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Abstract

For the testing of the mean vector where the data are drawn from a multivariate normal population, the renowned
Hotelling’s T 2 test is no longer valid when the dimension of the data equals or exceeds the sample size. In this study, we
consider the problem of testing the hypothesis :H μ 0  and propose a new test based on the idea of keeping more
information from the sample covariance matrix. The development of the statistic is based on Hotelling’s T 2 distribution and
the new test has invariance property under a group of scalar transformation. The asymptotic distribution is derived under
the null hypothesis. The simulation results show that the proposed test performs well and is more powerful when the data
dimension increases for a given sample size. An analysis of DNA microarray data with the new test is demonstrated.
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1. Introduction

The rapid increase in the occurrence of high-dimen-
sional data has been found in many areas of interest thus
making it essential to acquire new statistical methods to deal
with  them.  Examples  of  data  can  be  found  in  genetic
microarrays,  bioinformatics,  economics,  engineering,
industry and meteorology, amongst other sources. It is often
not possible to address these datasets by classical statistical
methods due to their high dimensionality and complexity.
When making inference on this type of data, testing the mean
vector for one sample is a fundamental technique which is
not only beneficial for its main purpose, but also provides an
important step when developing other statistical techniques,
e.g. regression analysis. Among the test statistics on the
mean vector used in multivariate analysis, the most well-
known one is Hotelling’s T 2,  1n x S x , where x   and S  are
the sample mean vector and sample covariance matrix res-
pectively, based on a sample of size n. The test statistic T 2

takes into account the correlation in the data, which is the
concept conforming to the Mahalanobis distance (Maha-

lanobis, 1936) ( )MD x = 1( ) ( )  x μ S x μ , so it is not
surprising that many tests on the mean vector are also based
on this distance. The advantages of the statistic T 2 are: it is
powerful when the dimension of data is sufficiently small,
it is invariant under linear transformation, and particularly,
its exact distribution is known under the null hypothesis.
However, one serious limitation of Hotelling’s T 2 is that the
sample covariance matrix needs to be invertible. Theoreti-
cally, when 1p n  , where p   is the data dimension and n
is the sample size, the sample covariance matrix loses its full
rank and becomes singular. Consequently, the classical test
statistic T 2 is no longer valid (Eaton and Perlman, 1973;
Rencher, 2001; Zhang and Xu, 2009).

To overcome the problem of the need for the inverse
of a sample covariance matrix, extensive work has been
carried out by many researchers (see Dempster, 1958; Bai
and Saranadasa, 1996; Srivastava and Du, 2008; Srivastava,
2009; Chen and Qin, 2010; Park and Ayyala, 2013). The initial
one, proposed by Dempster (1958), henceforth TD, is given
by
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where x , the sample mean vector, and  S, the sample covari-
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The Dempster statistic TD has been shown to have approxi-
mately an  F-distribution with r and  n-r degrees of freedom
under the null hypothesis :H μ 0 . One of the advantages
of Dempster’s test is that, when the dimension is proportion-
ally close to the sample size, this test is more powerful than
Hotelling’s test even in situations where Hotelling’s  T 2 is
well defined (Bai and Saranadasa, 1996). However, one of
the hardships of performing Dempster’s test is that the test
statistic involves a complicated estimation of the parameter
r, the degrees of freedom of the F-distribution, whose explicit
form is unknown. The other two fundamental test statistics
include one presented by Bai and Saranadasa (1996), BST ,
and the other by Srivastava and Du (2008), .SDT  Bai and
Saranadasa  presented  their  statistic  for  testing  the  mean
vectors of the two-sample case, but in our study we focus on
the one-sample case, so it needs to be subsequently adjusted
for  the  one-sample  case  before  use  in  this  study.  The  test
statistics BST  and SDT  are as follows:
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where x  and S are defined as in (2)–(3), 1
11diag(1 / ,SD s D

...,1 / )pps , where iis  are the diagonal elements of S, R is
the sample correlation matrix and 2 3 / 2

, 1 tr( ) /p nc p  R .
Both of the test statistics have asymptotic normality. The

BST   test  is  invariant  under  an  orthogonal  transformation
cx Γx , where   is a nonzero constant and Γ  is a p p

matrix such that  ΓΓ I   while the SDT  test is invariant
under a group of scalar transformation x Dx , where

1diag( , ..., )pc cD   and 0,ic    for all  , 1, ...,i i p . Other
tests in the literature, such as that of Chen and Qin (2010)
and Park and Ayyala (2013), were studied under different
conditions involving the trace of the correlation matrix and
they provided good results in certain situations.

