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Abstract

In this paper, we introduce a new six-parameter distribution, namely Beta Exponentiated Weibull Poisson (BEWP)
which is obtained by compounding between the exponentiated Weibull Poisson and beta distributions. We propose its basic
structural properties such as density function and moments for this new distribution. We re-express the BEWP density
function as a EWP linear combination, and use this to obtain its moments. In addition, it also contains several sub-models
that are well known. Moreover, we apply the maximum likelihood method to estimate parameters, and applications to real data
sets show the superiority of this new distribution by comparing the fitness with its sub-models.
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1. Introduction

For more than a decade, Weibull distribution has been
applied extensively in many areas and more particularly used
in the analysis of lifetime data for reliability engineering or
biology (Rinne, 2008). However, the Weibull distribution has
a weakness for modeling phenomenon with non-monotone
failure rate. Therefore Mudholkar and Srivastava (1993)
proposed the exponentiated Weibull (EW) distribution that
is an extension of the Weibull family, obtained by adding a
second shape parameter. Then it is flexible to model survival
data where the failure rate can be increasing, decreasing,
bathtub shape, or unimodal (Mudholkar et al., 1995).

Let W be a random variable of the EW distribution.
Then the cumulative distribution function (cdf) and prob-
ability density function (pdf) of ¥ are given by

F(w)= (1 _e )a ,

w>0,
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where a, 3,0 >0 and

a-1

f(w)= aﬂ@ﬁwﬁ_le_(gw)ﬂ (1 _e ) ) , w>0,

respectively.

For survival analysis, there are important analytical
functions such as survival and hazard rate functions given
by

and

a— a -1
p)=aporr e (1o | (11 )

respectively.

Recently, many researchers have attempted to modify
EW distribution with different techniques by using EW as
the baseline distribution to develop more flexibility. Pinho et
al. (2012) proposed gamma exponentiated Weibull, Singla
et al. (2012) studied beta generalized Weibull (BGW),
Cordeiro et al. (2013) introduced the beta exponentiated
Weibull (BEW) and exponentiated Weibull Poisson (EWP)
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was proposed by Mahmoudi and Sepahdar (2013).

In this paper, we propose a new flexible six-parameter
distribution called Beta Exponentiated Weibull Poisson
(BEWP) distribution. The purpose of this study is to create
a new distribution by mixing EWP distribution and the beta
distribution. Some properties of this new distribution will be
investigated.

The BEWP distribution is developed by using the
Beta-G distribution class that was introduced by Eugene
et al. (2002) who also proposed the beta normal (BN) distri-
bution. Then, using the Beta-G distribution class was applied
to create a new distribution extensively. For example,
Nadarajah and Gupta (2004) proposed the beta Frechet (BF)
distribution and Nadarajah and Kotz (2004) studied the beta
Gumbel (BGu) distribution. Nadarajah and Kotz (2006) intro-
duced the beta exponential (BE) distribution, Lee et al.
(2007) proposed the Beta Weibull (BW), Mahmoudi (2011)
proposed the Beta Generalized Pareto (BGP), BGW or BEW
and Percontini et al. (2013) studied the Beta Weibull Poisson
(BWP).

The EWP distribution fits the skewed data (Mahmoudi
and Sepahdar, 2013) and it is useful for solving complemen-
tary risks problem (Basu and Klein, 1982) in the presence of
latent risks, in the sense that there is no information about
which factor is responsible for the component failure and
only the maximum lifetime value among all risks is observed.
Mixing the EWP distribution with the beta distribution causes
the two additional shape parameters which serve to control
skewness and tail weights of EWP distribution. As a result,
BEWP distribution is the generalized distribution that has
a wide variety in terms of shape of the distribution, so it is
a flexible alternative for applications in engineering and
biology. In engineering applications, the BEWP distribution
can be employed in reliability analysis, such as product reli-
ability and system reliability. Percontini et al. (2013) applied
the BWP distribution to the maintenance data on active
repair times for airborne communication. In addition, for
biology or medical science, we may apply to survival analysis
e.g. Mudholkar et al. (1996) applied the generalized Weibull
distribution in fitting the real survival time data of the patients
who were given radiation therapy and chemotherapy from
head and neck cancer clinical trial. Dasgupta et al. (2010)
studied the characteristics of coronary artery calcium which
is a marker of coronary artery disease. This appears to be a
Weibull distribution and a Weibull regression model was
proposed to examine factors influencing the disease. Ortega
et al. (2013) developed the beta Weibull distribution to be
the log-beta Weibull distribution and studied the log-beta
Weibull regression model with application to predict recur-
rence of prostate cancer.

