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Abstract

This paper presents a robust cellular associative memory for pattern recognitions using composite trigonometric
chaotic neuron models. Robust chaotic neurons are designed through a scan of positive Lyapunov Exponent (LE) bifurca-
tion structures, which indicate the quantitative measure of chaoticity for one-dimensional discrete-time dynamical systems.
The proposed chaotic neuron model is a composite of sine and cosine chaotic maps, which are independent from the output
activation function. Dynamics behaviors are demonstrated through bifurcation diagrams and LE-based bifurcation structures.
An application to associative memories of binary patterns in Cellular Neural Networks (CNN) topology is demonstrated using
a signum output activation function. Examples of English alphabets are stored using symmetric auto-associative matrix of
n-binary patterns. Simulation results have demonstrated that the cellular neural network can quickly and effectively restore
the distorted pattern to expected information.
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1. Introduction

A chaotic neuron model that imitates real biological
neuron activities in human nervous systems has served as an
elementary constituent inartificial neural networks (ANN),
which  is  a  complex  and  nonlinear  information  processing
system (Guoguang et al., 2008). The chaotic neuron typically
exhibits rich dynamic behaviors, involving static, periodic,
quasi-periodic and chaotic states. Therefore, the characteris-
tic of a specific chaotic neuron type effectively determine the
distinctiveness and overall performances of ANNs. Inter-
connections of chaotic neurons in a cellular topology offer
an operative function of associative memories for a variety
of  applications  such  as  in  information  recognitions  and
retrievals (Xia et al., 2010). The original and well-studied
discrete-time chaotic neuron model proposed by Aihara et al.

(1990) qualitatively realizes chaotic behaviors of squid giant
axon and Hodgkin–Huxley models as follows;

n 1 n 1 n 0β ( ) Ix kx f x    (1)

n 1 2 n 1( )y f x  (2)
where xn+1 is an internal state, yn+1 is a neuron output,  is a
parameter  for  refractoriness,  k  is  a  damping  factor  of  the
refractoriness,  I0  is  the  sum  of  all  input  excitations.  The
functions f1(·) and f2 (·) are nonlinear feedback and activation
functions, respectively. Such a model realizes is a sigmoidal
function  in  both  internal  feedback  state  and  the  output
sections and is given by
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where   is a steepness parameter. Figure 1 illustrates the
corresponding block diagram of chaotic neuron model in
Equation 2. Arrangements of Equation 2 by substituting xn+1
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into yn+1 yield

n 1 n n 0( β ( ) I )y f kx f x   

  n n 0( β(1 ( )) (I -β))f kx f x    (4)
It can be considered from Equation 4 that  yn+1 can alterna-
tively be expressed as yn+1=f2(g(xn)+) where g(xn)=kxn+(1-
f1(xn))  is  an  N-shape  nonlinear  function  and   = I0-  is  a
constant. As a result, the discrete-time chaotic neuron model
whose input-output mapping through an N-shape sigmoidal
function h(xn) can be described as

n 1 n 2 0 n 1 n( ) ( ,β,I , , , ( , ))y h x f k x f x    (5)

It is apparent in Equation 5 that the overall characteristics of
chaotic neurons significantly depend on a type of nonlinear
feedback function and system parameters.

A particular consideration on Equation 2 points that
the nonlinear feedback function f1(·) significantly sets dyna-
mical behaviors of both a single neuron and an overall ANN
structure. Consequently, several alternative functions have
been suggested over the past decade. Zhou and Chen (2000)
proposed the use of a hyperbolic tangent function in coupled
neurons  for  a  search  in  global  minima  of  the  energy  with
transient chaos. Xiu et al. (2004) proposed a chaotic neuron
with a combination of Gauss and sigmoidal functions for
multi-valued associative memory. Tanaka and Hiura (2005)
introduced a piecewise sine map for well-defined optimiza-
tion problems. Zhou et al. (2010) suggested a non-monotonic
Gaussian function with strong approximation ability due to
compact support and symmetry properties. Jung et al. (2011)
realized an approximated three-piecewise empirical equation
for  VLSI  implementations  of  ANNs.  Xiu  and  Liu  (2010)
proposed  symmetric  polynomial  and  smooth  hysteretic
functions for associative memories, respectively.