Although  existing  tests  proposed  by  Dempster
(1958), Bai and Saranadasa (1996) and Srivastava and Du
(2008)  do  not  need  the  inverse  of  the  sample  covariance
matrix, there are still some limitations in the sense that they
are  based  on  the  assumption  that  the  data  dimension  (p)
increases  at  the  same  rate  as  the  sample  size  (n),  i.e.

/ (0, )p n c   , but, in practice, there are so many current
datasets  which  have  a  dimension  much  larger  than  the
sample size, p n  (Park and Ayyala, 2013). Motivated by
this kind of data and also the previous literature, we propose
a test for the mean vector based on the idea of keeping more
or as much as possible of the information from the sample
covariance matrix.

In  this  article,  we  consider  a  set  of  independent
observations  1 , ..., nx x  drawn from a multivariate normal
distribution ( , )pN μ Σ , where both the mean vector  and
positive  definite  covariance  matrix    are  unknown.  The
problem of interest is testing :H μ = 0   vs.  :K μ 0 , and
we propose a new test which is applicable to high-dimen-
sional  data.  The  organization  of  this  paper  is  as  follows.
The new test statistic and its asymptotic null distribution as
p   are presented in the next section, followed by a
report  on  the  performance  of  the  proposed  test  which  is
investigated through a simulation study. Next, the proposed
test is applied to a DNA microarray dataset, and lastly, the
conclusion of this study is provided.

2. Description of the Proposed Test

Let 1 , ..., nx x  be n independent observations from a
multivariate normal distribution ( , )pN μ Σ , where both the
mean vector pμ   and positive definite covariance matrix
 are  unknown.  Assuming p n ,  we  are  interested  in
testing

:H μ 0  vs. :K μ 0 . (6)
Define the positive definite covariance matrix   as

( )( )  ,E   Σ x μ x μ (7)
and write   in blocks as
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where  jjΣ , 1, ...,j m   are blocks, or submatrices, on the
diagonal of   and the dimension of jjΣ  is  jq , 4jq n 

and  
1

m

j
j

q p
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 . The population correlation matrix R   is

defined as

1/ 2 1/ 2 =( ) ,jk 
  D ΣDR R (9)
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where  D 11diag( , ..., )pp  ,  , 1, ...,ii i p    are  the
diagonal elements of  and  ,jjR 1, ...,j m   is a j jq q

submatrix, 4jq n    and  
1

m

j
j

q p


 .

We make an assumption on the population correlation matrix
as follows:

As  p    and ,n   ,jk  0R ,j k

, 1, ...,  .j k m (10)

From the sample covariance matrixS, we partition as for .
We define a block diagonal matrix qD  as qD = diag(S111,S22,...
Smm), where jjS , 1, ...,j m  are submatrices obtained from
the sample covariance matrix  S, giving
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In the case where the first 1m   blocks 11 22, ,..., S S ( 1)( 1)m m S

are of equal size 1 2 1... mq q q q    , i.e. ( 1) mp m q q  

, where q  is referred to as the “common block size” of qD .
Since jjS   can be considered as the sample covariance matrix
of dimension jq   with sample size n  where  4jq n  , then

jjS , 1, ...,j m  are all invertible. Consequently, the block
diagonal matrix qD  is also invertible—its inverse is  1 1 1

q mm
  D S S

1 1 1
11diag( ,..., )q mm

  D S S .

Now, we consider the statistic
1  ,n qT n  x D x (12)

where x   is defined in (2). The following theorem gives the
expectation and variance of  Tn.

