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Abstract

In this paper, we propose a new zero inflated distribution, namely, the zero inflated negative binomial-generalized
exponential (ZINB-GE) distribution. The new distribution is used for count data with extra zeros and is an alternative for data
analysis with over-dispersed count data. Some characteristics of the distribution are given, such as mean, variance, skewness,
and kurtosis. Parameter estimation of the ZINB-GE distribution uses maximum likelihood estimation (MLE) method. Simulated
and observed data are employed to examine this distribution. The results show that the MLE method seems to have high-
efficiency for large sample sizes. Moreover, the mean square error of parameter estimation is increased when the zero propor-
tion is higher. For the real data sets, this new zero inflated distribution provides a better fit than the zero inflated Poisson and
zero inflated negative binomial distributions.
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1. Introduction

Poisson distribution provides a standard model for
the analysis of count data with the assumption of equal mean
and variance. However, in practice, count data often shows
overdispersion,  the  variance  is  greater  than  the  mean.  In
practice, negative binomial (NB) distribution was introduced
to solve this problem, and it has become increasingly popular
as a more flexible alternative to fit models. The NB distribu-
tion is a better fit for over-dispersed count data which is not
necessarily heavy-tailed (Wang, 2011).

For over-dispersed count data, some mixed NB distri-
butions offer a better fit when compared with the Poisson
and NB distributions. Such findings are related to those of
Gomez-Dèniz et al. (2008), Zamani and Ismail (2010), Wang
(2011), and Pudprommarat et al. (2012). Recently, a negative
binomial-generalized exponential (NB-GE) distribution was

employed to fit count data. It was obtained by mixing the
NB distribution with a generalized exponential (GE) distribu-
tion. Also, the NB-GE distribution is more appropriate to fit
count  data  with  overdispersion  and  heavy-tailed  datasets
than  the  Poisson  and  NB  distributions  (Aryuyuen  and
Bodhisuwan, 2013).

Moreover, in practice, one frequent demonstration of
overdispersion  is  a  zero  count  incidence.  Count  data  with
extra zeros occur in many fields, such as public health, epide-
miology, medicine, sociology, engineering and agriculture.
Standard discrete distribution may fail to fit such data either
because of zero inflation or over/underdispersion. Now, there
is increased interest in a zero inflated distribution to account
for extra zeros in data (Xie et al., 2009). Count data with extra
zeros create problems of violating basic assumptions implicit
in the standard distribution. Failure to account for extra zeros
may  result  in  biased  parameter  estimates  and  misleading
inference.  Because  the  zero  inflated  distributions  usually
provide better statistical fit, some researchers, e.g., Lambert
(1992), Greene (1994), Hall (2000), Famoye and Singh (2003),
Bodhisuwan (2011) proposed these distributions.
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As mentioned above, the mixed distribution defines
one of the most important ways to obtain a new probability
distribution in applied probability and operational research
(Gomez-Dèniz et al., 2008). For the purpose, we are looking
for a new zero inflated distribution which is a more flexible
alternative to fit count data with excess zeros.

The rest of this article is organized as follows. We
propose  the  new  zero  inflated  distribution  that  is  a zero
inflated negative binomial-generalized exponential (ZINB-
GE) distribution. Some characteristics, graphs of probability
mass function (pmf) and a random variate generation of
ZINB-GE distribution are introduced in Section 2. In Section
3  the  maximum  likelihood  estimation  (MLE)  method  is
handled to estimate the parameters of ZINB-GE distribution.
Numerical  examples  are  provided  in  Section  4,  including
simulated data which are utilized to examine the efficiency of
MLE method, and real data sets that are used to evaluate the
performance of the proposed distribution. Finally, some con-
clusions are presented in Section 5.

