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Abstract

In this paper, we introduce bonacci numbers of 2(F) sequence space over pmetric spaces defined by Musielak
function and examine some topological properties of the resulting these spaces.
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1. Introduction

Throughout ,w    and   denote the classes of all,
gai and analytic scalar valued single sequences, respectively.

We write w2 for the set of all complex sequences ( ),mnx
where , ,m n  the set of positive integers. Then, w2 is a
linear space under the coordinate-wise addition and scalar
multiplication.

Some initial work on double sequence spaces is found
in Bromwich(1965). Later on it was investigated by Hardy
(1917); Moricz (1991); Moricz and Rhoades (1988); Basarir
and Solankan (1999); Tripathy et al. (2003, 2004, 2006, 2007,
2008, 2009, 2010, 2011 and 2013); Turkmenoglu (1999); Raj
(2010, 2011, 2012, 2013) and many others.

We procure the following sets of double sequences:

    2
,: : ,mnt

u mn m n N mnt x w sup x   

    2
,: : 1 ,    mnt

p mn m n mnt x w p lim x for somel l     

    2
0 ,: : 1 ,mnt

p mn m n mnt x w p lim x   

    2

1 1
: : ,mnt

u mn mn
m n

t x w x
 

 

 
    
 



     :bp p ut t t     and      0 0 $;bp p ut t t   

where t = (tmn) is the sequence of strictly positive reals tmn for
all ,m n and ,m np lim   denotes the limit in the
Pringsheim’s sense. In the case tmn = 1 for all , ;m n

         0, , , ,u p p u bpt t t t t      and  0bp t  reduce to
the sets 0, , , ,u p p u bp      and 0 ,bp  respectively. Now,,
we may summarize the knowledge given in some document’s
related to the double sequence spaces. GÖkhan et al. (2005)
have  proved  that  Mu (t)  and  Cp (t),  Cbp (t)  are  complete
paranormed spaces of double sequences and obtained the
, ,  duals of the spaces Mu (t) and Cbp (t) : Quite
recently, in her PhD thesis, Zeltser (2001) has essentially
studied  both  the  theory  of  topological  double  sequence
spaces and the theory of summability of double sequences.
Mursaleen et al. (2003, 2004, 2013, 2014) and Tripathy et al.
(2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 and 2013) have
independently introduced the statistical convergence and
Cauchy for double sequences and established the relation
between statistical convergent and strongly Cesaro summ-
able  double  sequences.  Altay  and  Ba591sar  (2005)  have
defined the spaces BS; BS (t),  CSp, CSbp, CSr and BV of
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double  sequences  consisting  of  all  double  series  whose
sequence of partial sums are in the spaces Mu, Mu (t),  Cp, Cbp,
Cr and Lu, respectively, and also examined some properties of
those sequence spaces and determined the  duals of the
spaces BS, BV, CSbp and the  ()  duals of the spaces CSbp
and CSr of double series. Ba592sar and Sever (2009) have
introduced the Banach space Lq of double sequences cor-
responding to the well-known space q  of single sequences
and examined some properties of the space .q  Recently
Subramanian and Misra (2010) have studied the space

 2 , ,M p q u  of double sequences and proved some inclu-
sion relations.

The  class  of  sequences  which  are  strongly  Cesaro
summable with respect to a modulus was introduced by
Maddox (1986) as an extension of the definition of strongly
Cesaro summable sequences. Connor (1989) further extended
this definition to a definition of strong A summability with
respect to a modulus where A = (an,k) is a nonnegative regular
matrix and established some connections between strong
A summability, strong A summability with respect to a
modulus,  and  A  statistical  convergence.  In  Pringsheim

(1900) the four dimensional matrix transformation   ,kAx 

1 1

mn
k mn

m n
a x

 

 
    was  studied  extensively  by  Robison  and

Hamilton.
We need the following inequality in the sequel of the

paper. For a, b, > 0 and 0 < p < 1; we have

( ) p p pa b a b   (1.1)

The double series 
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x
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
 is called convergent if and

only if the double sequence (smn) is convergent, where smn =
,

, 1
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ij
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x m n


 