The rest of this paper is organized in the following
sequence. Section 2 discusses about the exponentiated
Weibull Poisson (EWP) distribution that is used as the
baseline to develop the BEWP distribution. The probability
density function (pdf) and cumulative density function (cdf)
are introduced in Section 3. Section 4 gives a summary of

sub-models of BEWP in the form of table and chart where
several sub-models are well known. Section 5 discusses the
moment generating function (mgf) and the moment. In
Section 6 we apply the maximum likelihood method to
estimate parameters, and Section 7 compares the sub-models
of the BEWP distribution by the applications to real data sets.
Some concluding remarks are given in Section 8.

2. The Exponentiated Weibull Poisson distribution

Let W, W,,W,,...,W_ be independent and identically
distributed random variables from exponentiated Weibull
distribution with pdf

a-1

f(wa,pB,0)= aﬁ@ﬂwﬂ'le_(ow)ﬂ (1 —e ) , w>0,

and Z, which is independent from ¥, be a random variable
from zero truncated Poisson distribution with probability mass
function (pmf)

p(z;}t) =e " AT (z+1)(1—e"1 )_1 ,A>0,z=1,2,3,...

where T'(+)is the gamma function. Percontini et al. (2013)
described the model for X =min {W], W,,...W. } and X =
max {W, W, WZ} that can be used in serial and parallel
system with identical components, which appear in many
industrial applications and biological organisms. For this
model, we define X=max{Wl,W2,...,Wz}. We assume the
failure occurs after all Z factors have been activated. Then
we obtain

za, f,0) = zaf0"w u(1-u)" (1-u)"", x>0,

g(x

©9" and the marginal pdf of X is

where u =¢”
B .
g(x)= ?;[iel) u(l-u) T x>0, )

and the cdf of X is

el(l—u)a -1

G(x)=7e/l_1 . @

Then we take this pdf and cdf of EWP to be the baseline for
creating the new Beta-G distribution in the next section. We
apply the interpretation of the EWP from Adamidis and
Loukas (1998), that the failure (of a device, for example) occurs
due to the presence of an unknown number, Z, of initial
defects of the same kind (a number of semiconductors from a
defective lot, for instance). The W's represent their lifetimes
and each defect can be detected only after causing failure,
in which case it is repaired perfectly.

3. The Beta Exponentiated Weibull Poisson distribution

Definition 1:

Let F(x) be the cdf of a random variable X. According
to Eugene et al. (2002), the cdf for a generalized class of
distributions can be defined as the logit of beta random
variable by
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G(x)
1 0 b1
F(x)=——— | w" (1-w) dw, x>0, 3
()= 5y | 07 o
where a,b>0. G(x) denotes the probability distribution of
the generalized class of distribution. The pdf of X is given
by (for more details see Mood et al. (1974))

f(x)= ( 5e g(0)G(x)" 1-6(x)}", x>0, @)
where g(x)= d)(c x)
Theorem 1:

Let X be a random variable of the BEWP distribution
with parameters «, 3,0,1,a and b. The pdf of X is defined

by
2aBO" " u(1—u)” S (P )T g )
; 1-"—
(¢ =1)B(a,b) -1 -1

e — e —

/(x)=

®)
where u = e’(gx)ﬂ

Proof:

Simply by using Definition 1, we obtain the pdf of
X by substituting g(x) and G(x) from Egs.(1) and (2) into
Eq.(4). Then Eq.(5) is the pdf of BEWP distribution as the
following property.

