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Abstract

In this paper, we introduce a new six-parameter distribution, namely Beta Exponentiated Weibull Poisson (BEWP)
which is obtained by compounding between the exponentiated Weibull Poisson and beta distributions. We propose its basic
structural properties such as density function and moments for this new distribution. We re-express the BEWP density
function as a EWP linear combination, and use this to obtain its moments. In addition, it also contains several sub-models
that are well known. Moreover, we apply the maximum likelihood method to estimate parameters, and applications to real data
sets show the superiority of this new distribution by comparing the fitness with its sub-models.
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1. Introduction

For more than a decade, Weibull distribution has been
applied extensively in many areas  and more particularly used
in the analysis of lifetime data for reliability engineering or
biology (Rinne, 2008). However, the Weibull distribution has
a weakness for modeling phenomenon with non-monotone
failure  rate.  Therefore  Mudholkar  and  Srivastava  (1993)
proposed the exponentiated Weibull (EW) distribution that
is an extension of the Weibull family, obtained by adding a
second shape parameter. Then it is flexible to model survival
data  where  the  failure  rate  can  be  increasing,  decreasing,
bathtub shape, or unimodal (Mudholkar et al., 1995).

Let W be a random variable of the EW distribution.
Then  the  cumulative  distribution  function  (cdf)  and  prob-
ability density function (pdf) of W are given by
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respectively.
For survival analysis, there are important analytical

functions such as survival and hazard rate functions given
by

    1 1 wS w e
 

  

and

         
11

1 1 1 1 .


        
 

w w wh w w e e e
   

   

respectively.
Recently, many researchers have attempted to modify

EW distribution with different techniques by using EW as
the baseline distribution to develop more flexibility. Pinho et
al. (2012) proposed gamma exponentiated Weibull, Singla
et  al.  (2012)  studied  beta  generalized  Weibull  (BGW),
Cordeiro et al. (2013) introduced the beta exponentiated
Weibull (BEW) and exponentiated Weibull Poisson (EWP)
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was proposed by Mahmoudi and Sepahdar (2013).
In this paper, we propose a new flexible six-parameter

distribution  called  Beta  Exponentiated  Weibull  Poisson
(BEWP) distribution. The purpose of this study is to create
a new distribution by mixing EWP distribution and the beta
distribution.  Some properties of this new distribution will be
investigated.

The BEWP distribution is developed by using the
Beta-G  distribution  class  that  was  introduced  by  Eugene
et al. (2002) who also proposed the beta normal (BN) distri-
bution. Then, using the Beta-G distribution class was applied
to  create  a  new  distribution  extensively.  For  example,
Nadarajah and Gupta (2004) proposed the beta Frechet (BF)
distribution and Nadarajah and Kotz (2004) studied the beta
Gumbel (BGu) distribution. Nadarajah and Kotz (2006) intro-
duced  the  beta  exponential  (BE)  distribution,  Lee  et  al.
(2007) proposed the Beta Weibull (BW), Mahmoudi (2011)
proposed the Beta Generalized Pareto (BGP), BGW or BEW
and Percontini et al. (2013) studied the Beta Weibull Poisson
(BWP).

The EWP distribution fits the skewed data (Mahmoudi
and Sepahdar, 2013) and it is useful for solving complemen-
tary risks problem (Basu and Klein, 1982) in the presence of
latent risks, in the sense that there is no information about
which factor is responsible for the component failure and
only the maximum lifetime value among all risks is observed.
Mixing the EWP distribution with the beta distribution causes
the two additional shape parameters which serve to control
skewness and tail weights of EWP distribution. As a result,
BEWP distribution is the generalized distribution that has
a wide variety in terms of shape of the distribution, so it is
a  flexible  alternative  for  applications  in  engineering  and
biology. In engineering applications, the BEWP distribution
can be employed in reliability analysis, such as product reli-
ability and system reliability. Percontini et al. (2013) applied
the  BWP  distribution  to  the  maintenance  data  on  active
repair  times  for  airborne  communication.  In  addition,  for
biology or medical science, we may apply to survival analysis
e.g. Mudholkar et al. (1996) applied the generalized Weibull
distribution in fitting the real survival time data of the patients
who were given radiation therapy and chemotherapy from
head  and  neck  cancer  clinical  trial.  Dasgupta  et  al.  (2010)
studied the characteristics of coronary artery calcium which
is a marker of coronary artery disease. This appears to be a
Weibull  distribution  and  a  Weibull  regression  model  was
proposed to examine factors influencing the disease. Ortega
et al. (2013) developed the beta Weibull distribution to be
the log-beta Weibull distribution and studied the log-beta
Weibull regression model with application to predict recur-
rence of prostate cancer.