2. New zero inflated negative binomial distribution

The zero inflated (ZI) distribution can be used to fit
count data with extra zeros, and assumes that the observed
data are the result of a two-part process; a process that gener-
ates structural zeros and a process that generates random
counts. The model of ZI can be summarized as follows:

0( | ) ( ) (1 ) ( ; ),   P X x x f x    (1)
where X  is the count variable,   is the extra proportion of
zeros, ( ; )f x   is the pmf of X  with the parameter  , and

0 ( ) 1x   if 0;x  otherwise, 0 ( ) 0x  .

2.1 The ZINB-GE distribution

The ZINB-GE distribution is a new mixture distribu-
tion, combining Bernoulli and NB-GE distributions. First,
we introduce a definition and some characteristics of NB-GE
distribution as follows.

Definition 1 Let Y be a random variable of the NB-GE dis-
tribution. Random variable Y has the NB distribution with
the parameters r and exp( )p   , where   is distributed as
the GE distribution with the positive parameters  and ,
i.e.,

|y  ~ NB( ,r exp( ))p   and ~ GE( , )  . The pmf of
Y is given by
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Now, by using the expression (1) and Definition 1,
we obtain the closed formulas for the pmf and some charac-
teristics of ZINB-GE as follows.

Definition 2 Let X  be a random variable of ZINB-GE distri-
bution with the parameters , ,r    and  , denoted as X~
ZINB-GE( , , , )r    . The pmf of X is given by

( )

( )
0

(1 ) if 0,
( ) 1

(1 ) ( 1) if 1,2,

r

x
j

r j
j

M x
f x r x x

M x
x j

 

 


  


     
     

   
 

(5)

where  0 1,  , , 0r    , and ( )uM  is defined in (3).

The graphs of ZINB-GE’s pmf distribution with speci-
fied parameters , ,r    and  , offered in Figure 1, shows that
the distribution will be flat when parameter   is increasing.
However, the distribution will be flat when the parameter 
is decreasing. In addition, the pmf of ZINB-GE distribution
can take different shapes when values of  differ.

Theorem 1  If X~ ZINB-GE( , , , )r    then some character-
istics of X are as follows.
(a)  The mean and variance of X are given by

E( )X   (1)1 r r     and Var( )X 2
X , (6)
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The proof of Theorem 1 is in the Appendix.

2.2 Random variate generation of ZINB-GE distribution

To generate a random variable X from the ZINB-GE
( , , ,r   ), one can use the following algorithm:

1) Generate U from the uniform distribution, U(0,1).

2) Set  1/1 log 1 U 


    from the GE distribution,

~GE( , )  .
3) Generate Y from the NB( , exp( )r p   ) distribu-

tion.

4) Generate *U  from the uniform distribution, U(0,1).

5) If *U  , then set X Y ; otherwise, X = 0.

3. Parameter estimation of ZINB-GE distribution

In this section, the parameter estimation of ZINB-GE
distribution via MLE procedure is provided. The likelihood
function of ZINB-GE ( , , , )r    is given by
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then  we  can  write  the  log-likelihood  of  the  ZINB-GE
( , , , )r    as
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By  differentiating  the  log-likelihood  function  of
ZINB-GE distribution, partial derivatives of the log likelihood
function with respect to , r,  and  are given by
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Figure 1.  The pmf of ZINB-GE distribution with specified parameters



S. Aryuyuen et al. / Songklanakarin J. Sci. Technol. 36 (4), 483-491, 2014486






  

 ( 0)
1 ( )

(1 )Γ 1 / Γ( 1)
(1 ) Γ / 1i

n

x
i r

r
I

M r
  

    


     
         



( 0)

1( 1) ( , , )
( , , )ixI r j
r j

    
   

 
        

,






  

 ( 0)
1 ( )

Γ 1 /(1 )Γ( 1)
(1 ) Γ / 1i

n

x
i r

r
I

M r
 

    


    
         



( 0)

1 ( , , )
( , , )ixI r j
r j

  
   

 
     

.

The MLE solutions of the parameter estimates can be
obtained  by  using  numerical  optimization  with  the  nlm
function in the R program (R Core Team, 2012). The R code
of parameter estimation of ZINB-GE distribution using the
MLE method is given in the Appendix.