A 1) [ew 1] [l — _1]hld
- X

(e —I)B( .b) et -1

© o

[7(x)ax=]

0 0

A(1-u)”

let v=e , it can be rewritten as

[ £(x)de = j 1 (V‘ljm(l— V‘ljbldv
! (e’l—l)B(a,b) et -1 -1
=1.
Note that, we can define the expansion of the pdf as the linear
combination of EWP density function as

- izs,-,ig(x;a,ﬁ,e,zj’i) ©

Jj=0 i=o0

s,G+D(- 1)[ j(e“—l)

G-i+D(e*-1)"

where s, = and §; =

B(a,b) '

Let b be a non-integer real number and |w| < 1.
1 G(x)

)5 |

By using the special case of binomial theorem

i( Iy [b | 1jw",

w'! (1 - w)bildw, a,b,x>0

hence

1
N B(a,b) pars (a+i)
1 - a+i
- B(a’b);ci(a,b)G(x) , )

where c,(a,b) = If b is an integer, the index

(a+i) .

i stops at b-1. We obtain f{x) for integer a

g(( *) Zc a,b)(a+)G(x )““l

Consider the case where the power of G(x) is a non-integer

6 - [*Ja-6(y

i=0

fx)=

o i

(- (a+1)G(x)
r (a—i+1)(i-j)j!

i=0 j=

id (@)G(x

2 (=)T(a+1)
where d,(a)=;r a—i+1)(i—j)I)!

G(x)" for G(x)“” in Eq. (7), we obtain

, then we substitute

FO)=30n) 2 ahG )
and f(x): B(:Z b)g(x)gg'ﬂ)rj(a,b)G(x)j

where r,(a,b) =Y ¢,(a,b)d (a+i) or

=5+ D26 (x) .

rj+l

where 5, = and we can express pdf of BEWP dis-

a, . .. L
tribution in terlgms of’a linear combination of EWP distribution
as

> Aaﬂ@ﬁxﬂ’]u(

1—u)™™ 0 (gt '
= e -1 et -1

Z G+1) =
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© J

. s,ﬁﬂ)(—l)’[ffj
o (l(/'—i+ Dapo’x"u(1-u)" e”"’”’"“”*")

1
j=0 i=o (f - l+1)(e —1)

[
M\

A
e’ —1

5,0 +1)(=1) [ij(el —1) [/1 g,

-, (] _u)a—l e&,»,(lfu)"
~ (j-l’+1)(el—])/+l

I
Y
T

J
D.5.8(x0,5,0,2,,)

i=0

Ms

Il
S

J

N i ] i
s,G+D(-1) [ij(e 1)
G-i+D(e-1)"

To show the various of shapes of the distribution, some
specified parameters of the BEWP distribution and their
density functions are provided in Figure 1: (a) Fix parameters
a=4, =0.5, 0=1.5, A=0.5 and vary parameters a and b,
and (b) Fix parameters a =2, b =2 and vary parameters o, 5,
0 and A. Thus, the BEWP distribution can be suitable for
fitting to various shapes of data, for example where the para-
metersa=2,b=2, a=4, p=0.5, 0=1.5, 1=0.5. This distri-
bution is suitable for fitting skewed data and it is suitable for
fitting unimodal data when the parametersa=2,b=2, a =
0.5, =2, 0=0.1, 1= 15. According to Figure 1, BEWP
distribution can be a family of distributions containing 32
sub-models which will be discussed in Section 4.

where A, =A(j—i+1) and s,, =

Theorem 2:
Let X be a random variable of a BEWP distribution

with parameters «, 3,0, 4,a and b. The cdf of X is given by

1 (ex(w)"‘ “1)/(e 1)

(1- w)b_1 dw  (8)

or

F(x)=1 e ~(ab) ©)

04

03
1

fix)
02
1

0.1

00
I

Figure 1.

RV,
where u =e @)

Proof:

Simply by using Definition 1 again, we can define the
cdf of X by replacing G(x) from Eq.(2) in Eq.(3), hence the
cdf of BEWP distribution is as obtained in Eq.(8).