A sequence x = (xmn) is said to be double analytic if
1/ .m n

mn mnsup x     The vector space of all double analytic
sequences will be denoted by 2 . A sequence x = (xmn) is
called double gai sequence if  1/

( )! 0
m n

mnm n x


   as
, .m n    The  double  gai sequences will be denoted by 

2. Let = {all finite sequences} .
Consider  a  double  sequence  x = (xij).  The  (m, n)th

section x[m,n] of the sequence is defined by [ , ]
,

,
, 0

m n
m n

i j ij
i j

x x


 

for all , ;m n ; where ij  denotes the double sequence

whose only non zero term is a 
 

1
!i j
 in the (i, j)th place for

each , .i j
An FK-space(or a metric space)X is said to have AK

property if ( )mn  is a Schauder basis for X. Or equivalently

[ , ] .m nx x
An FDK-space is a double sequence space endowed

with a complete metrizable; locally convex topology under
which the coordinate mappings ( ) ( )( , )k mnx x x m n  
are also continuous.

Let M and  be mutually complementary modulus
functions. Then, we have

(i) For all u, y > 0,

   uy M u y  , (Young’s in equality)

[See Kampthan et al. (1981)] (1.2)

(ii) For all 0,u 

      .u u M u u   (1.3)

(iii) For all 0,u   and 0 1, 

   .M u M u  (1.4)

Lindenstrauss and Tzafriri (1971) used the idea of
Orlicz function to construct Orlicz sequence space
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1
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       
   


becomes a Banach space which is called an Orlicz sequence
space. For M (t) =  1 ,pt p    the spaces M  coincide
with the classical sequence space .p

A sequence f = (fmn) of modulus function is called a
Musielak-modulus function. A sequence g = (gmn) defined by

gmn (v) = sup {|v| u  fmn (u) : u > 0}, m, n = 1, 2, ...

is called the complementary function of a Musielak-modulus
function f. For a given Musielak modulus function f, the
Musielak-modulus sequence space tf  is defined by

  1/2 : 0 , ,
m n

f f mnt x w I x asm n


   

where tf  is a convex modular defined by
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We consider tf  equipped with the Luxemburg metric
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The notion of difference sequence spaces (for single
sequences) was introduced by Kizmaz [16] as follows
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      : ,k kZ x x w x Z     

for Z = c, c0 and ,  where 1k k kx x x     for all k
Here c, c0 and   denote the classes of convergent,

null and bounded sclar valued single sequences respectively.
The difference sequence space bvp of the classical space p
is introduced and studied in the case 1 p    by Basar
and Altay and in the case 0 < p < 1 by Altay et al. (2005). The

spaces      0, ,c c     and bvp are Banach spaces
normed by

 
1/
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1
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x x sup x and x x p





        
 


Later on the notion was further investigated by many
others. We now introduce the following difference double
sequence spaces defined by

      2 : ,mn mnZ x x w x Z     

where 2 2,Z    and    1 1 1 1mn mn mn m n m nx x x x x       

1 1 1 1mn mn m n m nx x x x         for  all  , .m n   The
generalized  difference  double  notion  has  the  following
representation: 1 1 1

1 1
m m m m

mn mn mn m nx x x x  
        

1
1 1,m

m nx
    and  also  this  generalized  difference  double

notion has the following binomial representation: m
mnx 

  ,
0 0

1 .
m m m mi j

m i n j
i j

i j x
 

 

       

2. Definition and Preliminaries

Let n  and X  be a real vector space of dimension
w,  where  n < w.  A  real  valued  function  dp(x1, ..., xn) =
||(d1(x1, 0),  ..., dn(xn, 0))kp  on  X  satisfying the following four
conditions:

(i) 1 1( ( ,0), , ( , 0)) 0n n pd x d x ‖ ‖  if and and only if

1 1( , 0), , ( ,0)n nd x d x  are linearly dependent,

(ii) 1 1( ( ,0), , ( ,0))n n pd x d x‖ ‖  is invariant under
permutation,

(iii) 1 1 1 1( ( ,0), , ( ,0)) ( ( ,0), ,n n pd x d x d x   ‖ ‖ ‖

( , 0)) ,n n pd x  ‖

(iv)  1 1 2 2( , ), ( , ) ( , )p n nd x y x y x y 

 1/

1 2 1 2( , , ) ( , , )
pp p

X n Y nd x x x d y y y   for 1 ;p  

(or)

(v)  1 1 2 2( , ), ( , ), ( , ) :n nd x y x y x y 

 1 2 1 2sup ( , , ), ( , , ) ,X n Y nd x x x d y y y   for 1 2, , ,nx x x X

1 2, , ny y y Y   is  called  the  pproduct  metric  of  the

Cartesian product of nmetric spaces is the pnorm of the
nvector of the norms of the nsub spaces.

