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Abstract

For the testing of the mean vector where the data are drawn from a multivariate normal population, the renowned
Hotelling’s T test is no longer valid when the dimension of the data equals or exceeds the sample size. In this study, we
consider the problem of testing the hypothesis H :p =0 and propose a new test based on the idea of keeping more
information from the sample covariance matrix. The development of the statistic is based on Hotelling’s 7 distribution and
the new test has invariance property under a group of scalar transformation. The asymptotic distribution is derived under
the null hypothesis. The simulation results show that the proposed test performs well and is more powerful when the data
dimension increases for a given sample size. An analysis of DNA microarray data with the new test is demonstrated.
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1. Introduction

The rapid increase in the occurrence of high-dimen-
sional data has been found in many areas of interest thus
making it essential to acquire new statistical methods to deal
with them. Examples of data can be found in genetic
microarrays, bioinformatics, economics, engineering,
industry and meteorology, amongst other sources. It is often
not possible to address these datasets by classical statistical
methods due to their high dimensionality and complexity.
When making inference on this type of data, testing the mean
vector for one sample is a fundamental technique which is
not only beneficial for its main purpose, but also provides an
important step when developing other statistical techniques,
e.g. regression analysis. Among the test statistics on the
mean vector used in multivariate analysis, the most well-
known one is Hotelling’s 7>, #X'S™'X, where X and S are
the sample mean vector and sample covariance matrix res-
pectively, based on a sample of size n. The test statistic 7~
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takes into account the correlation in the data, which is the
concept conforming to the Mahalanobis distance (Maha-

lanobis, 1936) D,, (x)= \l(x—u)'S_l(x—u), so it is not

surprising that many tests on the mean vector are also based
on this distance. The advantages of the statistic T~ are: it is
powerful when the dimension of data is sufficiently small,
it is invariant under linear transformation, and particularly,
its exact distribution is known under the null hypothesis.
However, one serious limitation of Hotelling’s 77 is that the
sample covariance matrix needs to be invertible. Theoreti-
cally, when p >n—1, wherep isthe data dimension and n
is the sample size, the sample covariance matrix loses its full
rank and becomes singular. Consequently, the classical test
statistic 77 is no longer valid (Eaton and Perlman, 1973;
Rencher, 2001; Zhang and Xu, 2009).

To overcome the problem of the need for the inverse
of a sample covariance matrix, extensive work has been
carried out by many researchers (see Dempster, 1958; Bai
and Saranadasa, 1996; Srivastava and Du, 2008; Srivastava,
2009; Chen and Qin, 2010; Park and Ayyala, 2013). The initial
one, proposed by Dempster (1958), henceforth T, is given
by
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where X, the sample mean vector, and S, the sample covari-
ance matrix, are defined, respectively by

iz(ixi)/n Q)
i=1

Z(x %, -%) = (s,) 6)

n—l =

M)

and

The Dempster statistic 7, has been shown to have approxi-
mately an F-distribution with » and n-r degrees of freedom
under the null hypothesis H : p = 0. One of the advantages
of Dempster’s test is that, when the dimension is proportion-
ally close to the sample size, this test is more powerful than
Hotelling’s test even in situations where Hotelling’s 7 is
well defined (Bai and Saranadasa, 1996). However, one of
the hardships of performing Dempster’s test is that the test
statistic involves a complicated estimation of the parameter
r, the degrees of freedom of the F-distribution, whose explicit
form is unknown. The other two fundamental test statistics
include one presented by Bai and Saranadasa (1996), Ty,
and the other by Srivastava and Du (2008), Tg,. Bai and
Saranadasa presented their statistic for testing the mean
vectors of the two-sample case, but in our study we focus on
the one-sample case, so it needs to be subsequently adjusted
for the one-sample case before use in this study. The test
statistics T and T, are as follows:

HX'X — tr(S)
Tpg = @
2(n-) (2 ' (S)
(n—2)(n+1) n—1
s L
and T, = n-3 , ®)

