Songklanakarin J. Sci. Technol.
36(5),591-598, Sep. - Oct. 2014

-
.E ® SONGKLANAKARIN
JOURNAL OF SCIENCE
AND TECHNOLOGY

http://www.sjst.psu.ac.th

Original Article

The % sequence space over p-metric spaces defined by Musielak modulus

Nagarajan Subramanian'*, Chinappan Priya 2, and Nallamuthu Saivaraju?

! Department of Mathematics,
Shanmugha Arts, Science, Technology and Research Academy University, Thanjavur-613 401, India.

? Department of Mathematics,
Shri Angalamman College of Engineering and Technology, Trichirappalli-621 105, India

Received: 14 May 2014; Accepted: 1 August 2014

Abstract

In this paper, we introduce bonacci numbers of x*(F) sequence space over p—metric spaces defined by Musielak
function and examine some topological properties of the resulting these spaces.
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1. Introduction

Throughout w, ¥y and A denote the classes of all,
gai and analytic scalar valued single sequences, respectively.

We write w” for the set ofall complex sequences (x,, ),
where m,n € N, the set of positive integers. Then, w* is a
linear space under the coordinate-wise addition and scalar
multiplication.

Some initial work on double sequence spaces is found
in Bromwich(1965). Later on it was investigated by Hardy
(1917); Moricz (1991); Moricz and Rhoades (1988); Basarir
and Solankan (1999); Tripathy et al. (2003, 2004, 2006, 2007,
2008,2009, 2010, 2011 and 2013); Turkmenoglu (1999); Raj
(2010,2011, 2012, 2013) and many others.

We procure the following sets of double sequences:
MI (t) = {(xm”) € W2 :supm,nEN

CP (t) = {(xm") € WZ : p _Zimm,nﬁao

X

mn |

tnm
<o,

x, —1 |’ =1 for some l € (C},

mn
trﬂﬂ —_ 1
- >

COP (t) = {('xmn) € W2 2 limm,n—)w |xmn
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Cbp (t) = Cp (t)ﬂMu (t) and CObp (t) = COp (t)ﬂ'/\/’u (t) $;

where 1= (¢ ) is the sequence of strictly positive reals ¢ for
all m,neNand p—Ilim
Pringsheim’s sense. In the case ¢, = 1 for all m,neN;

M, (t).C, ()G, (2).L,(2),C,, (¢) and C,,(¢) reduce to
the sets M,,C,,C,,,L,,C,, and CObp’ respectively. Now,
we may summarize the knowledge given in some document’s
related to the double sequence spaces. Gokhan et al. (2005)
have proved that M (f) and Cp (), Cbp (f) are complete
paranormed spaces of double sequences and obtained the
a-, p—, y— duals of the spaces M, (7) and Cbp (%) : Quite
recently, in her PhD thesis, Zeltser (2001) has essentially
studied both the theory of topological double sequence
spaces and the theory of summability of double sequences.
Mursaleen et al. (2003,2004, 2013, 2014) and Tripathy et al.
(2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 and 2013) have
independently introduced the statistical convergence and
Cauchy for double sequences and established the relation
between statistical convergent and strongly Cesaro summ-
able double sequences. Altay and Ba591sar (2005) have
defined the spaces BS; BS (¢), CSp, Cpr, CS and BV of

denotes the limit in the

m,n—»%0
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double sequences consisting of all double series whose
sequence of partial sums are in the spaces M, M (?), Cp, Cbp,
C and L , respectively, and also examined some properties of
those sequence spaces and determined the a— duals of the
spaces BS, BV, CS, 1 and the S (9) — duals of the spaces CS
and CS, of double series. Ba592sar and Sever (2009) have
introduced the Banach space L of double sequences cor-
responding to the well-known space ¢ , Of single sequences
and examined some properties of the space £,. Recently
Subramanian and Misra (2010) have studied the space
;(fl ( p,q,u) of double sequences and proved some inclu-
sion relations.