The rest of this paper is organized in the following
sequence.  Section  2  discusses  about  the  exponentiated
Weibull  Poisson  (EWP)  distribution  that  is  used  as  the
baseline to develop the BEWP distribution. The probability
density function (pdf) and cumulative density function (cdf)
are  introduced  in  Section  3.  Section  4  gives  a  summary  of

sub-models of BEWP in the form of table and chart where
several sub-models are well known. Section 5 discusses the
moment  generating  function  (mgf)  and  the  moment.  In
Section  6  we  apply  the  maximum  likelihood  method  to
estimate parameters, and Section 7 compares  the sub-models
of the BEWP distribution by the applications to real data sets.
Some concluding remarks are given in Section 8.

2. The Exponentiated Weibull Poisson distribution

Let 1 2 3, , ,..., zW W W W  be independent and identically
distributed random variables from exponentiated Weibull
distribution with pdf
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and Z, which is independent from W’s, be a random variable
from zero truncated Poisson distribution with probability mass
function (pmf)
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where    is the gamma function.  Percontini et al. (2013)
described the model for  1 2min , ,..., zX W W W and X =

 1 2max , ,..., zX W W W  that can be used in serial and parallel
system with identical components, which appear in many
industrial applications and biological organisms. For this
model, we define  1 2max , ,..., zX W W W . We assume the
failure occurs after all Z  factors have been activated. Then
we obtain
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and the cdf of  X  is
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Then we take this pdf and cdf of EWP to be the baseline for
creating the new Beta-G distribution in the next section. We
apply  the  interpretation  of  the  EWP  from  Adamidis  and
Loukas (1998), that the failure (of a device, for example) occurs
due  to  the  presence  of  an  unknown  number,  Z,  of  initial
defects of the same kind (a number of semiconductors from a
defective lot, for instance). The W’s represent their lifetimes
and each defect can be detected only after causing failure,
in which case it is repaired perfectly.

3. The Beta Exponentiated Weibull Poisson distribution

Definition 1:
Let F(x) be the cdf of a random variable X. According

to Eugene et al. (2002), the cdf for a generalized class of
distributions  can  be  defined  as  the  logit  of  beta  random
variable by
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where a,b>0. G(x) denotes the probability distribution of
the generalized class of distribution. The pdf of  X  is given
by (for more details see Mood et al. (1974))

           111 1 , 0,
,

baf x g x G x G x x
B a b


   (4)

where     .
dG x

g x
dx



Theorem 1:
Let X be a random variable of the BEWP distribution

with parameters , , , , a     and b. The pdf of X is defined
by
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Proof:
Simply  by  using  Definition  1,  we  obtain  the  pdf  of

X by substituting g(x) and G(x) from Eqs.(1) and (2) into
Eq.(4). Then Eq.(5) is the pdf of BEWP distribution as the
following  property.
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            1.
Note that, we can define the expansion of the pdf as the linear
combination of EWP density function as
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Let  b  be a non-integer real number and 1w  .
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By using the special case of binomial theorem
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Consider the case where the power of G(x) is a non-integer
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To show the various of shapes of the distribution, some
specified parameters of the BEWP distribution and their
density functions are provided in Figure 1: (a) Fix parameters
 = 4,  = 0.5,  = 1.5,  = 0.5 and vary parameters a and b,
and (b) Fix parameters a = 2, b = 2 and vary parameters , ,
  and . Thus, the BEWP distribution can be suitable for
fitting to various shapes of data, for example where the para-
meters a = 2, b = 2,  = 4,  = 0.5,  = 1.5,  = 0.5. This distri-
bution is suitable for fitting skewed data and it is suitable for
fitting unimodal data when the parameters a = 2, b = 2,   =
0.5,  = 2,  = 0.1,  = 15. According to Figure 1, BEWP
distribution can be a family of distributions containing 32
sub-models which will be discussed in Section 4.