2
2 V4
Z{tr(R )_n—l}cp’n

where X and S are defined as in (2)—(3), D;]D = diag(l/s, >

L1/ s, ) where s, are the diagonal elements of S, Ris
the sample correlatlon matrix and Cpp =17 tr(R )/ p 32
Both of the test statistics have asymptotic normality. The
Tge test is invariant under an orthogonal transformation
X — cI'x, where is a nonzero constant and I' isa pXx p
matrix such that I'T' =1 while the T, test is invariant
under a group of scalar transformation x — Dx, where
D= diag(c],...,cp) and ¢; # 0, forall i,i=1,..., p.Other
tests in the literature, such as that of Chen and Qin (2010)
and Park and Ayyala (2013), were studied under different
conditions involving the trace of the correlation matrix and
they provided good results in certain situations.
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Although existing tests proposed by Dempster
(1958), Bai and Saranadasa (1996) and Srivastava and Du
(2008) do not need the inverse of the sample covariance
matrix, there are still some limitations in the sense that they
are based on the assumption that the data dimension (p)
increases at the same rate as the sample size (n), i.e.
p/n— c e (0,0),but, in practice, there are so many current
datasets which have a dimension much larger than the
sample size, p >> n (Park and Ayyala, 2013). Motivated by
this kind of data and also the previous literature, we propose
a test for the mean vector based on the idea of keeping more
or as much as possible of the information from the sample
covariance matrix.

In this article, we consider a set of independent
observations  X,,...,x, drawn from a multivariate normal
distribution N » (n, X), where both the mean vector p and
positive definite covariance matrix £ are unknown. The
problem of interest is testing 4 :p=0 vs. K:p#0,and
we propose a new test which is applicable to high-dimen-
sional data. The organization of this paper is as follows.
The new test statistic and its asymptotic null distribution as
p —> © are presented in the next section, followed by a
report on the performance of the proposed test which is
investigated through a simulation study. Next, the proposed
test is applied to a DNA microarray dataset, and lastly, the
conclusion of this study is provided.

2. Description of the Proposed Test

Let x;,...,x, be n independent observations from a
multivariate normal distribution N (1, X), where both the
mean vector p € R” and positive deﬁmte covariance matrix
Y are unknown. Assuming p =n, we are interested in

testing
H:p=0vs. K:p#0. 6)
Define the positive definite covariance matrix X as
L=E(x-p(x-p), @)

and write X in blocks as

):'11 ):'12 E1m
)y )y . X
21 2 2m
prpz . . .. . =(Ejk)5 (8)
Zm] ZmZ T Emm
where X e J= 1,...,m are blocks, or submatrices, on the

diagonal of £ and the dimension of X ; is ¢;, g, <n—4
m
and 2 g ; = P . The population correlation matrix R is

Jj=1

defined as

-1/2
o

®=D_""LD, =R ;). ©)
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where D, = diag(oy;,... .0, ) au,z—l,

diagonal elements of = and "% i J =1

.. p are the
isa q;xq;

submatrix, ¢; <n—4 and Z q4;,=Pp.

=1
We make an assumption on the population correlation matrix
as follows:

As p—>© and n<+0, R,y -0, j=k,

Jok=1..,m (10
From the sample covariance matrixS, we partition as for X.
We define a block dlagonal matrix D, as D = diag(S,.S,,....
S, ), where S j» J=L..,m are submatrlces obtained from
the sample covariance matrix S, giving

S, 0 0
0 S,

D, = 0 (11)
0 0 S,

In the case where the first m —1 blocks S,,, S5,,..., S(u-1ym1)
areofequalsize ¢, = ¢, =...=¢q,,_, =q,i.e. p=(m-Dg+gq,
, where g is referred to as the “common block size” of D .
Since S ;; can be considered as the sample covariance matrlx
ofdlmensmn q; with sample size n where ¢ ;<n-— 4, then
S
diagonal matrix D is also invertible—its inverse is D;l =

dlag(S11 ,. -l

m m )

j» J=1L..,m are all invertible. Consequently, the block

Now, we consider the statistic

(12)

where X is defined in (2). The following theorem gives the
expectation and variance of 7.

iid
Theorem 1. Let Xx,,...,X, ~ Np (n,X), where X is positive
definite. Then, under assumption (10), the expectation and
variance of T are, respectively,

m -1yg .
@) E(T) zM
j=1 (= C]]—z)

—ty— =
T, :nxDq X,

nw 2—-1)Y(n-2)q,
(i) Var(T) > (n o) )q

=(n-gq; ~2)*(n- q; 4

Proof. Partition the sample mean vector X corresponding to
the block sizes in Dq ,le.
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, where ij is of dimension ¢ x1,

m
g;<n-4and Xgq,=p.
j=1

Write T, as T, = nxD 3= Z ”X]SJ] X;
-

= Y. =
]Z] , where ¥, = nx]S]] X; .