Note that, we can define the expansion of the cdfas the linear
combination of EWP density function given by

F(x)ziisj’iG(x;a,ﬂ,G,/lj ) (10)

j=0 i=0
by integrating f(x) in Eq.(6)

X

® J
F(x)=ZZs/ J.g(x o, 5,0,
Jj=0 i=0
o J A aﬂQﬂxﬂ"u 1—u)* " et
:ZZS/I.[ £ ls_l) dx
Jj=0 i=0 0 e
o el”(l—u)a _1
=2 2| =
Jj=0 i=0 e 1

J

D's,.G(xa,8,0,4,,)
0

i=

Ms

I]
=}

J

4. Sub-models

This new distribution consists of a total of 32 sub-
distribution models as shown in Figure 2 and Table 1. In
Table 1, the sub-models associated with Poisson distribution,
are assigned X = max{W,,Wz,...,Wz} which based on the
parallel components system comply with BEWP distribution

that is under the same assumption. For X= min {W,,,,....W.},

we also refer to the References column and mark with the
asterisk symbol (*) in Table 1.

04

0.3

fix)

02

0.1

00

TT T TTT T T T T T T T T TT T TTTTTTTTT
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Density function of the BEWP distribution.
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Figure 2. The sub-model chart of BEWP distribution

Table 1. The sub-model table of BEWP distribution.

parameters
Distribution F(x) References
a B A
5 parameters
1. Beta Exponentiated a 2 Ao F=I . (ab)
Rayleigh Poisson (BERP) e
) . . F(x)=1, o). (ab
2. Beta Exponentiated o 1 A .
Exponential Poisson CARM
(BEEP) o
3. Beta Weibull Poisson 1 B A F(x=I ., (ab)  Percontinief al. (2013)*
e -1
(BWP)
4. Beta Exponentiated o B -0 F(x)= I(]iei(mﬂ . (a,b)  Singlaetal. (2012),
Weibull (BEW) Cordeiro et al. (2013b)
4 parameters
5. Beta Rayleigh Poisson 1 2 A F)=1 . (a.b)
(BRP) S
6. Beta Exponential Poisson 1 1 o FO=T e, (a.b)
(BEP) g
. ei(]fe%)ﬂ) 1 ’
7. Generalized Weibull 1 B A Fo)= o
Poisson (GWP)
A(1-e @y 1
8. Exponentiated Weibull o § A F(x)=——F—— Mahmoudi and
o —

Poisson (EWP)

Sepahdar (2013)
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arameters
Distribution P F(x) References
a b a B A
_ x/} aa
9. Generalized Exponentiated  a 1 o B -0 F(x)= (1 —e )
Weibull (GEW)
10. Beta Exponentiated a b a 2 -0 F=1 (et e (a.b) Cordeiro et al. (2013a)
Rayleigh (BER)
11. Beta Exponentiated a b o 1 -0 F(x)=I (o) (a,b) Barreto-Souza et al.
Exponential (BEE) (2010)
12. Beta Weibull (BW) a b 1 B -0 F(x)= 1( w )ﬁ] (a,b)  Leeetal (2007)
l—e '™
3 parameters 0
e -1
13. Generalized Rayleigh a 1 1 2 A F(x)= {;_1
Poisson (GRP) ¢
e&(l—e’(&)) -1 “
14. Generalized Exponential a 1 1 1 A F(x)= T a1 Barreto-Souza, and
Poisson (GEP) Cribari-Neto (2009)
A= -1
15. Exponentiated 1 1 o 2 A F(x)= ¢ o Mahmoudi and Sepahdar
Rayleigh Poisson (ERP) - (2013)
2 (1= (%)) 1
16. Exponentiated Exponential 1 1 o 1 A F(x)= ¢ - Percontini et al. (2013)%,
Poisson (EEP) h Ristize and Nadarajah
(2014)*, Mahmoudi and
Sepahdar (2013)
e&(l—e’(&‘) )1
17. Weibull Poisson (WP) 1 1 1 B v Fx)= - Hemmati et al. (2011)*,
Lu and Shi (2012)*,
Mahmoudi and Sepahdar
(2013)
18. Exponentiated Weibull 1 1 a B -0 Fx)=( 7e’(‘9")ﬂ )* Mudolkar and Srivastava
(EW) (1993) coincide with GW
—(0x o\ .
19. Generalized Weibull(GW) a 1 1 B -0 F(x)= (1 —e ) Mudolkar and Srivastava
(1993) coincide with EW
20. Generalized Exponentiated  a 1 o 2 -0 F(x)= (1 —e ) Cordeiro et al. (2013a)
Rayleigh(GER)
21. Generalized Exponentiated  a 1 o 1 -0 F(x)= (1 —e ™ )aa
Exponential(GEE)
22. Beta Rayleigh (BR) a b 1 2 -0  F(x)= I[H;w‘)z] (a,b)
23. Beta Exponential(BE) a b 1 1 -0 F(x)=1 (1) (a,b) Nadarajah and Kotz
(2006)
2 parameters o
A=y
24. Rayleigh Poisson (RP) 1 1 1 2 A F(x)= ¢ T ! Mahmoudi and Sepahdar
- 2013
A.(]—e’m‘)) _1 ( )
25. Exponential Poisson (EP) 1 1 1 1 A F(x)= - Kus (2007)*,
- Cancho et al. (2011)
26. Weibull (W) 1 1 1 B -0 Fx)=0(1 —e_(ox)ﬂ) Mudolkar and Srivastava