Theorem 2:
Let X  be a random variable of a BEWP distribution

with parameters , , , ,a     and b. The cdf of X is given by
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Proof:
Simply by using Definition 1 again, we can define the

cdf of X by replacing G(x) from Eq.(2) in Eq.(3), hence the
cdf of BEWP distribution is as obtained in Eq.(8).                
Note that, we can define the expansion of the cdf as the linear
combination of EWP density function given by
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4. Sub-models

This new distribution consists of a total of 32 sub-
distribution models as shown in Figure 2 and Table 1. In
Table 1, the sub-models associated with Poisson distribution,
are assigned  1 2max , ,..., zX W W W  which based on the
parallel components system comply with BEWP distribution
that is under the same assumption. For X =  1 2min , ,..., zX W W W ,
we also refer to the References column and mark with the
asterisk symbol (*) in Table 1.

Figure 1.  Density function of the BEWP distribution.
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Figure 2.  The sub-model chart of  BEWP distribution

Table 1. The sub-model table of  BEWP distribution.

parameters
                  Distribution                   F(x)              References

a b    

5 parameters

1. Beta Exponentiated a b  2  
   2

(1 ) 1
1

( ) ,
xee

e

F x I a b
 



 



Rayleigh Poisson (BERP)

2. Beta Exponentiated a b  1  
Exponential Poisson    

(1 ) 1
1

( ) ,xee
e

F x I a b 



 




(BEEP)

3. Beta Weibull Poisson a b 1       
(1 ) 1

1

( ) ,
xee

e

F x I a b



 


 Percontini et al. (2013)*
(BWP)

4. Beta Exponentiated a b    0
   

(1 )
( ) ,

xe
F x I a b 

 Singla et al. (2012),
Weibull (BEW) Cordeiro et al. (2013b)

4 parameters

5. Beta Rayleigh Poisson a b 1 2  
   2

(1 ) 1
1

( ) ,
xee

e

F x I a b




 



(BRP)

6. Beta Exponential Poisson a b 1 1      
(1 ) 1

1

( ) ,xee
e

F x I a b



 



(BEP)

7. Generalized Weibull a 1 1   
 (1 ) 1( )

1

x
a

eeF x
e





  
 
 Poisson (GWP)

8. Exponentiated Weibull 1 1      
 (1 ) 1( )

1

xeeF x
e

 



 



Mahmoudi and

Poisson (EWP) Sepahdar (2013)
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Table 1. Continued

parameters
                  Distribution                   F(x)              References

a b    

9. Generalized Exponentiated a 1    0   ( ) 1
a

xF x e
 

 
Weibull (GEW)

10. Beta Exponentiated a b  2  0  2(1 )
( ) ( )

xe
F x I a,b

 
 Cordeiro et al. (2013a)

Rayleigh (BER)

11. Beta Exponentiated a b  1  0     
1

( ) ,
xe

F x I a b
 Barreto-Souza et al.

