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Abstract

In this paper, we propose a new zero inflated distribution, namely, the zero inflated negative binomial-generalized
exponential (ZINB-GE) distribution. The new distribution is used for count data with extra zeros and is an alternative for data
analysis with over-dispersed count data. Some characteristics of the distribution are given, such as mean, variance, skewness,
and kurtosis. Parameter estimation of the ZINB-GE distribution uses maximum likelihood estimation (MLE) method. Simulated
and observed data are employed to examine this distribution. The results show that the MLE method seems to have high-
efficiency for large sample sizes. Moreover, the mean square error of parameter estimation is increased when the zero propor-
tion is higher. For the real data sets, this new zero inflated distribution provides a better fit than the zero inflated Poisson and

zero inflated negative binomial distributions.
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1. Introduction

Poisson distribution provides a standard model for
the analysis of count data with the assumption of equal mean
and variance. However, in practice, count data often shows
overdispersion, the variance is greater than the mean. In
practice, negative binomial (NB) distribution was introduced
to solve this problem, and it has become increasingly popular
as a more flexible alternative to fit models. The NB distribu-
tion is a better fit for over-dispersed count data which is not
necessarily heavy-tailed (Wang, 2011).

For over-dispersed count data, some mixed NB distri-
butions offer a better fit when compared with the Poisson
and NB distributions. Such findings are related to those of
Gomez-Déniz et al. (2008), Zamani and Ismail (2010), Wang
(2011), and Pudprommarat et al. (2012). Recently, a negative
binomial-generalized exponential (NB-GE) distribution was
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employed to fit count data. It was obtained by mixing the
NB distribution with a generalized exponential (GE) distribu-
tion. Also, the NB-GE distribution is more appropriate to fit
count data with overdispersion and heavy-tailed datasets
than the Poisson and NB distributions (Aryuyuen and
Bodhisuwan, 2013).

Moreover, in practice, one frequent demonstration of
overdispersion is a zero count incidence. Count data with
extra zeros occur in many fields, such as public health, epide-
miology, medicine, sociology, engineering and agriculture.
Standard discrete distribution may fail to fit such data either
because of zero inflation or over/underdispersion. Now, there
is increased interest in a zero inflated distribution to account
for extra zeros in data (Xie et al., 2009). Count data with extra
zeros create problems of violating basic assumptions implicit
in the standard distribution. Failure to account for extra zeros
may result in biased parameter estimates and misleading
inference. Because the zero inflated distributions usually
provide better statistical fit, some researchers, e.g., Lambert
(1992), Greene (1994), Hall (2000), Famoye and Singh (2003),
Bodhisuwan (2011) proposed these distributions.
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As mentioned above, the mixed distribution defines
one of the most important ways to obtain a new probability
distribution in applied probability and operational research
(Gomez-Déniz et al., 2008). For the purpose, we are looking
for a new zero inflated distribution which is a more flexible
alternative to fit count data with excess zeros.

The rest of this article is organized as follows. We
propose the new zero inflated distribution that is a zero
inflated negative binomial-generalized exponential (ZINB-
GE) distribution. Some characteristics, graphs of probability
mass function (pmf) and a random variate generation of
ZINB-GE distribution are introduced in Section 2. In Section
3 the maximum likelihood estimation (MLE) method is
handled to estimate the parameters of ZINB-GE distribution.
Numerical examples are provided in Section 4, including
simulated data which are utilized to examine the efficiency of
MLE method, and real data sets that are used to evaluate the
performance of the proposed distribution. Finally, some con-
clusions are presented in Section 5.

2. New zero inflated negative binomial distribution

The zero inflated (ZI) distribution can be used to fit
count data with extra zeros, and assumes that the observed
data are the result of a two-part process; a process that gener-
ates structural zeros and a process that generates random
counts. The model of ZI can be summarized as follows:

P(X =x|¢)=¢0,(x) +(1=4)f(x;0), ()
where X is the count variable, ¢ is the extra proportion of

zeros, f(x;0) is the pmf of X with the parameter 0, and
®,(x) =11if x = 0; otherwise, ,(x)=0.