A trivial example of pproduct metric of nmetric
space  is  the  pnorm  space  is  X    equipped  with  the
following  Euclidean  metric  in  the  product  space  is  the
pnorm:

  1 1( ( ,0), , ( , 0)) | ( ,0 ) |n n E mn mnd x d x sup det d x  ‖ ‖

     
     

     

11 11 12 12 1 1

21 21 22 22 2 1

1 1 2 2

,0 ,0 ... ,0
,0 ,0 ... ,0

.

.

.
,0 ,0 ... ,0

n n

n n

n n n n nn nn

d x d x d x
d x d x d x

sup

d x d x d x

 
 
 
 
 
 
 
 
 
 

where  1,
n

i i inx x x    for each 1,2,i n  .
If every Cauchy sequence in X converges to some
,L X  then X is said to be complete with respect to the

p metric. Any complete p metric space is said to be p
Banach metric space.

2.1 Defintion.

Let  ,
mn
kA a   denote a four dimensional summability

method that maps the complex double sequences x into the
double sequence Ax where the ,k th  th term of Ax is as
follows:

 
1 1

mn
k mnk

m n
Ax a x

 

 

 

such transformation is said to be non-negative if mn
ka   is non-

negative.
The notion of regularity for two dimensional matrix

transformations was presented by Silverman and Toeplitz.
Following  Silverman  and  Toeplitz,  Robison  and  Hamilton
presented the following four dimensional analog of regularity
for double sequences in which both added an adiditional
assumption of boundedness. This assumption was made since
a double sequence which is P convergent is not necessarily
bounded.

Let   and    be two sequence spaces and  ,
mn
kA a 

be a four dimensional infinite matrix of real numbers  ,
mn
ka  ,

where , , , .m n k    Then, we say A defines a matrix mapp-
ing from   into     and we denote it by writing : .A    if
for every sequence  mnx x    the sequence    ,

k
Ax Ax



the A transform of x, is in . By  : ,   we denote the class
of  all  matrices  A  such  that : .A    Thus  :A  
if  and  only  if  the  series  converges  for  each , .k     AA
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sequence x is said to be A summable to  if Ax converges
to   which is called as the A limit of  x.

2.2 Lemma. [See Maddox (1986)]

Matrix  ,
mn
kA a   is regular if and only if the follow-

ing three conditions hold:
(1) There exists M > 0 such that for every , 1,2,k  

the following inequality holds: 
1 1

;mn
k

m n
a M

 

 

 

(2)
,
lim 0mn

kk
a




 for every , 1, 2,k  

(3)
, 1 1
lim 1.mn

kk m n
a

 


 

 

Let (qmn) be a sequence of positive numbers and

  
0 0

, .
k

k mn
m n

Q q k
 

 


   (2.1)

Then, the matrix  qq mn
kR r   of the Riesz mean is given by

 
 

 if 0 , ,
%

0 if ,

mn
qmn

kk

q m n k
Qr

m n k

   
 






(2.2)

The fibonacci numbers are the sequence of numbers
 , , ,mn

kf k m n    defined by the linear recurrence equa-
tions 00 1f   and 11 1 1 2 21, ; , 2mn m n m nf f f f m n       .
Fibonacci numbers have many interesting properties and
applications in arts, sciences and architecture. Also, some
basic properties of Fibonacci numbers are the following.

2 2
1 1

1; , 1,
m n

mn m n
k

f f m n 
 

  


2
1 1

1 1
; , 1,

m n

mn mn m n
k

f f f m n 
 

 


1 1

1
mn

k kf

 

 


 
 converges.

