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Abstract

This research proposes a systematic model by using bee algorithm to optimize ready mixed concrete truck scheduling
problem from a single plant to multiple sized receivers in a large search space using uncertain factors of bee algorithm
compared to genetic algorithm. The objective is to minimize the total waiting durations of RMC trucks. Four benchmark
problems with 3, 5, 9 and 12 construction sites are evaluated. Furthermore, eight additional problems are created from the
previous four problems by varying demands and traveling durations, in order to prove the algorithm accuracy and efficiency.
Hence, a total of 12 problems would be solved using both BA and GA. The simulation results show that the BA approach
can get lower total waiting durations and faster than GA for all problems. This research offers a more efficient alternative for
solving RMC truck scheduling.
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1. Introduction

In this study, the focus is on how to deliver Ready
Mixed Concrete (RMC) to the customers’ construction sites
from the suppliers or the batch plants effectively.  RMC is
mixed according to customer’s mixture recipe and it is ready
to use once it is delivered at the construction site. Its usage
has been expanding over the past several years because it is
fast to solidify and its quality is better than manually mixed
concrete. There are many RMC manufacturers in the market
and the material cost is not much different.  Therefore, each
manufacturer  competes  with  each  other  on  the  customer
service satisfaction. Customers are looking for the vendor
that can deliver RMC according to their requirements such as
on-time  delivery.  One  major  constraint  of  RMC  delivery
problem is that RMC must be delivered to the construction
site  within  certain  time  window  after  production.  This  is

because RMC cannot be pre-manufactured and stored as an
inventory  at  the  plant  due  to  its  quick  solidifying  nature;
RMC delivery problem is quite complex.  Usually, the planner
solves RMC delivery problem based on experience and this
can cause dissatisfaction from the customer if the delivery is
late.  Since RMC delivery problem is quite complex, it draws
interests from many researchers. For example, Feng et al.
(2000) generated problems and built a systematic model to
solve RMC scheduling problems using genetic algorithms
(GA) to minimize the total wait duration of RMC trucks. They
then developed the ‘RMC Dispatching Schedule Optimizer’
program (2004). Lu and Lam (2005) also proposed optimized
concrete delivery scheduling using GA. Graham et al. (2006)
presented a neural network to solve RMC problems. Naso
et al. (2007) used a hybrid GA to optimize schedules for
just-in-time production and delivery problem. Yan et al.
(2008) presented a network flow model for an RMC carrier
and  employed  a  time-space  network  technique.  They  then
developed a ‘solution algorithm’ to improve RMC system
operating (Yan et al., 2011; 2012). Srichandum and Rujira-
yanyong (2010) developed Feng’s research using bee colony
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optimization compared to GA and tabu search focusing on
single plant delivery to 3, 5 and 9 sites for three concrete
types. Schmid et al. (2010) used a hybrid solution by inte-
grating an integer multi-commodity flow optimization and
a  variable  neighborhood  search.  Shi  and  Wang  (2012)
proposed a scheduling model for RMC dispatching using
GA. Zhang and Zeng (2013) presented a formulation for RMC
scheduling problems with dependent travel times using the
local search algorithm. Su (2013) presented the fuzzy multi-
objective linear program to analyze the cost-effectiveness
of  vehicles.  Hanif  and  Holvoet  (2014)  solved  dynamic
scheduling of RMC delivery problems using delegate MAS
that is a bio-inspired coordination machanism for optimiza-
tion. Kinable et al. (2014) proposed a mixed integer program-
ming and a constraint programming model to find efficient
routes concerning concrete delivery problems.

Recently, modern heuristic optimization has been paid
much attention by many researchers. Bee Algorithm (BA) is
a typical meta-heuristic optimization which provides a search
process based upon intelligent behaviors of honey bees
(Pham et al., 2005; 2006). It performs a type of neighborhood
search combined with random searches which can efficiently
explore and exploit information from the mechanism itself.
This research proposes an effective optimization for solving
RMC scheduling problems from a single plant to multiple
sized receivers in a large search space with uncertain factors
using BA compared to GA (Feng et al., 2004). Matheekriang-
krai and Wongthatsanekorn (2014) only attempted to solve
the same problem for 3 and 5 construction sites by BA. The
objective is to minimize the total waiting durations of RMC
trucks. Four benchmark problems with 3, 5, 9 and 12 con-
struction sites are evaluated. Furthermore, eight additional
problems are created from the previous four problems by
varying demands and traveling durations, in order to prove
the algorithm accuracy and efficiency. Hence, a total of 12
problems have solved by BA and by GA and the results are
compared in terms of quality solutions, algorithm efficiencies
and accuracy.