As Y; has Hotelling’s T ® distribution with q; and n-1

degrees of freedom, it can also be converted to an F-statistic
as follows:

"y R
(n-Dyg, * "
where F g, is the F-distribution with q; and n-—gq,;

degrees of freedom.

Since E(F)

2(q;-2)*(n-2)
~4, -2 (n-gq;-4)

where F ~F, . then wehave
J’ J

Var(F) =
q;(n

m (n—l)qj
E(T)—ZE(Y)— —
Jj=1 Jl(” qJ—Z)

Under assumption (10), ¥; and Y, are independent when

j#k, j,k=1,..,m,then Cov(Y].,Yk)=0 and
2
m 2(n-1)"(n-2)q,
Var(Tn)z > /

—q, -2 (n—q,-4)

This completes the proof.

j=l(n

We propose a test, for the problem H :p=0 vs.
K :p#0 , which is based on the statistic T, as

7;_§ (n-1yg;
A (n—q;=2)

(13)
2 2n-1)*(n-2)q,

A (n-q;=2)"(n—q; -4




480

It is noted that the T, test is invariant under a group of
scalar transformation X —> Dx, where D = diag(cy,....c,)
and ¢; # 0, forall i, i =1,..., p ; thisis a desirable property
of the test. The following theorem gives the asymptotic

distribution of the test statistic 7, under the null hypothesis.

Theorem 2. Under assumption (10) and under the null

hypothesis p=0. Then
T, —>N(,1),

where “ _4_y” denotes the convergence in distribution.

Proof. This follows from Theorem 1 and by applying the
Central Limit Theorem for non-identically distributed random

variables. For a given n, as p — o0, which is equivalent to
m — oo , we have

T -ET,) 4

o 45 N(O, 1) .
JVar(T,)

This completes the proof.
It should be noted here that the proposed test statistic

T =

T, has the statistic 7, = ni’D;li in its numerator and the
term 7' uses more information from the off-diagonal elements
of the sample covariance matrix than the terms #X X in T,
and ni’D;]Di in T,

One point of interest here is deciding how large to
make the block sizes because, theoretically, the test statistic,
based on the F-distribution, only requires block sizes g,
< n—4. The reasoning is as follows. When block sizes are
closeto n —4 ,itis more likely that the smallest eigenvalue of
S ;i 1s close to zero; this can make the matrix D, singular
(Tracy and Widom, 1996). In addition, based on the idea of
obtaining as much information from the sample covariance
matrix as possible, it is recommended from our simulation
results, not presented here, that the appropriate block sizes
aren—6(for 0<n/p<0.5)and n—7 (for 0.5<n/p<1).

3. Simulation Study

In this section, the performance of the proposed test
was evaluated using a simulation study with a variety of
parameter settings of the population covariance matrices.
For comparison, the other two important statistics 7, and
T, were also included in the study, and the attained signifi-
cance level and the empirical power of the three test statistics
were evaluated. Firstly, the attained significance level and
the empirical power are defined.

3.1 Attained significance level (ASL) and empirical power

Let z,_, be the 100(1-a)% quantile of the asymp-
totic null distribution of the test statistic 7, e.g. T =T, then
z,__is the 100(1 - )% quantile of the standard normal

l-o
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distribution N(0,1) , with m iterations of the datasets simu-
lated under the null hypothesis. The ASL is computed as

number of ¢,, > z
ASL= e |
m

where ¢, represents the values of the test statistic 7" based on
the datasets generated under the null hypothesis. Through-
out the simulation study, m =10,000 iterations was chosen
and the nominal significance level () was fixed at 0.05. The
ASL is approximately distributed as the binomial distribution

b(10000,0.05) and has a standard deviation estimated by

se(ASL) =~/0.05(0.95) /10,000 = 0.00218 -
The empirical power was also obtained by generating

datasets under the alternative hypothesis with m = 10,000
replications, followed by computing the empirical power as
ber of ¢, >
Empirical power = b0k 7 Zia ,
m

where ¢, represents the values of the test statistic 7’ based on
the datasets generated under the alternative hypothesis.