The class of sequences which are strongly Cesaro
summable with respect to a modulus was introduced by
Maddox (1986) as an extension of the definition of strongly
Cesaro summable sequences. Connor (1989) further extended
this definition to a definition of strong A— summability with
respect to a modulus where 4 =(a, ) is a nonnegative regular
matrix and established some connections between strong
A- summability, strong A— summability with respect to a
modulus, and A- statistical convergence. In Pringsheim

(1900) the four dimensional matrix transformation (Ax) =

zza,ﬁ”xm” was studied extensively by Robison and

m=1 n=1
Hamilton.

We need the following inequality in the sequel of the
paper. For a, b,>0and 0 <p < 1; we have

(a+b)’ <a”+b”

(1.1)

The double series Z x,,, is called convergent if and

m,n=l

only if the double sequence (s, ) is convergent, where s =

m,n

z x;(m,n e N).

i,j=1
A sequence x = (x, ) is said to be double analytic if

< oo, The vector space of all double analytic

|l/m+n

sup mn | xmn

sequences will be denoted by A’. A sequence x = (x,) is
called double gai sequence if ((m+n)!|xmn|)”m+" —0 as
m,n — . The double gai sequences will be denoted by

. Let ¢= {all finite sequences} .
Consider a double sequence x = (xl,f). The (m, n)"

m,n
section x"™ of the sequence is defined by x""'= " X, jS

i,j=0

for all m,n € N;; where 3,.]. denotes the double sequence

whose only non zero term is a

in the (i, /)" place for
i+j)!
each i, j e N.

An FK-space(or a metric space)X is said to have AK
property if (J,,) is a Schauder basis for X. Or equivalently
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xmm s x
An FDK-space is a double sequence space endowed

with a complete metrizable; locally convex topology under
which the coordinate mappings x = (x,) = (x,,,)(m,n € N)

are also continuous.

Let M and ® be mutually complementary modulus
functions. Then, we have

(1 Forallu y>0,

uy <M (u)+®(y), (Young’s in equality)

[See Kampthan et al. (1981)] (1.2)
(i) Forall u >0,

un(u) =M(u)+CD(17(u)). (1.3)
(iii) Forall u>0,and 0< A <1,

M (Au) < 2M (u). (14)

Lindenstrauss and Tzafriri (1971) used the idea of
Orlicz function to construct Orlicz sequence space

L, ={xew:iM(Mj<oo, forsomep>0},

k=1 P

The space ¢, with the norm

I+ =inf{p . o;iM[Mjg},
k=1 P

becomes a Banach space which is called an Orlicz sequence
space. For M (f) = t* (1 <p< oo), the spaces /,, coincide
with the classical sequence space ¢ o
A sequence /= (f, ) of modulus function is called a
Musielak-modulus function. A sequence g = (g, ) defined by
g, W =sup {vlu—f (W):u>0},mn=1,2,..
is called the complementary function of a Musielak-modulus
function f. For a given Musielak modulus function f, the
Musielak-modulus sequence space !, is defined by

t, = {x ew 1 (|x,,

1/m+n
) — Qasm,n — ¢,

where l, is a convex modular defined by

)= fon (1

m=1 n=1

)l/m+n

x=(x,,)e t,.

mn

We consider ¢ , equipped with the Luxemburg metric

d(x,y)=sup,, znf[zz]‘mn (%DSI .

m=1 n=1

The notion of difference sequence spaces (for single
sequences) was introduced by Kizmaz [16] as follows
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Z(A)={x=(x,)ew:(Ax,)eZ},

for Z=c,c and / ,where Ax, =x, —x,, forall ke N
Here ¢, ¢, and £ . denote the classes of convergent,

null and bounded sclar valued single sequences respectively.