Although most existing chaotic neurons have success-
fully  been  realized  in  particular  applications,  nonlinear
functions employed are relatively complicated as a number
of system parameters are involved. The setting of appropriate
parameter values or additional parameter controller is conse-
quently required in order to sustain the desirable perform-
ances of ANNs. This rises to the question of whether there

are other chaotic neurons composed by simple nonlinear
feedback  function  and  small  number  of  parameters,  but
potentially offers rich dynamic behaviors, of the simple form

n 1 1 1 n 2 2 n n( ) ( ) ... ( )m mx f x f x f x       (6)

where  m  is  a  positive  integer  and  the  final  input-output
mapping described as

m
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where n is a positive integer, 1 and 2 are parameters neces-
sitated for setting the bifurcation regions in mathematical
functions. Note that the functions f1(·)  to  fm (·) may not be
identical as long as desirable dynamic behaviors are achieved.

2. Proposed  Robust  Composite  Trigonometric  Chaotic
Neuron Models

On  the  contrary  to  single  modal  chaotic  maps,  i.e.
logistics  map,  and  other  two  or  multi  modal  chaotic  maps
based on polynomial functions, which comprises several
mathematical terms, trigonometric chaotic neuron models, i.e.
sine and cosine maps, are found to be potential results in
terms of chaotic dynamics and a simple neuron structure in
which a single input excitation and two arbitrary parameters
are required. In fact, Maclaurin series reveal that both sine
and cosine offer relative complex functions in the form

3 5

sin( ) ...
3! 5!
x x

x x    (8)

2 4

cos( ) 1 ...
2! 4!
x x

x     (9)

Equations 8 and 9 indicate that complex chaotic behaviors
can be achieved if these functions are combined in the form
described in Equation 6.

In  order  to  investigate  the  complex  behaviors  of
chaotic maps, the bifurcation diagram is realized as a tool for
qualitative measure while the Lyapunov Exponent (LE) is
realized as another tool for quantitative measure. On the one
hand, the bifurcation diagram shows a period doubling that
accompanies  the  onset  of  chaos,  and  also  represents  the
sudden appearance of a qualitatively different solution for a
nonlinear system as some parameter is varied. On the other
hand, the LE characterizes the rate of separation of infinitesi-
mally close trajectories, and can be described as
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where xo is an initial separation of the two trajectories in
phase space. Typically, the cases where LE<0 and LE = 0
indicate that the orbit attracts to a stable fixed point or stable
periodic  orbit,  a  neutral  fixed  point,  respectively.  In  the
particular case where LE>0, the orbit is unstable and chaotic.

Figure 1.  Block diagram of existing chaotic neuron in Equation 2.
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Figure 2 shows the bifurcation diagram of the existing chaotic
neuron in Equation 2. It can be seen that the small region of
chaos  is  apparent;  indicating  that  the  chaotic  behaviors
cannot  be  sustained  over  parameter  spaces  and  are  also
vulnerable to parameter changes. Figure 3 shows the Bifurca-
tion diagrams of sine and cosine maps with single parameter
1; (a) xn+1 = sin(1xn), (b) xn+1 = cos(1xn), (c) xn+1 = sin(1xn)+
cos(1xn), and (d) xn+1 = sin(1xn)-cos(1xn). It can be seen from
Figure 3 that the chaotic behaviors cover a wider range than
that of Figure 2. However, a single parameter á1 may not be
sufficient for sustaining chaos over the region. This paper
therefore  proposes  the  use  of  composite  trigonometric
chaotic neuron as;

n 1 1 n 2 ncos( ) sin( )x x x    (11)
where 1 and 1 are parameters associated with the frequency
of sine and cosine functions. Figure 4 shows the correspond-
ing block diagram of the proposed chaotic neuron in Equa-
tion 11. Figure 5 show the plots of 2-D bifurcation structures
between 1 and 2 of the proposed chaotic neuron described
in Equation 11. This bifurcation structure is obtained from
LE  values,  i.e.  the  white  region  represents  non-chaotic
behaviors  while  the  blue  region  represents  the  chaotic
behaviors. It is apparent in Figure 5 that the proposed chaotic
neuron offers attractive features on dynamic behaviors for
applications where highly chaotic behaviors are required.