2.1 The ZINB-GE distribution

The ZINB-GE distribution is a new mixture distribu-
tion, combining Bernoulli and NB-GE distributions. First,
we introduce a definition and some characteristics of NB-GE
distribution as follows.

Definition 1 Let Y be a random variable of the NB-GE dis-
tribution. Random variable Y has the NB distribution with
the parameters rand p = exp(—A), where 4 is distributed as
the GE distribution with the positive parameters « and £,
ie.,

y|A~NB(r, p=exp(-1))and A~GE(a, B) . The pmf of
Y is given by

+y-1\& .
f(y)=[r i JZUJ(_I)JM(”’” . y=0,12,..., 2)

Jj=0

_T(a+DI(1+u/p)
@ T(a+u/B+1)

where I'(-) is a gamma function denoted as I'(z) = J Y e dy,

forr,a, >0 3)

fort>0,and 0
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Next, the mean and variance of Y are respectively given by
E(Y)=r(5,, -1 and

Var(Y)=oy =r(r+1)8,, —r(ré(]) +1)5(]),

where 5(,,) is

_T(a@+)r(-u/p)
“W Ta-u/B+1) @)
Now, by using the expression (1) and Definition 1,

we obtain the closed formulas for the pmf and some charac-
teristics of ZINB-GE as follows.

Definition 2 Let X be a random variable of ZINB-GE distri-
bution with the parameters »,a, 8 and ¢, denoted as X~
ZINB-GE(r,«, 8,¢) . The pmf of X is given by

p+(1-9)M,, ifx=0,
/(0= (1—¢)(r+x_lj > (x)(—l)wa, ifx=1,2,...
X =0 \.J
Q)
where 0 <@ <1, r,a,>0,and M, is defined in (3).

The graphs of ZINB-GE’s pmf distribution with speci-
fied parameters r,o,  and ¢, offered in Figure 1, shows that
the distribution will be flat when parameter ¢ is increasing.
However, the distribution will be flat when the parameter
is decreasing. In addition, the pmf of ZINB-GE distribution
can take different shapes when values of « differ.

Theorem 1 If X~ ZINB-GE(¢,r,«, B) then some character-
istics of X are as follows.
(a) The mean and variance of X are given by

E(X) =(1-¢)(r6, —r) and Var(X) =02, (6)

where 0, is defined in (4), and

172

Oy :|:r|:(r+1)6(2) = @2r+1)s, +r](1_¢)_|:r(6‘”_1)(1_¢)]2] '

(b) The skewness and kurtosis of X are
Sk(X) =

{rl:(r+l)(r+2)6(3) =3+ 1), + (B +3r 1108, =17 |(1-6) =317 (8, 1)

<[(r+1)8,, ~@r+ 18, +r|(1-¢)" +2[7(5, *‘)(Hﬁ)f} lo, (7
Ku(X)=

+(r+1)

{r[(r )+ 2)(r+3)8,, =20 + D)2 +Tr +6)3,,,

(6 +12r+7)8,) = 2r+ D277 +2r +1)3, +7° |(1-¢) =4 (5, 1)

=318, +Br 437403, —r* | (1-9) +67° (8, 1)

XI:(}’ + 1)(}" + 2)6 (1) (U]

x[(r+ 18, —@r+ 8, +r|(1-¢) =3[ (5, -1)(1 —¢)]4} /ot
®)
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(a) F=10, & =5, § =10, 4

=02

) r=10, =5 B =10, § =04

(g} r=10, & =5, B =10, § =06
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Figure 1. The pmf of ZINB-GE distribution with specified parameters

The proof of Theorem 1 is in the Appendix.
2.2 Random variate generation of ZINB-GE distribution

To generate a random variable X from the ZINB-GE
(p,r,a, B), one can use the following algorithm:
1) Generate U from the uniform distribution, U(0,1).

2) Set A= —%log (1 -y ) from the GE distribution,

)~GE(a, B).
3) Generate Y from the NB(r, p = exp(—A) ) distribu-
tion.