Exponential (BEE) (2010)

12. Beta Weibull (BW) a b 1   0
 

 
1

( ) ,
xe

F x I a b  
 

 Lee et al. (2007)

3 parameters

13. Generalized Rayleigh a 1 1 2  
 2(1 ) 1( )

1

x
a

eeF x
e





  
  Poisson (GRP)

14. Generalized Exponential a 1 1 1    

 (1 ) 1( )
1

x a
eeF x

e





     
Barreto-Souza, and

Poisson (GEP) Cribari-Neto (2009)

15. Exponentiated 1 1  2    
 2(1 ) 1( )

1

xeeF x
e

 



 



Mahmoudi and Sepahdar

Rayleigh Poisson (ERP) (2013)

16. Exponentiated Exponential 1 1  1    
 (1 ) 1( )

1

xeeF x
e

 



 



Percontini et al. (2013)*,

Poisson (EEP) Ristiæ and Nadarajah
(2014)*, Mahmoudi and
Sepahdar (2013)

17. Weibull Poisson (WP) 1 1 1   

 (1 ) 1( )
1

xeeF x
e





 



Hemmati et al. (2011)*,
Lu and Shi (2012)*,
Mahmoudi and Sepahdar
(2013)

18. Exponentiated Weibull 1 1    0  ( ) (1 )xF x e
   Mudolkar and Srivastava

(EW) (1993) coincide with GW

19. Generalized Weibull(GW) a 1 1   0   ( ) 1
a

xF x e
  Mudolkar and Srivastava

(1993) coincide with EW

20. Generalized Exponentiated a 1  2  0   2

( ) 1
a

xF x e


  Cordeiro et al. (2013a)
Rayleigh(GER)

21. Generalized Exponentiated a 1  1  0   ( ) 1
axF x e

 
Exponential(GEE)

22. Beta Rayleigh (BR) a b 1 2  0    2
1

( ) ,
xe

F x I a b
   



23. Beta Exponential(BE) a b 1 1  0     
1

( ) ,xe
F x I a b

 Nadarajah and Kotz
(2006)

2 parameters

24. Rayleigh Poisson (RP) 1 1 1 2  
 2(1 ) 1( )

1

xeeF x
e





 



Mahmoudi and Sepahdar
(2013)

25. Exponential Poisson (EP) 1 1 1 1  
 (1 ) 1( )

1

xeeF x
e





 



Kus (2007)*,
Cancho et al. (2011)

26. Weibull (W) 1 1 1   0  ( ) (1 )xF x e
  Mudolkar and Srivastava

(1993)
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Table 1. Continued

parameters
                  Distribution                   F(x)              References

a b    

27. Exponentiated Rayleigh 1 1  2  0    2

( ) 1 xF x e


  Kundu and Raqab (2005)
(ER) coincide with GR

28. Generalized Rayleigh (GR) a 1 1 2  0   2

( ) 1
a

xF x e   Kundu and Raqab (2005)
coincide with ER

29. Exponentiated Exponential 1 1  1  0  ( ) (1 )xF x e    Gupta and Kundu (1999)
(EE) coincide with GE

30. Generalized Exponential a 1 1 1  0   ( ) 1
axF x e   Gupta and Kundu (1999)

(GE) coincide with EE

31. Rayleigh(R) 1 1 1 2  0   2

( ) 1 xF x e   Johnson et al. (1994)

32. Exponential(E) 1 1 1 1  0   ( ) 1 xF x e   Johnson et al. (1994)

5. Moment Generating Function and Moment

Theorem 3:
Let X  be a random variable of a BEWP distribution

with parameters , , , , a     and b. The moment generating
function (mgf) of X can be given by

 
0

m
X m

m
M t t





 (11)

where  
, , 0 0

, , , , 1
j

m
j l n i

mi j l m n 




 

 
   

 
   and m = 0,1,2,…

Proof:
To find the mgf of BEWP distribution, we apply the

definition of mgf to the linear combination of EWP density
function as

   , ,
0 0 0

; , , ,
BEWP

j
tx

X j i j i
j i

M t s e g x dx   


 

 

 , ,
0 0

; , , , ,
EWP

j

j i X j i
j i

s M t    


 


where Mahmoudi and Sepahdar (2013) derived that

       ,

,

1,

0 0 0

1 1
1 1 1 .