2. RMC Truck Scheduling Problem Formulation

2.1 Systematic model

There are five sub-processes for RMC supply process
which are material praparation, RMC mixing, quality inspec-
tion, delivery RMC and return to the batch plant. The same

sub processes are iterated again for each RMC delivery to
fulfill a customer’s order.

There are four parts to the systematic model, which
are  input  parameters,  decision  variables,  constraints  and
system output.

Input parameters: These parameters are traveling
time, casting time, mixing time, and allowable buffer time and
required number of RMC deliveries.

Decision variables: These decisions are dispatching
sequences of each RMC truck to different construction sites.

Constraints: The waiting time for the arrivals of the
RMC truck at the construction sites must be less than the
allowable buffer time. In addition, the RMC truck capacity
and number of trucks are limited.

System output: The solutions are total waiting times
of RMC trucks at construction sites and RMC trucks dis-
patching sequence.

2.2 Solution structure

The solution structure is designed so that all permuta-
tions can be represented and evaluated. First, the length of
the solution is defined as total number of RMC trucks that
will be dispatched. For example, if there are three construc-
tion sites that require three, four and five RMC trucks in the
same interval of time period, the length of the solution would
be twelve. Second, an array of random numbers is used to
avoid infeasible solutions generated within the evolution
process. Figure 1 shows the process of decoding a solution
with random array. This solution represents the dispatching
sequence involved with construction site numbers 1, 2 and 3,
which requires three, four and five RMC trucks respectively.
Here, “Site ID” denotes each bit, corresponding to each con-
struction site. The dispatching sequence is then determined
according  to  each  bit’s  “Site ID”  and  its  corresponding
random number in ascending order. For example, the smallest
random number of the bit is 0.03 and the corresponding
“Site ID” is 2, which indicates the sequence starting with
assigning the RMC truck to the construction site 2. Conse-
quently, the dispatching sequence of the string is decoded
to 2, 3, 2, 2, 1, 3, 3, 3, 1, 1, 2 and 3.

The total solution space of the dispatching schedules
can be determined by Eq. (1). For example, if there are five
construction  sites  and  each  site  requires  four  deliveries,
the  total  solution  space  is  3.151011  or  (4+4+4+4+4)!/
(4!4!4!4!4!) .

Figure 1.  Example of the solution structure
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where:
TS = The total solution space
k j = The required number of RMC deliveries for

construction site j
m = The number of construction sites that request

RMC deliveries

2.3 Input information

RMC truck scheduling is evaluated for 3, 5, 9 and 12
sites in problem 1–4. In additional, we generate eight more
problems by varying demand and travelling time of the origi-
nal four problems in Table 1. In case A, we increase delivery
round and in case B we adjust the travelling time between

the plant and the construction site. Number of RMC truck
and allowable buffer duration are also modified properly.

2.4 Fitness function

The fitness value of a dispatch schedule is determined
by summing the total waiting times (TWC) that each truck
must wait to place concrete at a construction site. In addition,
the process of casting concrete at a construction site could
be interrupted if an RMC truck is delayed longer than the
allowable buffer time. A penalty function ‘P’  is used to aviod
the interupted schedule by calculating one interruption as
time in minutes of one day, as defined in Eq. (2). The fitness
value ‘F’ is the total waiting time at a construction site (min)
including a penalty for the interruption number, as defined
in Eq. (3)

P (the number of interruptions) 60 24   (2)
The fitness value ‘F’ of a dispatched schedule is defined as
Eq. (3):

F P TWC  (3)

Table 1. Information of 12 problems.