4) Generate U from the uniform distribution, U(0,1).
5 IfU" >¢,thenset X =Y ; otherwise, X=0.

3. Parameter estimation of ZINB-GE distribution

In this section, the parameter estimation of ZINB-GE
distribution via MLE procedure is provided. The likelihood
function of ZINB-GE (¢, 7, a, B) is given by

L(g,r,a,B)= ﬁ[[(&ﬂ)) (¢ +(1 _¢)M(r))

=1\ &L [ x; .
i [(1 - ¢>[" o jZ[j j(—l)” M., ﬂ

then we can write the log-likelihood of the ZINB-GE
(p,r,a, pB) as
L=logL(g,r,a,p)

+ I(x,>o) (log(l —@)+logI'(r+ x,-) —logI'(r)~log TG +1)
Xy (1 )/
+logl(a+1)+ logz(x'l J(_l)j 1"(0!(++(£r:];)/ ﬂﬂgl)ﬂ .

By differentiating the log-likelihood function of
ZINB-GE distribution, partial derivatives of the log likelihood
function with respect to ¢, 7, o and f are given by

oL <& T(a+r/B+1)-T(a+DI(1+7/B) 1
_:ZE L gr(a+r/B+1)+(1-@T(a+DT (1+r/B) o124

o9
oL _<|, (-pl@+) & T(1+r/B)
or S U e+U-¢)M,,, or T(a+r/B+1)
1 0 .
+I(A'>{))(W(r+xi)_‘//(r)+é/(7'+j%ﬂ)&'C(r+j’a’ﬂ)J:|’
where w(s)= I (S),and

I'(s)

al . T r N/

(a+(r+))/ B+1)
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0L _ |, [U=@r(+r/p) o T+
oa S| U +(-9M,, daT(a+r/p+1)

! i:mj,a,mﬂ,

I 1 _—
: “‘f”’[“m "G B o

oL / (1= (a+]) & T(1+r/p)
o S| U g+(U-9M , BT (a+r/B+1)

| 0 .
+I(x,>0) [g(r +j,05,ﬁ) 8/3 g“(r+],a, ﬂ)J:| .

The MLE solutions of the parameter estimates can be
obtained by using numerical optimization with the n/m
function in the R program (R Core Team, 2012). The R code
of parameter estimation of ZINB-GE distribution using the
MLE method is given in the Appendix.

4. Numerical study

This section presents the efficiency of the MLE
method for parameter estimation of ZINB-GE distribution by
using simulated data. In addition, we illustrate the applica-
tion study of ZINB-GE distribution compared to the zero
inflated Poisson (ZIP) and zero inflated negative binomial
(ZINB) distributions.

4.1 Simulation study

In illustrating the simulation study, the sample data
generated from the ZINB-GE distribution with specified
parameters (=10, =10, f=10) and four values for
proportion of zero (¢=0.2, 0.4, 0.6, 0.8) for the sample sizes
(n) as 50, 100 and 200, respectively. In each situation, the
parameters are estimated from 500 replications. Hence the
maximum likelihood estimators may be biased. The biased
value is a difference value between the estimator and true
parameter values. The sample average of the estimated para-
meter, bias, variance, standard deviation (SD), and mean

squared error (MSE) are computed by the formulas: éw =

1 500 A

—5"0  Bias(d =0 — ) ) =
500 2 ., Bias(0,)=0, -0, Var(8,,)

SD(@, )= +/Var(d,) and MSE(@,,) = Var(0,,) +Bias*(d,,).

Table 1 illustrates statistic values from the results of
studies. From these results, MLE seems to have high-
efficiency when the sample size is large. The efficiency of
MLE seems to be poor for small sample sizes. In addition,
the MSE of parameter estimation is increasing when the zero
proportion is higher as in Figure 2, which displays the graphs
of MSE for parameter estimates of ZINB-GE distribution.