The difference sequence space bvp of the classical space ¢ »

is introduced and studied in the case 1< p < oo by Basar
and Altay and in the case 0 <p < 1 by Altay et al. (2005). The
spaces C(A),CO (A),Kw (A) and by, are Banach spaces
normed by

» 1/p
v |SandS|,, :[zwj (1< p<eo).

k=1

Iell=e |+ supe

Later on the notion was further investigated by many
others. We now introduce the following difference double
sequence spaces defined by

Z(A):{x:(xmn)ewz:(Axmn)eZ},

2 2 — — — —
Where Z=A X and Axmn - ('xmn xmn+l) (xm+ln xm+l)7+l)

= 'xmn - xmn+1 _xmﬂn + xm+|n+| fOI' all m,ne N The
generalized difference double notion has the following
representation: A"x, =A""x, —A""'x, ., —A""x, . +

A”’"xmﬂ,,”, and also this generalized difference double

notion has the following binomial representation: A"x, =

S5 ()5

2. Definition and Preliminaries

Let ne N and X be a real vector space of dimension
w, where n <w. A real valued function dp(xl, X)) =

(d,(x,, 0), ...,d (x,, O))kp on X satisfying the following four
conditions:

@ 1(d,(x,0),...,d,(x,,0))ll,= 0 if and and only if
d,(x,,0),...,d (x,,0) arelinearly dependent,

iy I1(d,(x,,0),...,d,(x,,0)) ||p is invariant under
permutation,

i) I (ad,(x,,0),...,
d,(x,,0)l,,ceR

(iv) dp ((x1:y1)a(x2=y2)"'(xn7yn)) =

d,(x,, 0 =|a|ll(d(x,0),...,

(dy (oo, +dy (s e ,)")  for 1< p < oo
(or)

0 d (0,00, (x,,,)) =
sup{d,(x,,%,,-x,),dy (¥, ¥, ¥,)}» for x,x,,-+-x, € X,

VisVysy, €Y is called the p—product metric of the
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Cartesian product of n—metric spaces is the p—norm of the
n—vector of the norms of the n—sub spaces.

A trivial example of p—product metric of n—metric
space is the p—norm space is X =R equipped with the
following Euclidean metric in the product space is the
p—norm:

1(d(x,,0),....d, (x,,0)) | ,= sup(| det(d,,, (x,,,,0))|) =
dll(xll’o) dlZ (xIZ’O) ot dln (xln’ )
d21 (xZI’O) d22 (xZZ’O) d2n (xln’ )

sup

dnl (xnl’o) d (‘erZ’O) d”l” (x 0)

nn?

x,)€R" foreach i =1,2,:

If every Cauchy sequence in X converges to some

where x, =(x,,

Le X, then X is said to be complete with respect to the

p— metric. Any complete p— metric space is said to be p—
Banach metric space.

2.1 Defintion.

Let A= (a,'("; ) denote a four dimensional summability

method that maps the complex double sequences x into the
double sequence Ax where the k,/—th th term of Ax is as
follows:

mn

such transformation is said to be non-negative if 4}’ is non-

negative.

The notion of regularity for two dimensional matrix
transformations was presented by Silverman and Toeplitz.
Following Silverman and Toeplitz, Robison and Hamilton
presented the following four dimensional analog of regularity
for double sequences in which both added an adiditional
assumption of boundedness. This assumption was made since
a double sequence which is P— convergent is not necessarily
bounded.

Let A and u be two sequence spacesand 4 = (a,:"?)

be a four dimensional infinite matrix of real numbers (a iy ) ,

where m,n,k,¢ € N. Then, we say 4 defines a matrix mapp-
ing from A into x4 and we denote it by writing 4: A — u.if
for every sequence x =(x,, ) € A the sequence Ax = {(Ax) M},
the A— transform of x, is in 4. By (/1 : ,u), we denote the class
of all matrices 4 such that 4: 1 — u. Thus A€ (A: )
if and only if the series converges for each k,/ € N. A
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sequence x is said to be A— summable to « if Ax converges
to a which is called as the A— limit of x.