             Problem A            Problem B             Problem A & B
Problem Site jSCT jCD jTDG jTDB jABD jk Trucks

jTDG jTDB jTDG jTDB jABD jk Trucks

1 8:00 20 30 25 30 3 30 25 40 30 45 6
1 2 8:00 30 25 20 20 4 5 25 20 50 40 45 6 7

3 8:30 25 40 30 15 5 40 30 50 40 45 7
1 8:00 20 30 25 5 2 30 25 40 35 45 3
2 8:00 30 25 20 15 4 25 20 40 30 45 3

2 3 8:30 25 40 30 15 4 5 40 30 35 25 45 4 7
4 8:00 10 15 15 5 4 15 15 25 15 45 5
5 8:00 35 35 30 5 2 35 30 45 30 45 4

1 8:00 20 30 25 5 3 30 25 45 35 45 5
2 8:00 30 25 20 5 4 25 20 40 30 45 4
3 8:30 25 40 30 15 4 40 30 40 30 45 4
4 8:00 10 15 15 5 5 15 15 40 30 45 3

3 5 8:00 35 35 30 5 2 20 35 30 45 35 45 4 20
6 8:30 15 45 35 10 2 45 35 45 35 45 5
7 8:00 20 20 20 10 5 20 20 35 25 45 4
8 8:00 15 20 15 5 5 20 15 40 30 45 4
9 8:00 10 20 15 5 3 20 15 35 25 45 5

1 8:00 20 30 25 45 3 30 25 40 30 45 5
2 8:00 30 25 20 45 4 25 20 35 25 45 4
3 8:30 25 40 30 45 4 40 30 45 35 45 6
4 8:00 10 15 15 45 3 15 15 35 25 45 5
5 8:00 35 35 30 45 2 35 30 45 40 45 4

4 6 8:30 15 45 35 45 2 20 45 35 39 35 45 5 20&25
7 8:00 20 20 20 45 3 20 20 40 25 45 4
8 8:00 15 20 15 45 4 20 15 45 30 45 5
9 8:00 10 20 15 45 3 20 15 35 35 45 6
10 8:30 20 25 20 45 2 25 20 30 30 45 4
11 8:00 25 15 15 45 3 15 15 25 25 45 3
12 8:00 15 35 30 45 4 35 30 30 30 45 3
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where, TWC is the total time that RMC trucks wait to cast
RMC at the construction site. A simple example to determine
the  fitness  value  of  a  dispatch  schedule  is  described  in
problem 1, as follows;

Description of problem 1
It is assumed that the plant owns five RMC trucks,

the concrete mixing time (MD) is 3 min per cubic meter, and
the maximum load a RMC truck can bear is 6 m3. Information
concerning  dispatch  operations  is  listed  in  Table  1.  The
RMC truck should arrive at construction site ‘j’ within an
allowable buffer duration (ABDj), and the next truck must
arrive at the construction site on time. At the plant, RMC
needs some additional time for mixing and loading the RMC.
Then, there is travelling time to the construction site and a
RMC truck may incur waiting or interruption times. Finally,
there is travelling time back to the batch plant, and so RMC
truck scheduling is associated with the departure time from
the plant(IDT), the arrival time at the construction site (TAC),
the leaving time from the construction site (LT), and finally
the  arrival  time  of  the  RMC  truck  upon  its  return  (TBB),
which are later described in Eqs. (8) - (15).

In practice, the distance (km) from the plant to the
construction site can be found by using a Global Positioning
System (GPS). In this study, the average speeds of RMC
trucks traveling to the construction site and returning to the
plant are assumed to be 20 km hr-1 and 30 km hr-1, respec-
tively. Therefore, the traveling time from the plant to the
construction site j (TDGj) can be calculated using Eq. (4),
and the return time from the construction site j to the plant
(TDBj) can be calculated using Eqs. (5):

3j jTDG D  (4)

2j jTDB D  (5)
where,  Dj = The distance from the plant to the construction
site (km).

Step 1: Determine the best departure time of each
truck from the batch plant. This should occur when the
RMC truck leaves the plant as soon as the concrete is loaded.
Therefore, the departure time of each truck is determined by
Eq. (6), and this involves the departure time of the first dis-
patched RMC truck from the plant to each construction site
by selecting the truck with the minimum leaving time from
the plant. For the first delivery, each truck is needed to arrive
at the construction site at start casting time of the construc-
tion site j (SCTj). Eq. (7) identifies the ideal departure time of
ith dispatched RMC truck. The plant in problem 1 is assumed
to have five RMC trucks, so IDTi for earliest delivery are
determined only for i = 1 to 5 and the rest will be based upon
the departure times of returned trucks in step 2:
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Where,
i = Dispatched order of an RMC truck.
m = Number of construction sites that

request RMC deliveries.
k j = Required RMC deliveries to construc-

tion site j
ith = Dispatch sequence of RMC trucks to

each construction site.