1 500 A2
500_1 21:1 (91 _euv) s
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4.2 Application study

We used two data sets for this part of the analysis to
illustrate the applications of the ZINB-GE distribution. The
first data set has the number of hospital stays by United
States residents aged 66 and over (see Flynn, 2009), which is
shown in Table 2. This data has 80.37% of zeros and the
sample index of dispersion is 1.882. In addition, Table 3
shows the number of units of consumers good purchased by
households over 26 weeks (see Lindsey, 1995). This data set
has 80.60% of zeros and the sample index of dispersion is
3.337. These examples have sample indices of dispersion
bigger than 1 and a high percentage of zeros.

For model selection in this study, we use the criteria
of AIC (Akaike information criterion) and BIC (Bayesian
information criterion), the goodness of fit test (chi-squared
test: y’-test) is used to compare between observed and
expected values of data. From the results in Table 2-3, we
found that the AIC and BIC values for ZINB-GE distribution
are the smallest when compared with existing models. Thus,
the ZINB-GE distribution can be chosen as the best model.
Also, based on the p-values of chi-squared test, the proposed
distribution is appropriate to fit the data unlike the ZIP and
ZINB distributions. These three criteria indicate that the
ZINB-GE distribution is the best fit, while the ZIP and ZINB
distributions are very poor fits.

5. Conclusions

This work proposes the new zero inflated distribution,
which is called the zero inflated negative binomial-general-

A A
o] r
8
S e =02
_ -+~ =04
o - =0.6
% 54 -~ =08 &
= = =
=
=
= T T T
50 100 150 200 50 100 150 200
sample size (n) sample size (n)
A A
a p

MSE
0 100 200 300 400
1

50 100 150 200 50 100 150 200

sample size (n) sample size (n)

Figure 2. The MSE of parameter estimates of ZINB-GE
distribution
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Table 1. The parameter estimates of ZINB-GE distribution with different parameter ¢

n=>50 n=100 n=200

Parameter Estimate MSE Estimate MSE Estimate MSE
(SD) (SD) (SD)

$=02 1) 0.19 0.0065 0.19 0.0046 0.18 0.0027
(0.08) (0.07) (0.05)

r 12.60 64.83 10.24 25.51 9.19 15.61
(7.62) (5.04) (3.87)

o 10.82 65.64 9.31 31.13 821 23.19
(8.06) (5.54) 447

o] 1272 94.05 10.26 35.85 8.82 1745
(9.31) (5.98) 4.01)

$=04 1) 0.39 0.0086 0.38 0.0052 0.39 0.0028
(0.09) (0.07) (0.05)

r 14.81 95.28 11.07 32.01 9.66 16.23
(849) (5.55) 4.01)

o 12.59 93.13 943 44.75 8.96 24.59
(930 (6.67) (4.85)

o] 15.52 155.97 10.98 44.24 9.57 21.09
(11.20) (6.58) 4.57)

$=0.6 I 0.58 0.0090 0.59 0.0034 0.59 0.0029
(0.09) (0.06) (0.05)

r 17.14 168.63 12.52 51.92 10.31 16.62
(10.85) (6.75) 4.07)

o 14.65 173.65 11.28 54.39 972 26.55
(12.33) (7.26) (5.15)

yij 18.29 289.80 12.70 78.29 10.28 2244
(14.87) (843) 4.73)

$=0.8 I 0.78 0.0070 0.79 0.0022 0.80 0.0011
(0.08) (0.05) (0.03)

r 19.84 237.38 13.75 68.40 11.07 2849
(11.86) (7.37) (5.58)

o 17.25 243.34 12.25 71.55 10.77 3175
(13.92) (13.74) (5.58)

o] 20.25 370.38 13.74 93.50 11.17 39.87
(16.29) (8.92) (621)

ized exponential distribution. In particular, the closed form  Acknowledgements

and some characteristics of the proposed distribution are
introduced. Parameter estimation is also implemented by
using MLE, and the usefulness of the ZINB-GE distribution
is illustrated by real and generated data. Based on the results,
the proposed distribution is the best fit while the ZIP and
ZINB distributions are very poor fits for count data with extra
zeros. In conclusion, the ZINB-GE distribution is a flexible
alternative for analysis of count data characterized by extra
zeros. Also, the MLE method seems to have high-efficiency
for large sample sizes, and the MSE of parameter estimation
increases when the zero proportion is higher.