Theorem 1.  Let  1 , ..., ( , )
iid

n pNx x μ Σ , where   is positive
definite. Then, under assumption (10), the expectation and
variance of  Tn  are, respectively,
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Proof.  Partition the sample mean vector x  corresponding to
the block sizes in  qD , i.e.
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As jY  has Hotelling’s 2T  distribution with jq  and 1n 
degrees of freedom, it can also be converted to an F-statistic
as follows:
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This completes the proof.
We propose a test, for the problem :H μ = 0  vs.

:K μ 0  , which is based on the statistic nT   as
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It is noted that the qT  test is invariant under a group of
scalar transformation x Dx , where 1diag( , ..., )pc cD
and 0,ic   for all  i, 1, ...,i p  ; this is a desirable property
of the test. The following theorem gives the asymptotic
distribution of the test statistic qT  under the null hypothesis.

Theorem 2.  Under  assumption  (10)  and  under  the  null
hypothesis μ 0 . Then

(0,1) ,d
qT N

where “ d ” denotes the convergence in distribution.

Proof. This follows from Theorem 1 and by applying the
Central Limit Theorem for non-identically distributed random
variables. For a given n, as p   , which is equivalent to
m   , we have

( )
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This completes the proof.
It should be noted here that the proposed test statistic

Tq has the statistic 1
n qT n  x D x  in its numerator and the

term Tn  uses more information from the off-diagonal elements
of the sample covariance matrix than the terms  n x x  in  TBS

and 1
SDn x D x   in  TSD.

One point of interest here is deciding how large to
make the block sizes because, theoretically, the test statistic,
based on the F-distribution, only requires block sizes qj
< 4jq n  . The reasoning is as follows. When block sizes are
close to 4n  , it is more likely that the smallest eigenvalue of

jjS  is close to zero; this can make the matrix qD  singular
(Tracy and Widom, 1996). In addition, based on the idea of
obtaining as much information from the sample covariance
matrix as possible, it is recommended from our simulation
results, not presented here, that the appropriate block sizes
are 6n   (for  0 / 0.5n p  ) and 7n   (for 0.5 / 1n p  ).

3. Simulation Study

In this section, the performance of the proposed test
was evaluated using a simulation study with a variety of
parameter settings of the population covariance matrices.
For comparison, the other two important statistics TSD  and
TBS  were also included in the study, and the attained signifi-
cance level and the empirical power of the three test statistics
were evaluated. Firstly, the attained significance level and
the empirical power are defined.

3.1 Attained significance level (ASL) and empirical power

Let 1z   be the 100(1 )%  quantile of the asymp-
totic null distribution of the test statistic T, e.g. qT T , then

1z   is the 100(1 )%  quantile of  the standard normal

distribution (0,1)N , with  m iterations of  the datasets simu-
lated under the null hypothesis.  The ASL is computed as

ASL 1number of 
 ,Ht z

m




where tH  represents the values of the test statistic T  based on
the datasets generated under the null hypothesis. Through-
out the simulation study, 10, 000m    iterations was chosen
and the nominal significance level () was fixed at 0.05. The
ASL is approximately distributed as the binomial distribution

(10000, 0.05)b  and has a standard deviation estimated by
 (ASL)se 0.05(0.95) /10, 000 0.00218 .

The empirical power was also obtained by generating
datasets under the alternative hypothesis with 10, 000m 
replications, followed by computing the empirical power as

Empirical power 1number of 
 ,Kt z

m




where  tK represents the values of the test statistic T  based on
the datasets generated under the alternative hypothesis.