(1993)
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Table 1. Continued
o parameters
Distribution F(x) References
a b a Jij A

27. Exponentiated Rayleigh 1 1 o 2 0 -0 F= (1 —e ) Kundu and Ragab (2005)

(ER) coincide with GR
28. Generalized Rayleigh (GR) a1 1 2 8 —0 Fx)= (1 —e ™ ) Kundu and Ragab (2005)

coincide with ER

29. Exponentiated Exponential 1 1 o 1 06 -0 Fx)=Q1 —e'(‘)"))“ Gupta and Kundu (1999)

(EE) coincide with GE
30. Generalized Exponential a 1 1 1 6 -0 Fx)= (l (gv)) Gupta and Kundu (1999)

(GE) coincide with EE
31. Rayleigh(R) 1 1 1 2 8 50 F=(1-@ ) Johnson et al. (1994)
32. Exponential(E) L1 1 10 50 F=(1-¢")  Johnson et al. (1994)
5. Moment Generating Function and Moment "

Xpewp ( ) = Zwmtm
Theorem 3: m=0
Let X be a random variable of a BEWP distribution ©
with parameters @, 8,0,4,a and b. The moment generating ~ WHere @, Z Z(): i, j.l,m,n)T (ﬁﬂj and m=0,1,2,...
function (mgf) of X can be given by
Theorem 4:

= Zw:wmt"’ (11)
m=0

where o, i Z]: l J,l,m, n) (ﬁ+lj andm=0,1,2,...
=0 i=0

Proof:

To find the mgf of BEWP distribution, we apply the
definition of mgf to the linear combination of EWP density
function as

Ms

Xgewp

Zjlsj’[]gel«vg(x;a,ﬂ,e,ij’[)dx
0

i=0

]
S

J
©

Y5 M,y (te.B.0.4,),

j=0 i=0

where Mahmoudi and Sepahdar (2013) derived that

M, (=7 222 (ﬂ+1j(—1)’[“(”tl)_lj(zﬂ)’(%*‘].

l
n!

m!

We can reduce to

XBFWP

where

l»u—lg—m
o(i, j,l,m,n)= Pifir 7
( K —1)n'm'

-1) [“("71) J(z Ly,

And we can reduce again to be

Let X be a random variable of a BEWP distribution
with parameters «, ,0,A,a and b. The moment of X can

be written as
-1 [“(”j‘)“](zu){%*‘]

E(X")=ab T[*”j/i Z/:(
(12)

S lnﬂ

_1),,'

nl=0 i

Proof:

To find the moment of BEWP distribution, we apply
the definition of moment again to the linear combination of
EWP density function as

where Mahmoudl and Sepahdar (2013) derived that
m A " a(n+1)- (m,
Epyp (X")= 6" r( +1JZ;Z;‘( »—1)n' )( l j(/ 1)[ )
So we can obtain the moment of BEWP distribution as
A”+I
E(X")=at ’r[—+1] Zozo“( » ) )/(0‘(’“;1) ](H]){fﬂ)