1

m

j
j

N k


 = The total number of RMC deliveries to

all construction sites.
FDT = Departure time of the first dispatched

RMC truck.
SCTj = The start casting time of the construc-

tion site j
IDTi = Ideal departure time of ith dispatched

RMC truck.
MDi = Concrete mixing time for the ith

dispatched RMC truck.

Step 2: Calculate the departure times for the remainder
of deliveries for the returned RMC trucks. This is computed
based  upon  departure  times  from  the  batch  plant,  arrival
times  at  the  construction  site,  leaving  times  from  the
construction site, waiting times for each delivery and the
returning times to the batch plant, according to Eqs. (8)-(15).

The first departure time of each RMC truck can be
determined using step 1. However, the number of trucks is
limited. It is possible that the delivery schedule is unfeasible.
Therefore, only the departure time of the first five dispatched
RMC trucks can be determined by Eqs. (6) and (7). The rest
of the delivery times can be computed when all trucks have
returned from the construction site by Eqs. (8)-(15). Samples
of RMC dispatch sequences are generated randomly as
explained in a solution structure which is illustrated as:
[2, 3, 2, 1, 3, 1, 3, 3, 1, 2, 3, 2] . This represents a feasible
solution  to  a  dispatch  sequence  of  RMC  trucks  for  12
delivery  times  to  construction  sites,  as  displayed  in  the
simulated results of dispatch sequencing based upon the
results in Table 2:

i iSDT IDT , if i c  (8)

l
SDT min[ TBB MD ], if c i Ni l    (9)

ji i jTAC SDT TDG  (10)

1ji j j( k )PTF SCT or LT  (11)

ji ji jiWC PTF TAC  (12)

0ji ji ji j jiLT TAC WC CD , if WC    (13)

0ji ji j jiLT TAC CD , if WC   (14)

i ji jTBB LT TDB  (15)
Where,
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iSDT = Simulated departure time of the ith dispatched
truck.

jiTAC = Arrival time of the ith  dispatched truck at
construction site j.

j = Index of the designated construction site,
where 1j m  .

k = Order of the RMC trucks that arrive at the
respective construction site, wherein

1 jk k   for each construction site j.
l = The order of the trucks returning to the batch

plant.
c = The number of RMC trucks still at the batch

plant.
jiPTF = The starting time of casting at construction

site j.
0jiWC  = Waiting time of the ith dispatched truck at

construction site j.
0jiWC  = Waiting time for arrival of the ith dispatched

truck at construction site j.
jiLT = Leaving time of ith RMC truck at construction

site j.
iTBB = Returning time of ith dispatched RMC truck

back to the batch plant.

Step 3: Determine the fitness value TWC from 
jiWC  in

Table 2, wherein the total waiting times of RMC trucks wait
for casting at construction site, summing the positive integers
of 

jiWC , is 84 min and the total waiting time of the construc-
tion site wait for truck arrivals, summing the negative integers
of 

jiWC , is 209 min. The interruption of casting concrete is
4 times (marked as *), which occurs when the waiting time for
the arrival of a RMC truck is longer than the allowable buffer
time. Since the interruption of casting concrete should be
avoided, a penalty function is applied according to Eq. (2).
The interim fitness value ‘F’ of a dispatched schedule as
defined in Eq. (3) is equal to ( 4 60 24 84    ) min. As a
result, the algorithm re-generates a new feasible solution and
repeats the above steps until it arrives at the optimal solution.
The  trucks  in  problem  1  can  be  scheduled  as  shown  in
Figure 2.

In the mean time, other problems are approached by
using  the  same  process.  The  simulation  results  will  be
described in the next section.

3. BA for RMC Truck Scheduling

Pham et al. (2005; 2006) first introduced BA to solve
optimization problem. BA is one of the optimization algo-
rithms based on the behavior of honey bees. They use waggle
dance to best locate food sources and locate new ones. In a
colony of artificial bees, bees are dividing into two groups.
They  are  scout  bees  and  employed  bees.  Scout  bees  are
responsible for finding new food sources and they move
randomly around the hive. Once they return, those bees that
found good food source go to the dance floor and perform
the waggle dance. During the dance, they share the informa-
tion and communicate with the employed bees which join in
the exploitation of the food source.