3.2 Parameter selection

The mean vector for the alternative hypothesis is 

1 μ 1 2( , , ..., ) ,p    2 1 0k    and 2 ( 0.5, 0.5)
iid

k U 

1, 2,..., / 2k p . The four following forms of covariance
matrix were considered: (1) the identity matrix  1 pΣ I , (2) a
covariance matrix with a common block size, (3) a covariance
matrix with a common block size but different elements, and
(4) a covariance matrix with various block sizes. The second
form of covariance matrix is 2Σ 11diag( , ..., )mm Σ Σ , where

jjΣ (1 ) ,c c   I 11 0.8c   and 1  is a vector where all
entries are 1’s, , 1, ..., 1jj j m Σ  are of dimension q, and
the last block is  qm, where ( 1) mp m q q   . The third form
of covariance matrix is 3Σ 1/ 2 1/ 2

  D DR , where 1/ 2
 D

1diag( , ..., )p  , i 
12 ( 1) ( 1) /i p i p      and R  =

11diag( , ..., )mm R R , where ( ),kk ijR  ( 1) ( )i j i j
ij c    ,

, 1, ..., ji j q , 0.9c   and 1,...,k m . The block sizes of
the third form of covariance matrix are similar to those of the
second one, i.e. the common block size is q  and the last
block size is  qm, where ( 1) mp m q q   . The last form of
covariance matrix is 4Σ 1/ 2 1/ 2

  D DR   , where 4Σ   is formed
as in the third case except that the blocks in R  are of five
different sizes and these blocks are randomly located on the
diagonal.

The simulations were conducted at 60p  with n
 30, 60n  and at  100,150, 200, 400p  with  40, 60,80n .
For each combination of the data dimension (p) and sample
size (n), the proposed statistic Tq was computed for the
chosen common block size (q) of  6n   (for  0 / 0.5n p  )
or 7n   (for  0.5 / 1n p  ). The common block size of 1
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( 1q  ) was chosen in order to compare with the other two
statistics from the literature when the covariance matrix is an
identity matrix. Under each condition, n  multivariate normal
vectors with the chosen mean vector and covariance matrix
were generated, then the ASL and the empirical power were
recorded.

3.3 Simulation results

The performance of the proposed test was evaluated
through simulations using four different forms of covariance
matrix. Both the attained significance levels and the empirical
powers for each form of covariance matrix are reported in
Tables 1 to 4.

The performance of the proposed test statistic qT
when 1 p Σ Σ I  was investigated, as shown in Table 1.
The proposed statistic qT  was computed for both cases
where the common block sizes in matrix qD  were  q = 1  and

6q n    (for  0 / 0.5n p  )  or  7q n    (for  0.5 / 1 
0.5 / 1n p  ).  The  case  of 1q   was  studied  here  in  order  to

compare with the existing test statistic TSD, presented by
Srivastava and Du (2008). As is known, when the population
covariance matrix is the identity matrix, the sample counter-
part need not be the identity, so we are interested in cases
where  the common block size in matrix qD  is 6q n   (or

7q n  ). The results, from Table 1, show that with the
common  block  size  1q  ,  the  proposed  statistic  Tq
performed  well  overall,  and  quite  similarly  to  Bai  and

Table 1. ASLs and Empirical Powers when 1 Σ Σ I  at Nominal Significance
Level 0.05 

ASL Empirical Power
p n

TSD TBS Tq TSD TBS Tq

q = 1

60 30 0.057 0.061 0.059 0.998 0.999 0.998
60 0.050 0.057 0.057 1.000 1.000 1.000

100 40 0.053 0.060 0.060 1.000 1.000 1.000
60 0.051 0.058 0.058 1.000 1.000 1.000
80 0.052 0.059 0.060 1.000 1.000 1.000

150 40 0.046 0.054 0.054 1.000 1.000 1.000
60 0.047 0.054 0.055 1.000 1.000 1.000
80 0.048 0.055 0.056 1.000 1.000 1.000

200 40 0.043 0.054 0.053 1.000 1.000 1.000
60 0.046 0.055 0.056 1.000 1.000 1.000
80 0.042 0.052 0.051 1.000 1.000 1.000

400 40 0.039 0.054 0.055 1.000 1.000 1.000
60 0.041 0.055 0.055 1.000 1.000 1.000

q = n – 6 (for 0 / 0.5n p  ) or n – 7 (for 0.5 / 1n p  )

60 30 0.057 0.061 0.049 0.998 0.999 0.512
60 0.050 0.057 0.047 1.000 1.000 0.581

100 40 0.053 0.060 0.053 1.000 1.000 0.653
60 0.051 0.058 0.050 1.000 1.000 0.848
80 0.052 0.059 0.047 1.000 1.000 0.761