Then we can find variance, skewness and kurtosis of random
variable X by using the well-known relationship of each
moment.
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6. Parameter Estimation

In this section, we suppose that the sample size n was

drawn from BEWP distribution, and let 7 = (e, 8,0, 4,a,b)" be
the parameter vector. Then the log-likelihood function of
BEWP is given by

1(a,B.0,2,a,b)= an(log(a)+10g(i)+10g(/3)+,Blog(@)—log[B(a,b)]

i=1

~(0x,) +(a~1)log(1 —u,)+&(]—u,)+(a—])log(e’l("”')” -1)
+(b- l)log(e)‘ P )—(a +b- l)log(e)‘ —1))

(6x)

_ B
where u, =e . So the elements of score vector

(oo oo aary
da 6B’ 00° 0" da’ db

where

2 i[lﬂog(l I Gl AU & "™ log(1-u,)
oa i

= a M)

e — e&(m, )

L —(b=1)2(1-u) e log (1 —u,)J

(a—-1)(0x, )ﬁ u, (log(x, )+ log(@))

I-u,

a_ i[ﬂﬂog(e)—(ex, Y (log(x,)+log(6)) +

+2(0x)" u, (log(x;)+log())

. (a —1)0(1(9)6‘. )/f (] —u, )a—l e/l(l—u,)"*(ex,)ﬁ (log(x,. )+ log(e))
A1-u;)" 1

e

—(b—l)a/’L(Qx, )/5 (l—u, )a—l el(l—u,)”’(ﬁx,)ﬂ (log(x,.)+log(9))
+

6/1 _ezl(m,, )y

B ﬂ(ex,)ﬁ (a—l)ﬂ(ex,)ﬁ u, +(a—l)alﬂ(0x,)ﬁ(l—u,)a ') (os)'
2l e T e(i-u) o 1)

Ap(0x) u,  ~(b-1)arp(6x)" (1-u,)"" A on)
0 9(6’l e )
ﬂ: u {1_(a+lj—l)e’l +(1_uv)+(a—l)(l—u;)a e )
o =i -l ' A
(b—l)(el—(l—u 5 w—ur')
+
e/l _e/l(lfu )

a_s (—(y/(a)—y/(a+b))+10g(el(]7“’}a —1)—log(e’l—l))
Oa ‘3
Ay (—(!// (b)—l//(a+b))+log(e’1 —e’l(lf”’)a)—log(e’1 —1))
ob 3
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where v (x) = l;((;))

is the digamma function. The maximum

A A A AT
likelihood estimator 7 = (0?, B ,H,l,d,b) is the solution to
the above score equations that are calculated by using
Newton-Raphson method in R package (R Core Team, 2012).

7. Applications

In this section, to reveal the superiority of BEWP
distribution, we fit a BEWP model to two real data sets from
the application of EWP (Mahmoudi and Sepahdar, 2013).
The first application, we study the skewed data representing
strengths of 1.5 cm glass fibers, measured at the National
Physical Laboratory, England, which are given in Table 2.
Unfortunately, the units of measurement are not given in the
paper.

For the second application, we examine the data
showing the stress-rupture life of Kevlar 49/epoxy strands
(unit: hours) which were subjected to constant sustained
pressure at the 90 stress level until all had failed as displayed
in Table 3.

We fit the BEWP distribution to above two data sets
and compare the fitness with its sub-models that are BWP,
BEW, BEE, EWP, EW, EE including Weibull distribution by
considering the p-value of Kolmogorov-Smirnov (K-S) statis-
tics. The maximum likelihood estimates of the parameters, the
K-S statistics and the corresponding p-value for the fitted
models are shown for data sets I and II in Tables 3 and 4,
respectively. Graphical approach is the another way to ex-
press these data sets fit with this distribution. We also present
the comparison of the empirical cdf wtth each estimated cdf
in Figure 3. It shows the fitting of data to proposed models.

