative.
The proof'is completed.

6. Existence and Uniqueness

In this section we establish the existence and unique-
ness of system (2). Let &,,7=1,2,3 be in the unit disk
U:=={zeC:|z|<1} and teJ =[0,T]. In addition, we
assume that ,,...,U5 are continuous in J; we symbolize
this set by C(J). Let S={(u;,....us)" :tty,...,uts € C(J)}
with the norm

[&lls =l |+l = sup 1,0 | +5up [, () 1,
teJ teJ

ol = e e = sup ) supl )
and
ol =l = sup 0.

Theorem 6.1 Let p=¢ and 1> —y in system (2) withe the
initial condition (u,(0),...,u;(0))". If

H Hy H3
oI 1pIT™  InIT® 1 .,

F(u+1) T(+1) T +1) 4

then (2) has a unique solution in S .

Proof. The system (2) can be observed as a matrix form

(‘D"u,,* D"'u,)" = (~ou, + ou,,—ou, +ou,)’
(‘D"uy,¢ D"u)" = (pu, — Ouyits, pu, _&42u5)T (13)
“Dug = —pus +n(u +u3).

Operating (13)by I", I*? and I"® respectively implies

(uy,14,)" = (14,(0) — ol “"u, + o “uy u, (0) — o 11y + 0 )"
(uzou)" = (u3(0)+ pI “2u, — S 2uug, u, (0)+ pl “2uy — 1 *2uug)’
us = ug(0) =yl 3us + I (u} +u3).

(14)
Define the operator O : S — S by

O@tyynrtts)” = (1, (0),...,u5(0))" +(—0f “u, + ol “uy,— o “1ut, + ol M,
pol'*2u, = 81" u,ug, pl*?u, — 81" u,us,
= s+l ] +u3)'

(15)

Because |y, [< 1, thus a computation yields

0@, s t1)T = O,y v) T |l

= H(_O_Iyl (u, _"1)"'(71#1 (us _‘}3)=_0_1H1 (u, =vy) +ol" (uy —vy),
plf‘z (u, —v)) -5 (uus —vvs), plf‘z (u, =v,) - 61" (uyus —v,v5),
=" (s —ve)+nl P[] +u3) = +v)D7 s

o|TH 7' T
<qdolT  1pT" | 1n] MGty eer 1) = 0y s
Cgy+1) T(uy,+1) Ty +1)

where | v, |[<1. Hence by the contraction fixed point theorem,
the problem (2) has a unique solution in S.

7. Conclusion and Discussion

Using fractional-order derivative (in sense of the
Caputo derivatives), we may stabilize the unstable equili-
brium points of the complex fractional-order Liu chaotic
system and comprehend chaos synchronization for the
fractional order Liu chaotic system. The fractional system is
taken for different values of y,,i =1,2,3 where u, =0.996,
Uy, =0.997,u, =0.998. The parameters are valued as
o=10,p=40,0 =1,y =2.5 and n=4. Figure 1 shows
the time series for system (2) while Figure 2 shows the
waveform of system (2). Figure 3, shows the asymptotically
stabile of the system for different values of (o,y), where
>0 and y>0; in (a)- (0,7)=(1,03),p=-0.8 (b)-
(0,7)=1(1,0.3), p=-0.8, in (¢)-(o,7)=(0.1,0.3),p=0.8
and (d)- (o,7)=(0.1,0.03),p=0.8 for fixed 6 =0.4 and
n=14. We suggested a controller for fractional-order
chaotic system (2) via fractional-order derivative based on
the method due to Diethelm and Ford. The existence and
uniqueness are established in Section 6, by imposing the
sufficient condition on the coefficients of the system. The
complex variables are taken in the unit disk. From above, we
debated the fractional-order systems of complex variable and
we pointed that they are more suitable than integer-order
ones in biological, economic, and social systems. These
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Figure 3. Stability cases for ¢ >0, y > 0.

complex systems, of five equations, are applied to character-
ize the physics of a laser, rotating fluids, disk dynamos,
electronic circuits, and particle beam dynamics in high energy
accelerators.
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