In this paper, we define the fibonacci matrix F =

 
, 1

,mn
k m n

f


  which differs from existing Fibonacci matrix by

using  Fibonacci  numbers kf   and  introduce  some  new
sequence spaces 2 and 2 .  Now, we define the Fibonacci

matrix  
, 1

,mn
k m n

F f



   by

    

 
2 2

 if 0 ;0
1

0 if ,

k
mn

kk

f k m n
ff

m n k
 

      
 









that is,

1 0 0 0 0...
1 1 0 0 0...
2 2
1 1 2 .0 0...
4 4 4
1 1 2 3 0...
7 7 7 7

 
 
 
 
 
 
 
 
 
  
      

It is obvious that the four dimensional infinite matrix
F is triangular matrix. Also it follows from lemma 2.2 that the
method F is regular.

Let M be an Musielak modulus function. We intro-
duce the following sequence spaces based on the four
dimensinoal infinite matrix F:

        2
1 2 1, , 0 , ,0 , , , 0F

M n p
d x d x d x F x

    


      1/
1 2 1

1 1
, ( ,0 , ,0 , , ,0 )m nmn

k k mn n p
m n

sup M f x d x d x d x
 




 

       
  ‖ ‖

ksup 

  
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k mn n p

m nk

M f x d x d x d x
f

 



  

         
 



‖ ‖

 , .k  

Consider the metric space

      2
1 2 1, , 0 , , 0 , , ,0F

M n p
d x d x d x 

   
  with the metric

       , : , 1, 2,3, .kd x y sup M F x F y m n     (2.3)

        2
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d x d x d x F x 
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
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m n

M f m n x d x d x d x
  


 

       
  ‖ ‖

,m nlim 

  
         1/

1 2 1
1 12 2

1 ! , ( , 0 , , 0 , , ,0 ) 0.01 0
1

m nmn
k mn n p

m nk

M f m n x d x d x d x cm
f

  


  

         
 



‖ ‖

 , , .k  

Consider the metric space

      2
1 2 1, ,0 , ,0 , , , 0F

M n p
d x d x d x 

 
  

  with the metric

       , : , 1, 2,3, .kd x y sup M F x F y m n     (2.4)
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3. Main Results

3.1 Theorem.

The spaces       2
1 2 1, ,0 , ,0 , , ,0F

M n p
d x d x d x 

   


and       2
1 2 1, , 0 , ,0 , , , 0F

M n p
d x d x d x 

 
  

  are BK spaces

with the metric (2.4) and (2.5)

Proof: By Theorem 4.3.12 of Wilansky (1984) and since the
four dimensional infinite matrix F is triangular, we have the
result.

3.2. Theorem.

The spaces       2
1 2 1, ,0 , ,0 , , ,0F

M n p
d x d x d x 

   


and       2
1 2 1, , 0 , , 0 , , ,0F

M n p
d x d x d x 

 
  

  are isomor-

phic to the spaces       2
1 2 1, ,0 , ,0 , , ,0M n p

d x d x d x 
   



and       2
1 2 1, , 0 , ,0 , , , 0 ,M n p

d x d x d x 
 
  

  respectively

(i.e)       2
1 2 1, , 0 , ,0 , , ,0F

M n p
d x d x d x 

    


      2
1 2 1, , 0 , ,0 , , , 0M n p

d x d x d x 
   

  and

      2
1 2 1, ,0 , , 0 , , ,0F

M n p
d x d x d x 

    


      2
1 2 1, , 0 , , 0 , , , 0M n p

d x d x d x 
 
  



Proof: Let us consider the spaceof 2, since the four dimen-
sional infinite matrix F is triangular, it has a unique inverse,
which is also triangular [see Tripathy et al. (2009)]. Therefore
the linear operator

      2
1 2 1: , ,0 , ,0 , , ,0F

F M n p
L d x d x d x 

    


      2
1 2 1, ,0 , , 0 , , ,0 ,M n p

d x d x d x 
 
  

 defined by

   FL x F x  for all

      2
1 2 1, , 0 , ,0 , , , 0F

M n p
x d x d x d x 

    


      2
1 2 1, ,0 , , 0 , , ,0 ,M n p

d x d x d x 
 
  



is bijective and is metric preserving by (2.5) in Theorem 3.1.
Hence

      2
1 2 1, , 0 , , 0 , , , 0F

M n p
d x d x d x 

    


      2
1 2 1, ,0 , ,0 , , ,0 .M n p

d x d x d x 
 
  



Similarly the proof for the other space can be established.