The probability plots of the BEWP distribution cor-
responding to data sets I and II in Figure 4 indicate that (a)
most data lie around the straight line especially the middle
50% of the data, and (b) the first 75% of the data lie on the
straight line and the last 25% of the data lie above, which
suggests a slight right-skewness. It seems reasonable to
tentatively conclude that both data sets are BEWP distribu-
tion.

8. Conclusion

For this paper, a new six-parameter distribution,
namely BEWP is studied. It is obtained by compounding beta

Table2. Strengths of 1.5 cm glass fibers

055 093 125 136 149 152 158 161 164
.68 173 181 200 074 104 127 139 149
153 159 161 166 168 176 18 201 0.77
L11 128 142 150 154 160 162 166 1.69
.76 1.84 224 081 113 129 148 150 1.55
161 1.62 166 170 177 184 08 124 130
148 151 155 161 163 167 170 178 1.89
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Table 3. Stress-rupture life of Kevlar 49/epoxy strands (unit: hours)

001 001 002 002 002
0.07 007 008 009 009
013 018 019 020 023
036 038 040 042 043
063 065 067 068 0.72
0.80 0.80 083 08 090
1.2 1.03 1.05 110 1.10
131 133 134 140 143
1.4 1.4 155 158  1.60
202 205 214 217 233
7.89

003 003 004 005 006
0.10 010 011 010 0.12
024 024 029 034 035
052 054 056 060 0.60
072 072 073 079 079
092 09 09 100 101
L1171 115 118 120 129
145 150 151 152 153
.63 164 18 180 1.81
303 3.03 334 420 469

Table4. MLE and K-S statistics with corresponding p-values for the strengths of 1.5 cm glass fibers.

Fittin Parameters
Distribu%ion K-S p-value
a b a B 0 A

BEWP 0.1203 0.4896 6.0391 4.9958 0.7693 122998  0.0705 0.9127
BWP 0.5032 0.8554 - 5.3956 0.6782 4.6781 0.0978 0.5827
BEW 0.3703 3.924 2.3156 5.6507 0.5135 - 0.1448 0.1425
BEE 04021 314853 24.8020 - 1.0976 - 0.1999 0.0130
EWP - - 0.5781 5.5015 0.6466 2.7821 0.1154 03713
EW - - 0.6712 7.2845 0.5820 - 0.1462 0.1351
EE - - 31.3485 - 26115 - 0.2291 0.0027
Weibull - - - 5.7807 0.6142 - 0.1522 0.1078

and exponentiated Weibull Poisson distributions. We intro-
duce its basic mathematical properties such as density
function. We show that the pdf of BEWP distribution can be
expressed in the linear combination form of EWP distribution
including its moments. Moreover, it also contains the many
sub-models that are well known. Finally, we have applied the
maximum likelihood method to estimate parameters and fit
the BEWP distribution to two real data sets. We compared
the results with its sub-models such as BWP, BEW, BEE,
EWP, EW, EE and Weibull distribution. The results showed
that BEWP distribution provides a better fit than existing
mixtures of the EW or Weibull distribution and some well-
known sub-models.
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Table5 MLE and K-S statistics with corresponding p-values for the stress-rupture life of Kevlar

49/epoxy strands (unit: hours)

Fittin Parameters
Distribu%ion K-S prvalue
a b a B 0 A

BEWP 0.1262 05730  15.8498  0.6127 8.2299 9.1019 0.0615 0.8399
BWP 0.8164 1.1569 - 0.8659 1.2109 1.7244 0.0666 0.7623
BEW 1.0218 0.3523 0.7023 1.0413 2.3771 - 0.0814 0.5145
BEE 0.5805 0.2222 1.5364 - 4.0599 - 0.0905 0.3801
EWP - - 0.8589 0.8717 1.3032 1.2662 0.0725 0.664
EW - - 0.9729 1.0604 0.821 - 0.0844 0468
EE - - 0.8663 - 0.8883 - 0.0887 0.4044
Weibull - - - 0.9259 1.0102 - 0.0906 0.3778

Eugene, N., Lee, C. and Famoye, F. 2002. Beta-Normal distri-
bution and its applications. Communications in Statis-
tics - Theory and Methods. 31, 497-512.