150 40 0.046 0.054 0.050 1.000 1.000 0.744
60 0.047 0.054 0.044 1.000 1.000 0.797
80 0.048 0.055 0.048 1.000 1.000 0.932

200 40 0.043 0.054 0.049 1.000 1.000 0.841
60 0.046 0.055 0.053 1.000 1.000 1.000
80 0.042 0.052 0.048 1.000 1.000 1.000

400 40 0.039 0.054 0.053 1.000 1.000 0.991
60 0.041 0.055 0.052 1.000 1.000 0.996
80 0.043 0.055 0.051 1.000 1.000 0.998
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Saranadasa’s statistic TBS, while the ASL of  the statistic TSD
was lower than the nominal significance level 0.05 when the
data dimension increased. When the common block size in
matrix  qD   was  6q n    (or 7q n  ),  the  ASL  of  the
proposed statistic Tq  was closer to the nominal level than
the other two tests. Although the empirical power of the
proposed test was rather low for a small  p, or 200p  , it
became  acceptably  high  when  the  dimension  increased

( 200).p    Moreover, when comparing the maximum differ--
ence of the ASL from the nominal value, ASL 0.05max  , of
the three test statistics when 200p  , Table 1 shows that the
statistic TSD  performed the worst;    ofASLmax 0.05SDT 
= 0.011  while     ofASLmax 0.05BST   = 0.005  and

   ofASLmax 0.05qT   = 0.006 .
For the covariance matrix 2Σ Σ  and the common

block size in qD  chosen corresponded to Σ, the results are

Table 2. ASLs and Empirical Powers when  2Σ Σ  at Nominal Significance
Level 0.05 

ASL Empirical Power
p n

TSD TBS Tq TSD TBS Tq

60 30 0.030 0.076 0.049 0.230 0.499 1.000
60 0.018 0.074 0.047 0.160 0.810 1.000

100 40 0.022 0.077 0.053 0.336 0.799 1.000
60 0.019 0.079 0.050 0.362 0.974 1.000
80 0.015 0.073 0.047 0.503 1.000 1.000

150 40 0.030 0.079 0.050 0.558 0.925 1.000
60 0.018 0.079 0.044 0.613 0.998 0.994
80 0.014 0.078 0.048 0.626 1.000 1.000

200 40 0.028 0.072 0.049 0.705 1.000 0.946
60 0.019 0.079 0.053 0.839 1.000 1.000
80 0.012 0.071 0.048 0.926 1.000 1.000

400 40 0.023 0.066 0.053 0.999 1.000 1.000
60 0.018 0.070 0.052 1.000 1.000 1.000
80 0.014 0.073 0.051 1.000 1.000 1.000

Table 3. ASLs and Empirical Powers when  3Σ Σ  at Nominal Significance
Level 0.05 

ASL Empirical Power
p n

TSD TBS Tq TSD TBS Tq

60 30 0.048 0.080 0.049 0.195 0.153 1.000
60 0.039 0.075 0.047 0.461 0.245 1.000

100 40 0.039 0.071 0.053 0.405 0.221 1.000
60 0.039 0.075 0.050 0.730 0.337 1.000
80 0.038 0.071 0.047 0.966 0.506 1.000

150 40 0.038 0.069 0.050 0.575 0.290 1.000
60 0.038 0.066 0.044 0.913 0.416 1.000
80 0.038 0.070 0.048 0.998 0.633 1.000

200 40 0.041 0.070 0.049 0.681 0.303 1.000
60 0.039 0.070 0.053 0.978 0.508 1.000
80 0.036 0.066 0.048 1.000 0.740 1.000

400 40 0.036 0.067 0.053 0.970 0.545 1.000
60 0.035 0.066 0.052 1.000 0.852 1.000
80 0.038 0.065 0.051 1.000 0.986 1.000
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shown in Table 2. In this form of covariance matrix, the
proposed statistic Tq  performed well and was superior to
both of the statistics TSD and TBS. The results when the cova-
riance matrix 3Σ Σ , as shown in Table 3, are similar to
those in Table 2 even when the elements in the blocks of 3Σ
were changed. In other words, varying the entries of the
blocks in the covariance matrix but still keeping the same
block size, did not have much impact on the proposed statistic
Tq; it still performed well. Additionally, when the ASLs of the
test statistics TSD and  TBS  were not close to the nominal value
0.05, their empirical powers, whether they were high or not,
were less reliable.