3.2 Parameter selection

The mean vector for the alternative hypothesis is p
iid

=1 =(VyseV,)s vy =0 and v, ~ U(=0.5,0.5)
k=1,2,..,p/2. The four following forms of covariance
matrix were considered: (1) the identitymatrix X, =1,,(2)a
covariance matrix with a common block size, (3) a covariance
matrix with a common block size but different elements, and
(4) a covariance matrix with various block sizes. The second
form of covariance matrix is X, = diag(Xy,... X, ), where
L, =cl+(1-c)ll,c=08 and 1 is a vector where all
entries are 1’s, Ejj,j =1,...,m—1 are of dimension ¢, and
the last block is ¢, , where p = (m —1)q + g,,. The third form
of covariance matrix is X, = D:j/zim);/z 16/2 -
diag(o,,..,0,), 0, =2+ -)'(p-i+1)/p and R’ =
diag(R, ... },,,) . where %Ry = (p,). py, = (—) ('),
i,j=l..4;, c=09 and k=1,..,m. The block sizes of
the third form of covariance matrix are similar to those of the

, where D

second one, i.e. the common block size is ¢ and the last

block size is ¢, , where p = (m —1)q +g,, . The last form of

covariance matrix is £, = ]):7/29&{]);/2 , where X, is formed

as in the third case except that the blocks in R are of five
different sizes and these blocks are randomly located on the
diagonal.

The simulations were conducted at p = 60 with n €
{30,60} and at p < {100,150,200,400} with n € {40,60,80}.
For each combination of the data dimension (p) and sample
size (n), the proposed statistic T , was computed for the
chosen common block size (g) of n—6 (for 0 <n/p<0.5)
or n—7 (for 0.5<n/p<1). The common block size of 1
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(g =1) was chosen in order to compare with the other two
statistics from the literature when the covariance matrix is an
identity matrix. Under each condition, » multivariate normal
vectors with the chosen mean vector and covariance matrix
were generated, then the ASL and the empirical power were
recorded.

3.3 Simulation results

The performance of the proposed test was evaluated
through simulations using four different forms of covariance
matrix. Both the attained significance levels and the empirical
powers for each form of covariance matrix are reported in
Tables 1 to 4.
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The performance of the proposed test statistic 7,
when X =X, =1 was investigated, as shown in Table 1.
The proposed statistic 7, was computed for both cases
where the common block sizes in matrix D, were ¢ =1 and
q=n—6 (for 0<n/p<0.5) or g=n-7 (for 0.5<
n/ p £1). The case of ¢ =1 was studied here in order to
compare with the existing test statistic 7, presented by
Srivastava and Du (2008). As is known, when the population
covariance matrix is the identity matrix, the sample counter-
part need not be the identity, so we are interested in cases
where the common block size in matrix D, is g =n—6 (or
q = n—"7). The results, from Table 1, show that with the
common block size g =1, the proposed statistic Tq
performed well overall, and quite similarly to Bai and

Table 1. ASLsand Empirical Powers when X = X, =1 at Nominal Significance

Level a =0.05
ASL Empirical Power
p n
T SD T BS Tq T SD T BS Tq
g=1
60 30 0.057 0.061 0.059 0.998 0.999 0.998
60 0.050 0.057 0.057 1.000 1.000 1.000
100 40 0.053 0.060 0.060 1.000 1.000 1.000
60 0.051 0.058 0.058 1.000 1.000 1.000
&0 0.052 0.059 0.060 1.000 1.000 1.000
150 40 0.046 0.054 0.054 1.000 1.000 1.000
60 0.047 0.054 0.055 1.000 1.000 1.000
&0 0.048 0.055 0.056 1.000 1.000 1.000
200 40 0.043 0.054 0.053 1.000 1.000 1.000
60 0.046 0.055 0.056 1.000 1.000 1.000
&0 0.042 0.052 0.051 1.000 1.000 1.000
400 40 0.039 0.054 0.055 1.000 1.000 1.000
60 0.041 0.055 0.055 1.000 1.000 1.000

g=n—6(for 0<n/p<05)orn-7{or 0.5<n/p<1)