Gupta, R.D. and Kundu, D. 1999. Generalized exponential dis-
tributions. Australian and New Zealand Journal of
Statistics. 41, 173-188.

Hemmati, F., Khorram, E. and Rezakhah, S. 2011. A new three-
parameter ageing distribution. Journal of Statistical
Planning and Inference. 141,2266-2275.

Johnson, N.L., Kotz, S. and Balakrishnan, N. 1994,
Continuous Univariate distributions. Wiley and Sons,
New York, U.S.A.,Vol.1, pp. 456,494.

Kundu, D. and Ragab, M.Z. 2005. Generalized Rayleigh dis-
tribution : different methods of estimations. Computa-
tional Statistics and Data Analysis. 49, 187-200.

Kus, C. 2007. Anew lifetime distribution. Computational Sta-
tistics and Data Analysis. 51, 4497-4509.

Lee, C., Famoye, F. and Olumolade, O. 2007. Beta-Weibull
distribution: Some properties and applications to
censored data. Journal of Modern Applied Statistical
Methods. 6, 173-186.

Lu, W. and Shi, D. 2012. A new compounding life distribu-
tion: the Weibull-Poisson distribution. Journal of
Applied Statistics. 39, 21-38.

Mahmoudi, E. 2011. The beta generalized Pareto distribution
with application to lifetime data. Mathematics and
Computers in Simulation. 81, 2414-2430.

Mahmoudi, E. and Sepahdar, A. 2013. Exponentiated Weibull-
Poisson distribution: Model, properties and applica-
tions. Mathematics and Computers in Simulation. 92,
76-97.

Mood, A.M., Graybill, F.A. and Boes, D.C.1974. Introduction
to the theory of statistics. McGraw-Hill, New York,
U.S.A., pp.532.

Mudolkar, G.S. and Srivastava, D.K. 1993. Exponentiated
Weibull family for analyzing bathtub failure-rate data.
IEEE Transactions on Reliability. 42, 299-302.

Mudholkar, G.S., Srivastava, D.K. and Freimer, M. 1995. The
Exponentiated Weibull Family: A reanalysis of the
bus-motor-failure data. Technometrics. 37, pp.436-
445,

Mudholkar, G.S., Srivastava, D.K. and Kollia, G.D. 1996.
A generalization of the Weibull distribution with appli-
cation to the analysis of survival data. Journal of the
American Statistical Association. 91, 1575-1583.

Nadarajah, S., Gupta, A.K. 2004. The beta Fréchet distribu-
tion. The Far East Journal of Theoretical Statistics.
14,15-24.

Nadarajah, S., and Kotz, S. 2004. The beta Gumbel distribu-
tion. Mathematical Problems in Engineering. 10, 323—
332.

Nadarajah, S., and Kotz, S. 2006. The beta exponential distri-
bution. Reliability Engineering and System Safety. 91,
689-697.

Ortega, E.M.M., Cordeiro, GM., and Kattan M.W. 2013. The
log-beta Weibull regression model with application
to predict recurrence of prostate cancer. Statistical
Papers. 54, 113-132.

Percontini, A., Blas, B. and Cordeiro, GM. 2013. The beta
Weibull Poisson distribution. Chilean Journal of
Statistics. 4, 3-26.

Pinho, L.GB., Cordeiro, GM., and Nobre, J.S. 2012. The
Gamma-Exponentiated Weibull distribution. Journal
of Statistical Theory and Applications. 11 (4), 379-395.

R Core Team, 2012. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.

Rinne, H. 2008. The Weibull Distribution: A Handbook,
Chapman and Hall/CRC, U.S.A., pp. 275-284.

Risti¢, M.M. and Nadarajah, S. 2014. A new lifetime distribu-
tion. Journal of Statistical Computation and Simula-
tion. 84, 135-150.

Singla, N., Jain, K. and Sharma, S.K. 2012. The Beta General-
ized Weibull distribution: Properties and applications.
Reliability Engineering and System Safety. 102, 5-15.