! !1
j i

EWP j i

n m m mlj i
X

n m l

nt mM t l
n m le




  


      
 

  

   
          



We can reduce to

   
, , , 0 0

, , , , 1 ,
BEWP

j
m

X
j l m n i

mM t i j l m n t




 

 
   

 
 

where

         
,

1
1, , 1 1

, , , , 1 1 .
1 ! !j i

n m mlj i j is n
i j l m n l

le n m




   


   
  
 

  
   

  

And we can reduce again to be

 
0

BEWP

m
X m

m
M t t







where  
, , 0 0

, , , , 1
j

m
j l n i

mi j l m n 




 

 
   

 
   and  m = 0,1,2,…

Theorem 4:
Let X  be a random variable of a BEWP distribution

with parameters , , , ,a     and b. The moment of X can
be written as

         ,

,

1
, 1

, , 0 0

1 1
1 1 1

1 !
j i

j i

nj mj i lm m

j n l i

s nmE X l
le n




 




  
  
 

 

   
      

   
 

(12)

Proof:
To find the moment of BEWP distribution, we apply

the definition of moment again to the linear combination of
EWP density function as

   , ,
0 0 0

; , , ,
j

m m
BEWP j i j i

j i
E X s x g x dx   



 

 

 , ,
0 0

; , , , ,
j

m
j i EWP j i

j i
s E X    



 


where Mahmoudi and Sepahdar (2013) derived that

         ,

,

1
1

0 0

1 1
1 1 1 .

1 !
j i

j i

n mlm m
EWP

n i

nmE X l
le n




 




   
  
 

 

   
      

   


So we can obtain the moment of BEWP distribution as

         ,

,

1
, 1

, , 0 0

1 1
1 1 1 .

1 !
j i

j i

nj mj i lm m

j n l i

s nmE X l
le n




 




  
  
 

 

   
      

   
 

Then we can find variance, skewness and kurtosis of random
variable  X  by  using  the  well-known  relationship  of  each
moment.                                                                         
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6. Parameter Estimation

In this section, we suppose that the sample size n  was

drawn from BEWP distribution, and let  , , , , , Ta b   π  be
the  parameter  vector.  Then  the  log-likelihood  function  of
BEWP is given by

           
1

, , , , , log log log log log ,
n

i
l a b B a b        



       

            11 log 1 1 1 log 1iu
i i ix u u a e

            

        11 log 1 log 1iub e e a b e
       

where   .ix
iu e

  So the elements of score vector

, , , , ,
T

l l l l l l
a b   

      
        

U

where

         
 

1

1
1

1 1 log 11 log 1
1

i

i

un
i i

i u
i

a u e ul u
e





 




 






       
 



       
 

1

1

1 1 log 1i

i

u
i i

u

b u e u

e e





 



 



    
 

                
1

1 log log1 log log log
1

n
i i i

i i
i i

x u xl x x
u


   

  
 

       
 



      log logi i ix u x   

              
 

1 1

1

1 1 log log

1

i i

i

u x
i i i

u

a x u e x

e

 



   



    



  




              
 

1 1

1

1 1 log logi i

i

u x
i i i

u

b x u e x

e e

 



   



    



    
 

     
 

         

  
1 1

11

1 1 1
1 1

i i

i

u xn
i i i i i

ui i

x x u a x u el
u e

 



     



      
    

  




        





           

  
1 1

1

1 1 i i

i

u x
i i i i

u

x u b x u e

e e

 



    



   
 

  




     

 


        

 

1

1
1

1 1 11 1
1 1

i

i

un
i

i u
i

a b e a u el u
e e





 

  






         
  



      
 

1

1

1 1 i

i

u
i

u

b e u e

e e





 







    
 



          1

1
log 1 log 1i

n
u

i

l a a b e e
a

   




       

 

          1

1
log log 1i

n
u

i

l b a b e e e
b

   




       

 

where   Γ ( )
Γ( )

xx
x




  is the digamma function. The maximum

likelihood estimator  ˆˆ ˆ ˆˆˆ ˆ, , , , ,
T

a b   π  is the solution to
the  above  score  equations  that  are  calculated  by  using
Newton-Raphson method in R package (R Core Team, 2012).