2.2 Lemma. [See Maddox (1986)]
Matrix 4 = (aZ’Z ) isregular ifand only if the follow-

ing three conditions hold:
(1) There exists M > 0 such that for every k,/=1,2,---

the following inequality holds: Z Z

m=1 n=1

mn

a, | <M,

) 11m a;; =0 forevery k,0=1,2,---

3) kl}m ZZa"’" =

m=1 n=1

Let (g,,) be a sequence of positive numbers and

=3 Y g (kL eN).

m=0 n=0

@.1)

mn q . . .
Then, the matrix R? = (rk/Z ) of the Riesz mean is given by

D if0<mn<k,0
% O,

0 if(m,n)>k£

q
mn _
() =

The fibonacci numbers are the sequence of numbers

e (k, l,mneN ) defined by the linear recurrence equa-

tions fo,=land f,,=Lf =/f \ +/f o, 2mn=2.

Fibonacci numbers have many interesting properties and

applications in arts, sciences and architecture. Also, some
basic properties of Fibonacci numbers are the following.

szmn :fm+2n+2 —l;m,n 2 17

k=1 (=1

m n
zzfmz’l = fmnfm+]n+];m:n 2 1,

k=1 (=1

22)

mn CONVETZES.

k=1 =1
thls paper, we define the fibonacci matrix F' =

0
( mn)
ke m,n=1

using Fibonacci numbers f,, and introduce some new

» which differs from existing Fibonacci matrix by

sequence spaces x° and A”. Now, we define the Fibonacci
matrix £ =( o )w by
S

( krzm ) = f(k+2)(€+2) -1
0 if (m,n) >kt

if0<k<m0</<n
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that is,
1 0 0 0 O
ll000
2 2
112,
4 4 4
1123,
7 7 7 7

It is obvious that the four dimensional infinite matrix
Fis triangular matrix. Also it follows from lemma 2.2 that the
method F'is regular.

Let M be an Musielak modulus function. We intro-
duce the following sequence spaces based on the four
dimensinoal infinite matrix F:

(370 (5.0).d (5.0) o 5, 0)] |=F,

s {33 M 10 (5.0 3,00 5, 0)1) | <
= sup,,

{_fgmxiz,lmi,;[ (2l ™ 5, >d<xﬂ0>~-’d<x~w°>n)}@}’
(k.CeN)

Consider the metric space
|:A2F " xl’

d(x’y)zsupkq{M(F;,(x)—F,,(y)):m,n=l,2,3,...}. (2.3)
P CCRORTCORSRIENR) e
=lim,, .,

{22[ (fA, (m+n)!\xm\)”’"*”,H(d(xl,o),d(xz,o),u~,d(xH,0)H,,)ﬂ:0}

=lim

m,n—o

d(x,,0), d(x,HaO))||P] with the metric

{f( ” _]ZZ[ ( (m+n )%, ‘) ,H(d(x,,0),d(x2,0),-~-,d(xnil,O)Hp))]

,(k,ﬁeN).

Consider the metric space

|:Z1%/1 a" x]a xz,O),---,d(x,H,O))"J with the metric

d(xay) = Supy, {M (F:U (x) _F:u (y)) ‘m,n= 1,2,3,"'}. (24)
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3. Main Results

3.1 Theorem.

The spaces [A” " (x,,0),d(x,,0

SO

and [)(M ," (x,,0).d -,d(xr],O))"J are BK spaces

with the metric (2.4) and (2.5)
Proof: By Theorem 4.3.12 of Wilansky (1984) and since the
four dimensional infinite matrix F'is triangular, we have the

result.