4. Numerical study

This  section  presents  the  efficiency  of  the  MLE
method for parameter estimation of ZINB-GE distribution by
using simulated data. In addition, we illustrate the applica-
tion  study  of  ZINB-GE  distribution  compared  to  the  zero
inflated Poisson (ZIP) and zero inflated negative binomial
(ZINB) distributions.

4.1 Simulation study

In illustrating the simulation study, the sample data
generated from the ZINB-GE distribution with specified
parameters  (r = 10,  = 10,   = 10)  and  four  values  for
proportion of zero (0.2, 0.4, 0.6, 0.8) for the sample sizes
(n) as 50, 100 and 200, respectively. In each situation, the
parameters are estimated from 500 replications. Hence the
maximum likelihood estimators may be biased. The biased
value is a difference value between the estimator and true
parameter values. The sample average of the estimated para-
meter, bias, variance, standard deviation (SD), and mean
squared error (MSE) are computed by the formulas: âv 

500
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 
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  , ˆ ˆBias( )av av    , ˆVar( )av  500 2
1

1 ˆ ˆ( )
500 1 t avt

 


 
  ,

ˆSD( )av   ˆVar( )av  and ˆMSE( )av ˆVar( )av  2 ˆBias ( )av .
Table 1 illustrates statistic values from the results of

studies.  From  these  results,  MLE  seems  to  have  high-
efficiency when the sample size is large. The efficiency of
MLE seems to be poor for small sample sizes. In addition,
the MSE of parameter estimation is increasing when the zero
proportion is higher as in Figure 2, which displays the graphs
of MSE for parameter estimates of ZINB-GE distribution.

4.2 Application study

We used two data sets for this part of the analysis to
illustrate the applications of the ZINB-GE distribution. The
first  data  set  has  the  number  of  hospital  stays  by  United
States residents aged 66 and over (see Flynn, 2009), which is
shown in Table 2. This data has 80.37% of zeros and the
sample  index  of  dispersion  is  1.882.  In  addition,  Table  3
shows the number of units of consumers good purchased by
households over 26 weeks (see Lindsey, 1995). This data set
has 80.60% of zeros and the sample index of dispersion is
3.337.  These  examples  have  sample  indices  of  dispersion
bigger than 1 and a high percentage of zeros.

For model selection in this study, we use the criteria
of  AIC  (Akaike  information  criterion)  and  BIC  (Bayesian
information criterion), the goodness of fit test (chi-squared
test:  2-test)  is  used  to  compare  between  observed  and
expected values of data.  From the results in Table 2-3, we
found that the AIC and BIC values for ZINB-GE distribution
are the smallest when compared with existing models. Thus,
the ZINB-GE distribution can be chosen as the best model.
Also, based on the p-values of chi-squared test, the proposed
distribution is appropriate to fit the data unlike the ZIP and
ZINB distributions. These three criteria indicate that the
ZINB-GE distribution is the best fit, while the ZIP and ZINB
distributions are very poor fits.

5. Conclusions

This work proposes the new zero inflated distribution,
which is called the zero inflated negative binomial-general-

Figure 2. The MSE of parameter estimates of ZINB-GE
distribution
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ized exponential distribution. In particular, the closed form
and  some  characteristics  of  the  proposed  distribution  are
introduced. Parameter estimation is also implemented by
using MLE, and the usefulness of the ZINB-GE distribution
is illustrated by real and generated data. Based on the results,
the proposed distribution is the best fit while the ZIP and
ZINB distributions are very poor fits for count data with extra
zeros. In conclusion, the ZINB-GE distribution is a flexible
alternative for analysis of count data characterized by extra
zeros. Also, the MLE method seems to have high-efficiency
for large sample sizes, and the MSE of parameter estimation
increases when the zero proportion is higher.
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good purchased by households over 26 weeks