3.3 Theorem.

The inclusion

      2
1 2 1, , 0 , ,0 , , ,0M n p

d x d x d x 
    



      2
1 2 1, , 0 , ,0 , , , 0F

M n p
d x d x d x 

 
  

  and

      2
1 2 1, , 0 , ,0 , , , 0M n p

d x d x d x 
    



      2
1 2 1, ,0 , , 0 , , ,0F

M n p
d x d x d x 

   
  holds.

Proof: As F is a regular four dimensional infinite matrix, so
the inclusion

      2
1 2 1, , 0 , , 0 , , ,0M n p

d x d x d x 
    



      2
1 2 1, ,0 , ,0 , , , 0F

M n p
d x d x d x 

 
  

  is obvious.

Now, let         2
1 2 1, ,0 , ,0 , , ,0 .F

mn M n p
x x d x d x d x 

     


Then there is a constant M > 0 such that 1/m n
mnx M

  for all
, .m n  Thus for each , .k  
 F x 

  
      1/

1 2 1
1 12 2

1
, ( , 0 , , 0 , , ,0 )

1

k
m nmn

k mn n p
m nk

M f x d x d x d x
f




  

       







‖ ‖

  
      1/

1 2 1
1 12 2

, ( ,0 , ,0 , , ,0 )
1

k
m nmn

k mn n p
m nk

M M f x d x d x d x
f




  

        







‖ ‖

  which shows that       2
1 2 1, , 0 , ,0 , , ,0 .M n p

FX d x d x d x 
    



Thus we conclude that       2
1 2 1, ,0 , ,0 , , ,0M n p

d x d x d x 
 
  



      2
1 2 1, , 0 , , 0 , , ,0 .F

M n p
d x d x d x 

    


Example: Consider the sequence  mnx x 

1 0 0 0 0... 1 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0...
0 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0...

, , ,0 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0...
0 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0... 0 0 0 0 0...

     
     
     
     
     
     
     
                        

.

 
 
 
 
 
 
 
 



Then we have for every , ,k     
   1 12 2

1
1

k

m nk

F x
f

  


 





         1/
1 2 1! , ( ,0 , ,0 , , , 0 ) 0.

m nmn
k mn n pM f m n x d x d x d x


     ‖ ‖

This  shows  that  2FX    but  x  is  not  in  2.  Thus  the
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sequence x is in       2
1 2 1, , 0 , ,0 , , ,0 .F

M n p
d x d x d x 

 
  



Hence the inclusion       2
1 2 1, ,0 , ,0 , , ,0M n p

d x d x d x 
 
  



      2
1 2 1, , 0 , ,0 , , ,0F

M n p
d x d x d x 

    
  is strictly holds.

3.4 Theorem.

The sequence  mnx x 

      2
1 2 1, ,0 , ,0 , , ,0F

M n p
d x d x d x 

 
  

  but in

      2
1 2 1, , 0 , ,0 , , , 0F

M n p
d x d x d x 

   


Proof: Consider the sequence  mnx x

1 1 1 1 1...
1 1 1 1 1...

,1 1 1 1 1...
1 1 1 1 1...

 
 
 
 
 
 
 
     

 for all , .k    Then we have for every

 

1 1 1 1 1...
1 1 1 1 1...

, , .1 1 1 1 1...
1 1 1 1 1...

k F x

 
 
 
  
 
 
 
 

 

    

 This shows that

      2
1 2 1, , 0 , ,0 , , ,0 .F

M n p
FX d x d x d x 

   


Again, consider the sequence      2 2 1 11 1
,

mn
m n m n

mn
mn

f
x x

f
     

 

for all , .k    Then we have for every  , ,k F x  

   
   
   
   

1 1 ...

1 1 ...
.1 1 ...

1 1 ...

mn mn

mn mn

mn mn

mn mn

  
 
  
 
  

 
  

 
  

 This shows that

      2
1 2 1, , 0 , ,0 , , ,0 .F

M n p
FX d x d x d x 

    

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