3.2. Theorem.

o]

The spaces[ M," (x,,0),d(x,,0
) ,d(x,,,0 " } are isomor-

and |:Z/%4Fs||( (X]ao ,d(xp )

phic to the spaces [A d(x.0).d(x,,0 50|, ]
and [m" (x1,0),d (x;,0),--,d ( nfl,O))"p], respectively
(.0)| AY|(d (,0).d (x,,0).+.d (,.,0)) |2
A (35:0),d (2,0).--,d (3, l,o))” }and

(d(x,,0),d(x,,0)

2F
VAT

(d(x.0).d(x,.0)

n]’ H:|

Proof: Let us consider the spaceof y’, since the four dimen-
sional infinite matrix F is triangular, it has a unique inverse,
which is also triangular [see Tripathy ef al. (2009)]. Therefore
the linear operator

o))

2
Ko

|:ZM a|| x[a s xzs

[ (d(xl,O),d(xz,O),---,d(x,,_l,O))"J,deﬁned by
L. (x)=F(x) forall

e[%z;, (d(x,0),d (x,,0) H;
2 (d (5.0). (32,0). 0. (3,1 H

is bijective and is metric preserving by (2.5) in Theorem 3.1.
Hence
SUNE

2 |(d (x,0).d (x,,0)
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il (5.0).0 (5.0) . 5,00 |

Similarly the proof for the other space can be established.

3.3 Theorem.

The inclusion
505,050 ]

_X;F, (d(x,0),d(x,,0), -, d (x, 1,0))||p and
:A;,(d(xl,o),d(xz, x .0 || -
A (@ (5.0). (5,,0)d (5,1, 0))], | ot

Proof: As F'is a regular four dimensional infinite matrix, so
the inclusion
n 1’ H :|

|:Z/f4’
(d(x,,0),d(x,,0), ---,d(x,,_l,()))”p] is obvious.

[xff,
x,,O),d(x2 " }

Now, let x=(x,, ) e [Aif’"(d(
Y < M forall

(d(xl,O),d(xz,

Then there is a constant M/ >0 such that |xmn
m,n € N. Thus for each k,¢ € N.

‘F (x)‘s

n

1 k_
{f( 1 )—122[ (2 ™ e (35,0). (2,0) . (x,.1,0) 1)

k+2)(+2 m=1 n=1

Jd(x,,0),d(x,,0),+,

M < N ~mn m+n
<= ARV
f(k+z)(«+2) ==

<o which shows that Fx e |:Z,i1’H(d(xwo)’d(xmo)"“’

Thus we conclude that [lf/,H(d(xl,()),d(xz,o),"',

e[ (3,00 (.0) (3, O, |

Example: Consider the sequence x =(x,,, ) =

1 00 0 0.\ (-1 0000 0000 O 00 0 0 O
000®O0®O0./{O0 O0O0OO0.|/|OO0O0O0O 00 0 0 O
o0o0®O0®O0.,0 0O0O0OTO.LO0OO0OOOO.O0OOOOO
000O0®O0./|]0 0O0O0O 0000 O 000 0 O

k 0
Then we have for every k,/ e N, F, (x) =;1ZZ
=1

f(k+2)(f+2) T Am=ln

[ (2 (G, ) 0)1,)) |0

This shows that FX € y* but x is not in y°. Thus the

Rl (d(x,,0),d(x2,0),~~,d(x”,,,
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sequence xisin | 23/ (d(5,0).4 (x,0),+d (5, ,0))] |
Héncetheinchwkﬂl[l;JKd(xno):d(va)f“’d(&wvo)mp}
c [sz,ﬂ(d (%,0),d (%,,0),+-,d (x,,,],O))||J is strictly holds.
3.4 Theorem.

The sequence x =(x,, )¢

[ 0,00 0). (5, O, ] butin

A Ot

Proof: Consider the sequence x = (xmn)

11111
1111 1.
=1 1 1 1 1..|, forall £,/ e N. Then we have for every
11111
11111
1111 1.
k,ﬂeN,Fy(x)zl 1 1 1 1..|. Thisshows that
11111
FX 2| 7 (@ (5.0).d (5,,0).0d (5,,.0))] |

(71)”1” (-fm+2n+2+m+ln+l ) -1
S

for all k,¢ € N. Then we have for every k,/ €N, F, (x) =

Again, consider the sequence x=(x,, )=

5

=" (1)

=" ()"

" (0" This shows that
=" (1)

FXe[Aﬁ,

(d(xl,o),d(xz,o),-.-,d(x,,,l,o))"p}
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