For the last form of covariance matrix 4Σ Σ , which
contained blocks of five different sizes on the diagonal, it can
be concluded that the proposed statistic Tq outperformed
both statistics  TSD and  TBS used for comparison, as shown in
Table 4. Once again, when the ASLs of the test statistics TSD
and  TBS were not close to the nominal value 0.05, their empiri-
cal powers were less reliable than  Tq. From the results, the
ASLs of TSD are under the nominal value of 0.05 while those
of TBS are over; this indicates the unfavorable performance
of the two test statistics.

4. A Real Example

In this section, the proposed test with a 5% signifi-
cance level was applied to a sample of DNA microarray data
from an oncology study. The data, published by Notterman
et  al.  (2001),  were  retrieved  on  Nov  23,  2014  from  the
Princeton University Gene Expression Project website (http://
genomics-pubs.princeton.edu/oncology). A selection of 200

Table 4. ASLs and Empirical Powers when 4Σ Σ  at Nominal Significance
Level 0.05 

ASL Empirical Power
p n

TSD TBS Tq TSD TBS Tq

0 30 0.048 0.077 0.045 0.219 0.153 1.000
60 0.039 0.073 0.047 0.489 0.252 1.000

100 40 0.039 0.067 0.048 0.450 0.225 1.000
60 0.040 0.073 0.051 0.806 0.366 1.000
80 0.038 0.070 0.049 0.982 0.558 1.000

150 40 0.039 0.068 0.048 0.611 0.270 1.000
60 0.037 0.066 0.048 0.936 0.437 1.000
80 0.037 0.069 0.047 1.000 0.667 1.000

200 40 0.041 0.069 0.046 0.732 0.316 1.000
60 0.040 0.069 0.046 0.982 0.523 1.000
80 0.036 0.066 0.046 1.000 0.760 1.000

400 40 0.036 0.066 0.054 0.975 0.555 1.000
60 0.037 0.068 0.049 1.000 0.863 1.000
80 0.035 0.065 0.048 1.000 0.989 1.000

genes (p) with the sample size (n) 18 were analyzed with using
the differences between tumor tissue and normal tissue of
gene expression levels as variables. To compute the proposed
test statistic Tq, the variables in blocks were arranged so that
the correlation coefficient of any two adjacent variables in the
same block was greater than or equal to 0.5. The test values
TBS of Bai and Saranadasa, in (4), and TSD  of Srivastava and
Du, in (5), were also computed. The calculated test value of
the proposed statistic was Tq = 19.737 with corresponding
p-value < 0.001. The other two test values were  TBS = 21.299
and TSD = 21.773, both of which had corresponding p-value
lower than 0.001. Thus, all three tests led to the rejection of
the null hypothesis of a zero mean vector, i.e. the gene expres-
sion levels of tumor tissue are significantly different from
those of normal tissue.

5. Conclusions

In this study, we proposed a test for the mean vector
when the data dimension is larger than the sample size and
the data are multivariate normal. The development of the test
is based on the idea of keeping more information from the
sample covariance matrix than similar previously published
tests and follows the concept of the Mahalanobis distance.
One of the desirable properties of the proposed test is that
it is invariant under a group of scalar transformation. Among
the tests reviewed in the literature, two important tests, one
proposed by Bai and Saranadasa (1996) and the other by
Srivastava and Du (2008), are highlighted and also used for
comparison in a simulation study. Under the null hypothesis,
the proposed statistic has been shown to converge in distri-
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bution  to  a  standard  normal  distribution  when  the  data
dimension .p  
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