The algorithm for BA can be described as follows:
NC = Number of iterations.
ns  = Number of scout bees which could be defined as

initial feasible solutions.
mB = Number of best selected sites out of ns visited sites.
e = Number of best sites out of mB best selected sites.
nep = Number of bees recruited to find best ‘e’ sites.
nsp = Number of bees recruited for the other (mB-e)

selected sites.
ngh = Neighborhood search ratios,  which is the swap time

of solutions, it is required to be an integer. The
‘rounded’ function in Eq. (16) thus converts into
a real number to the nearest integer:

max min
max

max

ngh ngh
ngh round( ngh NC )

NC


   (16)

This solution represents RMC truck scheduling from
a  single  plant  to  different  construction  sites.  The  fitness
function is obtained by interruption times and total waiting
times. The procedure of BA, as shown in Figure 3, can be
summarized as follows:

Table 2. Results of RMC parameter in problem 1.

= Min [08:00-00:30, 08:00-00:25, 08:30-00:40] = 07:30FDT
 i 1 2 3 4 5 6 7 8 9 10 11 12
IDT 7:30 07:33 07:36 7:39 7:42 7:45 07:48 7:51 7:54 7:57 8:00 8:03
 j 2 3 2 1 3 1 3 3 1 2 3 2
 k 1 1 2 1 2 2 3 4 3 3 5 4

i
SDT 7:30 7:33 7:36 7:39 7:42 8:53 8:57 9:23 9:28 9:53 10:11 10:35

ji
TAC 7:55 8:13 8:01 8:09 8:22 9:23 9:37 10:03 9:58 10:18 10:51 11:00

ji
PTF 8:00 8:30 8:30 8:00 8:55 8:20 9:20 10:02 9:43 9:00 10:28 10:48

ji
WC 5 17 29 -9 -33 -54* -17* -1 -15 -78* -23* -12

jiLT 8:30 8:55 9:00 8:29 9:20 9:43 10:02 10:28 10:18 10:48 11:16 11:30

iTBB 8:50 9:25 9:20 8:54 9:50 10:08 10:32 10:58 10:43 11:08 11:46 11:50
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Step 1: Randomly generate initial populations of n
scout bees. Then, set NC = 0

Step 2: Evaluate the fitness value of the initial popula-
tions, which is defined by the number of interruptions and
total waiting times based upon Eqs. (2) and (3).  RMC truck
schedule could be calculated as per Eqs. (4) - (15).

Step 3: Select  mB  best  solutions  from  step  2  for
neighborhood searches in the next step based upon visiting
sites.

Figure 3. BA process flow (Matheekriangkrai and Wongthatsane-
korn, 2014)

Figure 2.  The Gantt chart of RMC truck schedules concerning problem 1.

Step 4: Separate  the  mB  best  solutions  into  two
groups, whereby: Group 1 has e best solutions, and group 2
has mB-e best solutions.

Step 5: Determine  the  scope  of  neighborhood
searches for each best solution (ngh) as shown in Eq.2 for
both groups 1 and 2 best solutions.

Step 6: Generate new solutions randomly around mB
(group 1) and mB-e best solution (group 2) within the scope
of the neighborhood searches, as per step 5.

Step 7: Evaluate the fitness value of new solutions
and thus select the most appropriate solution for each patch.

Step 8: Check the stopping conditions. If satisfied,
terminate the search, else NC = NC+1.

Step 9: Assign the n-mB population to generate new
solutions. Go back to step 2:

4. Simulation Results

The BA method has been applied to solve RMC truck
scheduling  having  twelve  problems.  The  results  were
compared against GA, and all methods were performed with
30  trials  for  each  problem.  The  feasible  solution  to  each
problem could be calculated as per Eq. (1), and the total solu-
tions spaces in problems 1, 2, 3 and 4 are 27720, 18,918,900,
2.091016 and 6.66881032, respectively. The software was
implemented using MatLab® languages on an Intel® Core2
Duo 1.66 GHz Laptop with 2 GB RAM under Windows XP.
The BA parameter setting using trial and error methods was
performed for each problem as shown in Table 3. The GA
method was implemented using the same selection, crossover
and mutation methods as Feng et al. (2004). The selection is
based on Roulette wheel selection methods, the crossover
is  two  points  crossover,  and  the  mutation  uses  the  self-
mutation technique. The best solutions to the 12 problems
after 30 trials are shown in Table 4.