          Expected value by fitting distribution

ZIP ZINB ZINB-GE

0 1612 93.6 1612.0 1613.4
1 164 286.8 81.4 175.6
2 71 439.0 89.0 74.6
3 47 447.8 76.0 40.4
4 28 342.6 55.6 24.8
5 17 209.8 36.6 16.8
6 12 107.0 22.2 12.0
7 12 46.8 12.8 9.0
8 5 18.0 7.0 7.0
9 7 6.0 3.8 5.8

10-11 9 2.4 3.0 8.8
12-17 10 0.2 0.6 6.4
18-27 6 0.0 0.0 5.4

Parameter estimates ˆ 0.7965  ˆ 0.7837  ˆ 0.3861 
ˆ 3.0609  r̂ 4.9719 r̂ 1.7860

p̂ 0.6332 ˆ 0.4325 
ˆ 1.6496 

AIC 3893 3638 3477
BIC 3904 3655 3499

2 26000.20 209.81 6.35
Degree of freedom 7 6 8
p-value < 0.0001 < 0.0001 0.6080

Units of
consumers good

Households/
Observed value

8.6 7.4

Table 2. Observed and expected frequencies of the number of hospital stays of
United States residents aged 66 and over

        Expected value by fitting distribution
Observed value

ZIP ZINB ZINB-GE

0 3541 1816.5 3541.1 3541.1
1 599 1609.5 533.4 601.0
2 176 712.9 217.7 168.7
3 48 210.6 68.7 56.4
4 20 46.7 18.9 21.6
5 12 8.4 4.4 9.7
6 5 1.3 1.3 4.4
7 1 0.1 0.5 1.8
8 4 0.0 0.0 1.3

Parameter estimates ˆ 0.6659  ˆ 0.6040  ˆ 0.1645 
ˆ 0.8859  r̂ 3.9683 r̂ 2.2040

p̂ 0.8415 ˆ 1.0331 
ˆ 7.3573 

AIC 6122 6078 6022
BIC 6135 6097 6048

2 2831.93 58.31 3.07
Degree of freedom 3 2 2
p-value < 0.0001 < 0.0001 0.2155

Number of
hospital stays

9.8 6.2
7.5



489S. Aryuyuen et al. / Songklanakarin J. Sci. Technol. 36 (4), 483-491, 2014

Bodhisuwan, W. 2011. Zero inflated Waring distribution and
its application. Procedings of the 37th Congress on
Science and Technoloby of Thailand, Thailand.

Famoye,  F.  and  Singh,  K.P.  2003.  On  inated  generalized
Poisson regression models. Advances and Applica-
tions in Statistics. 3, 145-158.

Flynn, M. 2009. More flexible GLMs zero-inflated models
and  hybrid  models.  Casualty  Actuarial  Society  E-
Forum, Winter, U.S.A., pp. 148-224.

Gomez-Dèniz E., Sarabia, J.M. and Calderín-Ojeda, E. 2008.
Univariate and multivariate versions of the negative
binomial-inverse Gaussian distributions with applica-
tions.  Insurance Mathematics and Economics, 42,
39-49.

Greene, W.H. 1994. Accounting for excess zeros and sample
selection in Poisson and negative binomial regression
models. Working paper No. 94-10, Department of
Econometrics,  Stern  School  of  Business,  New  York
University, New York, U.S.A.

Hall, D.B. 2000. Zero-inated Poisson and binomial regression
with  random  effects:  a  case  study.  Biometrics.  56,
1030-1039.

Lambert, D. 1992. Zero-inflated Poisson regression, with an
application  to  defects  in  manufacturing.  Techno-
metrics. 34, 1-14.

Lindsey, J. K. 1995. Modelling Frequency and Count Data.
Oxford science publications, Clarendon Press, UK., p.
146.

Pudprommarat, C., Bodhisuwan, W. and Zeephongsekul, P.
2012.  A  new  mixed  negative  binomial  distribution.
Journal of Applied Sciences. 17, 1853-1858.