7. Applications

In  this  section,  to  reveal  the  superiority  of  BEWP
distribution, we fit a BEWP model to two real data sets from
the application of EWP (Mahmoudi and Sepahdar, 2013).
The first application, we study the skewed data representing
strengths of 1.5 cm glass fibers, measured at the National
Physical Laboratory, England, which are given in Table 2.
Unfortunately, the units of measurement are not given in the
paper.

For  the  second  application,  we  examine  the  data
showing the stress-rupture life of Kevlar 49/epoxy strands
(unit: hours) which were subjected to constant sustained
pressure at the 90 stress level until all had failed as displayed
in Table 3.

We fit the BEWP distribution to above two data sets
and compare the fitness with its sub-models that are BWP,
BEW, BEE, EWP, EW, EE including Weibull distribution by
considering the p-value of Kolmogorov-Smirnov (K-S) statis-
tics. The maximum likelihood estimates of the parameters, the
K-S statistics and the corresponding p-value for the fitted
models are shown for data sets I and II  in Tables 3 and 4,
respectively. Graphical approach is the another way to ex-
press these data sets fit with this distribution. We also present
the comparison of the empirical cdf wtth each estimated cdf
in Figure 3. It shows the fitting of data to proposed models.

The probability plots of the BEWP distribution cor-
responding to data sets I and II  in  Figure 4 indicate that (a)
most data lie around the straight line especially the middle
50% of the data, and (b) the first 75% of the data lie on the
straight line and the last 25% of the data lie above, which
suggests  a  slight  right-skewness.  It  seems  reasonable  to
tentatively conclude that both data sets are BEWP distribu-
tion.

8. Conclusion

For  this  paper,  a  new  six-parameter  distribution,
namely BEWP is studied. It is obtained by compounding beta

Table 2. Strengths of 1.5 cm glass fibers

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64
1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49
1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77
1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69
1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.50 1.55
1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30
1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89
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Table 3. Stress-rupture life of Kevlar 49/epoxy strands (unit: hours)

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06
0.07 0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.10 0.12
0.13 0.18 0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35
0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60 0.60
0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73 0.79 0.79
0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01
1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29
1.31 1.33 1.34 1.40 1.43 1.45 1.50 1.51 1.52 1.53
1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 1.80 1.81
2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 4.69
7.89

Table 4. MLE and K-S statistics with corresponding p-values for the strengths of 1.5 cm glass fibers.

Parameters
K-S p-value

a b    

     BEWP 0.1203 0.4896 6.0391 4.9958 0.7693 12.2998 0.0705 0.9127
     BWP 0.5032 0.8554 - 5.3956 0.6782 4.6781 0.0978 0.5827
     BEW 0.3703 3.924 2.3156 5.6507 0.5135 - 0.1448 0.1425
     BEE 0.4021 31.4853 24.8020 - 1.0976 - 0.1999 0.0130
     EWP - - 0.5781 5.5015 0.6466 2.7821 0.1154 0.3713
     EW - - 0.6712 7.2845 0.5820 - 0.1462 0.1351
     EE - - 31.3485 - 2.6115 - 0.2291 0.0027
     Weibull - - - 5.7807 0.6142 - 0.1522 0.1078

Fitting
Distribution

and exponentiated Weibull Poisson distributions. We intro-
duce  its  basic  mathematical  properties  such  as  density
function. We show that the pdf of BEWP distribution can be
expressed in the linear combination form of EWP distribution
including its moments. Moreover, it also contains the many
sub-models that are well known. Finally, we have applied the
maximum likelihood method to estimate parameters and fit
the BEWP distribution to two real data sets. We compared
the results with its sub-models such as BWP, BEW, BEE,
EWP, EW, EE and Weibull distribution. The results showed
that BEWP distribution provides a better fit than existing
mixtures of the EW or Weibull distribution and some well-
known sub-models.
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Figure 3.  Comparison between empirial cdf and estimated cdf of data sets I and II.
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Figure 3.  Comparison between empirial cdf and estimated cdf of data sets I and II. (Continued)

Figure 4.  The probability plot of the BEWP distribution of data sets I and II.
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