Further analyse of an effectiveness of BA is all shown
in Table 5. Obviously, both methods can find optimum solu-
tions  with  high  probabilities,  however  the  percentage  of
achieving the optimum for BA is higher than for GA. Hence,
the standard deviation of the solution for GA is higher than
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for BA. In terms of average CPU time, BA runs faster in all
problem sizes except for the largest problems. BA could also
take more time to exploit some problems, such as 4, 4A and
4B.  Hence, it can be concluded that the BA approach out-
performs GA in terms of efficiency and accuracy, in this
research.

In Figure 4, GA and BA converge to optimal solutions
in approximately 7 and 30 iterations of problem 1; 5 and 987
iterations of problem 2; 100 and 1400 iterations of problem 3,
and 12 and 213 of problem 4, respectively. The results indicate
that BA can converge to optimum solutions faster than GA
can in all 4 problems.  Surprisingly, problem 3 requires a higer
number  of  iterations  than  problem  4  to  reach  the  optimal
solutions for both GA and BA even though problem 4 has
more sites to deliver. According to Karaboga and Akay (2009),
BA  produces  new  solutions  by  taking  the  difference  of
randomly  determined  parts  of  the  parent  and  choosing  a

solution randomly from the population while GA produces
new solutions based on the current population using cross-
over and mutation operators. Another aspect is about keep-
ing the best solution in every iteration.  For BA, the best
solution could be replaced with new random solution found
by a scout bee while the best solution is always retained in
the population. These differences explain why BA could
speed up the convergence search for local optimum faster
than GA.

Next, the best solution of each trial were considered
and plotted, as shown in Figure 5.  Each dot represents the
best  solution  of  each  trial  run  for  problems  1,  2,  3  and  4,
respectively. All fitness values could be obtained using BA
with different optimal percentages dependent upon problem
constraints, such as: available RMC trucks, allowable buffer
time, travelling distance and RMC orders from the customer:

Table 4. Optimal solutions of 12 problems.

Problem Site ID Total Interuption
(Dispatching Sequence) waiting time time

(min) (min)

1 [1, 2, 2, 1, 1, 3, 2, 3, 2, 3, 3, 3] 95 0
1A [2, 2, 1, 1, 3, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 3, 1, 3] 99 0
1B [2, 1, 1, 1, 1, 2, 3, 1, 3, 2, 2, 3, 1, 3, 3, 2, 3, 2, 3] 93 0

2 [4, 3, 4, 4, 4, 3, 2, 3, 2, 3, 5, 1, 1, 5] 150 0
2A [5, 1, 5, 2, 1, 4, 4, 2, 1, 4, 3, 2, 5, 3, 4, 5, 3, 4, 3]  62 0
2B [5, 1, 2, 4, 2, 4, 1, 1, 4, 5, 2, 3, 5, 4, 3, 3, 4, 5, 3] 59 0

3 [7, 1, 5, 2, 8, 9,  6,  3, 9, 1, 8, 9,  6,  7, 2, 5, 8, 1,  3, 7,  8, 4, 2, 4, 8, 3, 36 0
 7, 4,  4, 2, 7,  3, 4] 

3A [5, 1, 9, 2, 7, 8, 4, 6, 3, 9, 1, 8, 5, 7, 2, 6, 9, 3, 1, 8, 6, 4, 7, 1, 6, 3, 9, 2, 5, 8, 18 0
 7, 3, 1, 4, 9, 2, 6, 5]

3B [5, 1, 4, 8, 2, 9, 7, 4, 1,9, 6, 4, 5, 3, 2, 1,6, 8, 9, 7, 6, 3, 5, 9, 8, 6, 1, 2, 3, 7, 9, 0 0
1, 6, 5, 8, 3, 7, 2]

4 [5, 12, 1, 2, 7, 8, 9, 4, 6, 12, 11, 3, 4, 5, 2, 7, 1, 4, 8, 6, 3, 9, 12, 10, 8, 2, 11, 4 0
1, 3, 7, 12, 8, 9, 10, 11, 2, 3].