R Core Team, 2012. R: A language and environment for statis-
tical computing. R Foundation for Statistical Comput-
ing, Vienna, Austria.

Wang, Z. 2011. One mixed negative binomial distribution with
application. Statistical Planning and Inference. 141,
1153-1160.

Xie, F., Wei B. and Lin, J. 2009. Score tests for zero-inflated
generalized Poisson mixed regression models. Com-
putational Statistics and Data Analysis. 53, 3478-3489.

Zamani, H. and Ismail, N. 2010. Negative binomial-Lindley dis-
tribution and its application. Journal of Mathematics
and Statistics. 1, 4-9.



S. Aryuyuen et al. / Songklanakarin J. Sci. Technol. 36 (4), 483-491, 2014490

Appendix

Proof of Theorem 1:
From Definition 1, let Y~ NB-GE( , , )r    be a random variable of the NB-GE distribution and some expected values

of Y are
2 2 2 2

(2) (1)E( ) ( ) (2 )Y r r r r r      ,

3 3 2 3 2 3 2 3
(3) (2) (1)E( ) ( 3 2 ) (3 6 3 ) (3 3 )Y r r r r r r r r r r            ,

4 4 3 2 4 3 2
(4) (3)E( ) ( 6 11 6 ) (4 18 26 12 )Y r r r r r r r r        

         4 3 2 4 3 2 4
2 1(6 18 19 7 ) (4 6 4 )r r r r r r r r r          .

If X~ ZINB-GE( , , , )r   , then the expected value of X is given by
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E( )X (1 )E( )Y   (1)(1 ) 1r      .

Consequently, we obtained the expected values of X as follows
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From Var( )X  22E( ) E( )X X  , the variance of X  is

Var( )X     2

(2) (1) (1)( 1) (2 1) 1 ( 1) 1r r r r r                   .

The skewness and kurtosis of X are

( )Sk X  33 2 3[E( ) 3E( ) E( ) 2 E( ) ] / ,XX X X X   

( )Ku X    2 44 3 2 4[E( ) 4E( )E( ) 6 E( ) ( ) 3 E( ) ] / .XX X X X E X X    
Now, by using the expression as below, the skewness and kurtosis of X can be written in (7) and (8), respectively.
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The R code of the parameter estimation of the ZINB-GE distribution with the MLE method:
mlogl<-function(theta,x){
    fzinbge<-function(theta,x){
       mm<-length(x);
       k<-numeric(mm);
      zinbge<-function(theta,x){
        if(x==0){
          p<-(-log(theta[4]+((1-theta[4])*((gamma(theta[2]+1)

*gamma(1+theta[1]/theta[3]))/gamma(theta[2]+theta[1]
/theta[3]+1)))));

       }else
        if(x>0){
          pp1<-(gamma(theta[2]+1)*(gamma(1+theta[1]/theta[3])))

/(gamma(theta[2]+theta[1]/theta[3]+1));
          for(j in 1:x){
             p1<-((factorial(x)/(factorial(j)*factorial(x-j)))

*(-1)^j)*((gamma(theta[2]+1)*gamma(1+(theta[1]+j)
                 /theta[3]))/gamma(theta[2]+(theta[1]+j)/theta[3]+1));
             pp1<-pp1+p1;
            }
            p<-(-log(1-theta[4]))-log(factorial(theta[1]+x-1))

+log(factorial(theta[1]-1))+log(factorial(x))-log(pp1);
          }p}
      for(i in 1 : length(x)){
        k[i]<-zinbge(theta,x[i])}k}
    sum(fzinbge(theta,x))}
theta.start<-c(start_r,start_alpha,start_beta,start_phi)
out<-nlm(mlogl,theta.start,x = x)
r_MLE<-out$estimate[1]
alpha_MLE<-out$estimate[2]
beta_MLE<-out$estimate[3]
phi_MLE<-out$estimate[4]