60 30 0.057 0.061 0.049 0.998 0.999 0512
60 0.050 0.057 0.047 1.000 1.000 0.581
100 40 0.053 0.060 0.053 1.000 1.000 0.653
60 0.051 0.058 0.050 1.000 1.000 0.848
&0 0.052 0.059 0.047 1.000 1.000 0.761
150 40 0.046 0.054 0.050 1.000 1.000 0.744
60 0.047 0.054 0.044 1.000 1.000 0.797
&0 0.048 0.055 0.048 1.000 1.000 0.932
200 40 0.043 0.054 0.049 1.000 1.000 0.841
60 0.046 0.055 0.053 1.000 1.000 1.000
&0 0.042 0.052 0.048 1.000 1.000 1.000
400 40 0.039 0.054 0.053 1.000 1.000 0.991
60 0.041 0.055 0.052 1.000 1.000 0.996
&0 0.043 0.055 0.051 1.000 1.000 0.998
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Table2. ASLsand Empirical Powers when X = X, at Nominal Significance
Level a =0.05
ASL Empirical Power
p n
T SD T BS Tq T SD T BS Tq
60 30 0.030 0.076 0.049 0.230 0499 1.000
60 0018 0.074 0.047 0.160 0.810 1.000
100 40 0.022 0.077 0.053 0.336 0.799 1.000
60 0.019 0.079 0.050 0362 0974 1.000
80 0015 0.073 0.047 0.503 1.000 1.000
150 40 0.030 0.079 0.050 0.558 0925 1.000
60 0018 0.079 0.044 0613 0.998 0.994
80 0014 0.078 0.048 0.626 1.000 1.000
200 40 0.028 0.072 0.049 0.705 1.000 0.946
60 0.019 0.079 0.053 0.839 1.000 1.000
80 0012 0.071 0.048 0926 1.000 1.000
400 40 0.023 0.066 0.053 0.999 1.000 1.000
60 0018 0.070 0.052 1.000 1.000 1.000
80 0014 0.073 0.051 1.000 1.000 1.000
Table3. ASLsand Empirical Powers when X = X5 at Nominal Significance
Level a =0.05
ASL Empirical Power
p n
T SD T BS Tq T SD T BS Tq
60 30 0.048 0.080 0.049 0.195 0.153 1.000
60 0.039 0.075 0.047 0461 0.245 1.000
100 40 0.039 0.071 0.053 0405 0221 1.000
60 0.039 0.075 0.050 0.730 0.337 1.000
80 0.038 0.071 0.047 0.966 0.506 1.000
150 40 0.038 0.069 0.050 0.575 0.290 1.000
60 0.038 0.066 0.044 0913 0416 1.000
80 0.038 0.070 0.048 0.998 0.633 1.000
200 40 0.041 0.070 0.049 0.681 0.303 1.000
60 0.039 0.070 0.053 0978 0.508 1.000
80 0.036 0.066 0.048 1.000 0.740 1.000
400 40 0.036 0.067 0.053 0970 0.545 1.000
60 0.035 0.066 0.052 1.000 0.852 1.000
80 0.038 0.065 0.051 1.000 0.986 1.000

Saranadasa’s statistic 7,

while the ASL of the statistic 7,

(p = 200). Moreover, when comparing the maximum differ-

was lower than the nominal significance level 0.05 when the
data dimension increased. When the common block size in
matrix D, was g=n—-6 (or ¢=n—7), the ASL of the
proposed statistic 7' , was closer to the nominal level than
the other two tests. Although the empirical power of the
proposed test was rather low for a small p, or p <200, it
became acceptably high when the dimension increased

ence of the ASL from the nominal value, max |ASL -0.05 |, of
the three test statistics when p > 200, Table 1 shows that the
statistic 7, performed the worst; max|ASL of Ty, —0.05|
= 0.011 while max|ASLof T, ~0.05 = 0.005 and
max|ASL of 7, ~0.05] =0.006.