4A [5, 12, 1, 2, 8, 7, 9, 4, 11, 3, 9, 4, 12, 7, 8, 10, 1, 9, 3, 4, 7, 5, 4, 11, 12, 8, 4 0
 1, 9, 10, 6,  2, 3, 4, 7, 9, 5, 2, 3, 6, 8, 11, 10, 1, 6, 8, 3, 5, 6, 1, 8, 10, 2, 3, 6]

4B [9, 5, 12, 1, 11, 4, 7, 12, 9, 8, 3, 2, 9, 6, 7, 10, 12, 9, 1, 4, 5, 11, 8, 3, 6, 10, 7, 3, 9, 4, 2, 0 0
 6, 1, 8, 3, 11, 5, 10, 2, 7, 4, 9, 3, 6, 1, 10, 8, 2, 4, 1, 8, 6, 5, 3]

Table 3. BA and GA parameter setting.

         BA          GA
  Problem ns mB e nep nsp Popolation size Generation Crossover Mutation

1,1 ,1A B 20 5 3 10 5 200 100 0.3 0.1
2,2 ,2A B 250 120 20 50 20 200 100 0.3 0.1
3,3 ,3A B 20 10 1 5 2 300 100 0.3 0.1
4,4 ,4A B 40 18 1 20 2 300 100 0.3 0.1
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Table 5. Summary results of 12 problems.

Problem Algorithm Max Avg Min S.D. Avg CPU time %Optimum
(min) (min)  (min)

1 BA 95.00 95.00 95.00 0.00 1.41 100.00
GA 95.00 95.00 95.00 0.00 6.68 100.00

1A BA 104.00 99.17 99.00 0.91 19.68 96.67
GA 107.00 100.43 99.00 2.87 214.50 76.67

1B BA 99.00 93.27 93.00 1.14 26.20 93.33
GA 117.00 95.47 93.00 5.44 226.85 70.00

2 BA 150.00 150.00 150.00 0.00 134.24 100.00
GA 182.00 160.70 150.00 9.20 264.64 26.67

2A BA 67.00 62.33 62.00 1.27 242.07 93.33
GA 97.00 78.40 62.00 12.63 410.68 23.33

2B BA 95.00 63.10 59.00 10.09 242.69 83.33
GA 102.00 83.17 59.00 15.99 412.38 26.67

3 BA 59.00 37.90 36.00 15.40 148.12 86.67
GA 156.00 73.97 36.00 35.69 245.03 30.00

3A BA 18.00 18.00 18.00 0.00 73.57 100.00
GA 170.00 105.07 18.00 47.64 433.58 16.67

3B BA 2.00 0.27 0.00 0.58 413.82 80.00
GA 4.00 1.23 0.00 1.25 417.68 26.67

4 BA 4.00 4.00 4.00 0.00 113.81 100.00
GA 4.00 4.00 4.00 0.00 96.61 100.00

4A BA 6.00 4.17 4.00 0.46 247.49 86.67
GA 6.00 4.27 4.00 0.58 230.09 80.00

4B BA 3.00 0.30 0.00 0.75 253.15 83.33
GA 3.00 0.30 0.00 0.75 303.25 83.33

Figure 4.  A comparison of BA and GA convergence curves (Matheekriangkrai and Wongthatsanekorn, 2014 for a. and b.)
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Figure 4.  Continued

Figure 5.  Best Solution of each trial by GA and BA (Matheekriangkrai and Wongthatsanekorn, 2014 for a. and b.)

5. Conclusions and Future Works

This research proposes BA for solving RMC truck
scheduling problems for a large search space and uncertain
factors which are an NP-hard problem. The BA concept is to
perform a neighborhood search combined with random
searches. This technique helps to explore and exploit search
spaces and achieves optimal efficiency. In addition, GA is a
search approach based upon natural selection and genetic
recombination. The algorithm works by choosing solutions
from the current population and then applying genetic opera-

tors such as mutations and crossovers to improve random
solutions  that  can  be  changed  to  the  worst  solutions  or
trapped in local loops. The performance of BA was evaluated
using four benchmark and eight additional problems. The
results show that the BA approach can find the optimal solu-
tion better than GA in terms of efficiency and accuracy for
all 12 problems. Hence, this research offers a more efficient
alternative for solving RMC truck schedule.

For future research, some companies have more than
one plant located in different areas in order to meet increasing
customer demand, and there are many factors to consider
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such as fuel costs and types of concrete. Therefore, the next
step is to construct a RMC scheduling problem framework
from multiple plants to multiple sites in order to minimize fuel
costs and total waiting times of RMC trucks by using heuris-
tics.  In  addition,  RMC  strength  types,  such  as  RMC  for
beams,  columns  and  floors,  could  be  varied  to  make  the
problem more realistic.
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