The authors wish to gratefully acknowledge to the
referee of this paper who helped to clarify and improve the
presentation. The first author would like to thank the
Research Professional Development Project under the
Science Achievement Scholarship of Thailand (SAST) for
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Appendix

Proof of Theorem 1:

From Definition 1, let Y~ NB-GE(r,a, ) be a random variable of the NB-GE distribution and some expected values
of Yare

E(Y?) =0 +1)8,, — (21" +1)5,, + 17,
E(Y?) = (r* +3r7 +2r)8 5, — 3’ +6r° +3r)5,

EY*H=0"+6r° +117° + 6r)5 ) — (4r* +187° + 2617 +12r)6,

»t (3r3 +3r7 + r)5(1) -

P,
3)
+(6r* +187° +197° +7r)8, —(4r* +61° +4r° +7)5, +1".
If X~ ZINB-GE(¢, r, o, B) , then the expected value of X is given by
il 2 (r+x—-1\&(x :
E(X) = xf(x) =(0)[¢+1-p)M,, |+( —¢)Zx[ . JZ[J(—I)’ M,,,.
x=0 x=1 Jj=0

)

From E(Y) = i VI =Y y[r " ; 4)26 j(—l)jM(Hj) — (8, ~1) , wehave

J=0

E(X) = (1-9)EY) = (1-¢)[ (5, 1) ]
Consequently, we obtained the expected values of X as follows

o N .
E(X?) =(1—¢>Z]x2[”j JZOC}—D’MW-) = (1-PE(T?).

* -1 .
E(X?) =(1—¢)Zx3 [Hj JZ@(—I)’MW =(1-9)E(Y’),

2 r+x-1\& ,
ECx) =<1—¢>Zx“( ” jz[ﬂ(—lwm,) =(1-$)E().
From Var(X) = E(X?) - (E(X))2 , the variance of X is
Var(X) = r[ (r+ 18, —2r +18, +r |(1-9) [ (8, ~D(1-¢) ] -

The skewness and kurtosis of X are

Sk(X) =[E(X*)=3E(X)E(X?)+ 2(E(X))3] /oy,

Ku(X) =[E(X")—4E(X)E(X’) +6(E(X))’ E(X*)-3(E(X))']/ ot

Now, by using the expression as below, the skewness and kurtosis of X can be written in (7) and (8), respectively.
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The R code of the parameter estimation of the ZINB-GE distribution with the MLE method:
mlogl<-function(theta,x){
fzinbge<-function(theta,x){
mm<-length(x);
k<-numeric(mm);
zinbge<-function(theta,x){
if(x==0){
p<-(-log(theta[4]+((1-theta[4])*((gamma(theta[2]+1)
*gamma(l+theta[ 1]/theta[3]))/gamma(theta[2]+theta[ 1]
/theta[3]+1)))));
}else
if(x>0){
ppl<-(gamma(theta[2]+1)*(gamma(1+theta[1]/theta[3])))
/(gamma(theta[2]+theta[ 1]/theta[3]+1));
for(j in 1:x){
p1<-((factorial(x)/(factorial(j)*factorial(x-})))
*(-1)YN)*((gamma(theta[2]+1)*gamma(1+(theta[ 1]+j)
/theta[3]))/gamma(theta[2]+(theta[ 1 ]+j)/theta[3]+1));
ppl<-ppl+pl;
}
p<-(-log(1-theta[4]))-log(factorial(theta[ 1]+x-1))
+log(factorial(theta[ 1]-1))+log(factorial(x))-log(pp1);
ip}
for(iin 1 : length(x)){
k[i]<-zinbge(theta,x[i])} k}
sum(fzinbge(theta,x))}
theta.start<-c(start_r,start alpha,start beta,start phi)
out<-nlm(mlogl,theta.start,x = x)
r MLE<-outS$estimate[ 1]
alpha MLE<-out$estimate[2]
beta MLE<-out$estimate[3]
phi_ MLE<-out$estimate[4]
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