For the covariance matrix X = X, and the common
block size in D chosen corresponded to X, the results are
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Table4. ASLsand Empirical Powers when X =X, at Nominal Significance
Level a =0.05
ASL Empirical Power
p n
T sD T BS Tq T sD T BS Tq
0 30 0.048 0.077 0.045 0.219 0.153 1.000
60 0.039 0.073 0.047 0489 0.252 1.000
100 40 0.039 0.067 0.048 0450 0.225 1.000
60 0.040 0.073 0.051 0.806 0.366 1.000
80 0.038 0.070 0.049 0982 0.558 1.000
150 40 0.039 0.068 0.048 0.611 0.270 1.000
60 0.037 0.066 0.048 0936 0437 1.000
80 0.037 0.069 0.047 1.000 0.667 1.000
200 40 0.041 0.069 0.046 0.732 0.316 1.000
60 0.040 0.069 0.046 0982 0.523 1.000
80 0.036 0.066 0.046 1.000 0.760 1.000
400 40 0.036 0.066 0.054 0975 0.555 1.000
60 0.037 0.068 0.049 1.000 0.863 1.000
80 0.035 0.065 0.048 1.000 0.989 1.000
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shown in Table 2. In this form of covariance matrix, the
proposed statistic T i performed well and was superior to
both of the statistics 7, and 7. The results when the cova-
riance matrix X = X, as shown in Table 3, are similar to
those in Table 2 even when the elements in the blocks of X,
were changed. In other words, varying the entries of the
blocks in the covariance matrix but still keeping the same
block size, did not have much impact on the proposed statistic
T; it still performed well. Additionally, when the ASLs of the
test statistics 7, and T, were not close to the nominal value
0.05, their empirical powers, whether they were high or not,
were less reliable.

For the last form of covariance matrix X = X, which
contained blocks of five different sizes on the diagonal, it can
be concluded that the proposed statistic Tq outperformed
both statistics 7, and 7, used for comparison, as shown in
Table 4. Once again, when the ASLs of the test statistics T,
and T, were not close to the nominal value 0.05, their empiri-
cal powers were less reliable than T " From the results, the
ASLs of T, are under the nominal value of 0.05 while those
of T, are over; this indicates the unfavorable performance
of the two test statistics.

4.AReal Example

In this section, the proposed test with a 5% signifi-
cance level was applied to a sample of DNA microarray data
from an oncology study. The data, published by Notterman
et al. (2001), were retrieved on Nov 23, 2014 from the
Princeton University Gene Expression Project website (http://
genomics-pubs.princeton.edu/oncology). A selection of 200

genes (p) with the sample size (n) 18 were analyzed with using
the differences between tumor tissue and normal tissue of
gene expression levels as variables. To compute the proposed
test statistic 7', the variables in blocks were arranged so that
the correlation coefficient of any two adjacent variables in the
same block was greater than or equal to 0.5. The test values
T, of Bai and Saranadasa, in (4), and T, of Srivastava and
Du, in (5), were also computed. The calculated test value of
the proposed statistic was T =19.737 with corresponding
p-value <0.001. The other two test values were 7, =21.299
and T, = 21.773, both of which had corresponding p-value
lower than 0.001. Thus, all three tests led to the rejection of
the null hypothesis of a zero mean vector, i.e. the gene expres-
sion levels of tumor tissue are significantly different from
those of normal tissue.

5. Conclusions

In this study, we proposed a test for the mean vector
when the data dimension is larger than the sample size and
the data are multivariate normal. The development of the test
is based on the idea of keeping more information from the
sample covariance matrix than similar previously published
tests and follows the concept of the Mahalanobis distance.
One of the desirable properties of the proposed test is that
it is invariant under a group of scalar transformation. Among
the tests reviewed in the literature, two important tests, one
proposed by Bai and Saranadasa (1996) and the other by
Srivastava and Du (2008), are highlighted and also used for
comparison in a simulation study. Under the null hypothesis,
the proposed statistic has been shown to converge in distri-
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bution to a standard normal distribution when the data
dimension p —> 0.
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