3. Cellular  Chaotic  Neuron  Networks  Using  Sinusoidal
Chaotic Neuron Models

The associative memory dynamics has demonstrated
that a CNN is a promising approach in information process-
ing such as memory recalling or pattern recognition (Chua
and Yang, 1998; Osana, 2012). Figure 6 shows a finite-size
2-D CNN structure in which neurons are arranged in M×N
matrix size. It is seen in Figure 6(a) that each neuron is identi-
fied by the position in the grid and communicates directly to
the neighborhoods through the r-neighborhood. In such
a topology, the dynamics of the ith neurons in the position
range [1, M×N] can be described as (Sudo et al., 2009)

i,n 1 i,n 1 i,n 1( )x f n y    (12)

Figure 2. Bifurcation  diagram  of  the  existing  chaotic  neuron  in
Equation 2.

Figure 3. Bifurcation diagrams of sine and cosine maps with single
parameter 1; (a)  xn+1 = sin(1xn), (b) xn+1 = cos(1xn),
(c) xn+1 = sin(1xn)+ cos(1xn), and (d) xn+1 = sin(1xn)-
cos(1xn).

Figure 4. Proposed composite trigonometric chaotic neuron model.
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n kn w x   (13)

i,n 1 1 n 2 n icos( ) sin( ) Iy x x     (14)

where xi,n is the output of the ith chaotic neuron, the function
f() realized in this paper has been designated as a hyperbolic
tangent function. The functions ni,n and yi,n are an internal
state variable of the feedback inputs from the constituent
neurons in the network and a refractoriness of the ith chaotic

neuron,  respectively.  N  is  the  number  of  neurons  in  the
network. k is the parameters of the feedback inputs. Ii is an
external output to the CNN. wij is the synaptic weight to the
ith constituent neuron from the jth constituent neuron. It should
be noted that a neuron has no self-synaptic connection, i.e.
wij = 0 for i = j. In this paper, the weights are determined by
the symmetric auto-associative matrix of n binary patterns
designated by

p p
i j

1

1
(2 1)(2 1)

n

ij
p

w x x
n 

   (15)

where n is the total number of stored memory patterns and
p is the order of stored binary patterns. As for demonstra-
tions,  Figure  7  illustrates  three  simple  binary  patterns
employed for demonstration CNN restoration performances;
each pattern comprises five binary pixels, corresponding to
the network constructed with 25 neurons. The parameters k,
1 and 2 in the simulations were 1, 10, -3, respectively. The
communication was achieved by 1-neighboring neurons.
The initial conditions of all chaotic neurons described in
Equation 10 were equally set at 0.5. Figure 8 shows the resto-
ration  of  the  binary  patterns  obtained  from  the  partially
stored patterns where the recall patterns were achieved at
20, 9 and 18 iterations. In addition, Figure 9 shows the resto-
ration of the binary patterns obtained from the noisy patterns
where the recalled patterns were was achieved at 6, 20, and
14 iterations. It is apparent that the CNN has successfully
restored all the memorized patterns. Furthermore, Table 1 also
exhibits the comparison of operation time of a discrete-time
Hopfield, a symmetric map (Tao et al., 2011) and proposed
chaotic neuron model, which each patterns are obtained by
injecting the different ratio of noise. It is indicated that the
average of successful recall iterations of the trigonometric
chaotic neuron model is lower than for another models and
20% of noise is the maximum of the recognition ability. The
processing time depends on computer performance. Accord-
ing to the Intel (R) Xenon (R) CPU E5-1603@2.8 GHz with
64-bit operating system, the processing time to recover the
original alphabet was approximately 3-5 seconds. It is really
fast process due to the chaotic maps operate in iteration rather
than other techniques where system are solve by differential
equation, which really takes time for execution. In terms of
limitation of this method, the proposed technique may not
suitable for a long phase or sentences. This is very common
feature similar to other method. The future work will focus on
the recognition of a word or phrase in order to apply for real
applications.

Figure 5. Bifurcation structure obtained from LE of the composite
xn+1=sin(1xn)+cos(2xn).

Figure 6. Finite-size 2-D CNN in which neurons are arranged in M
rows and N columns.

Figure 7. Three memorized binary patterns employed for demon-
stration CNN restoration performances.
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4. Conclusions

Since the nonlinear functions in most existing chaotic
neurons are relatively complicated and a number of system
parameters  involved,  the  setting  of  appropriate  parameters

Figure 8. The output of associative memory  showing the restora-
tion  of  the  memorized  binary  patterns  when  the  input
patterns are partially distorted.

Figure 9. Output of associative memory  showing the restoration of
the memorized binary patterns when the input binary
pattern are noisy.

Table 1. Comparison of success recall iterations.

Hopfield ANN Symmetric Map Trigonometric Map
[Tao et al. ]

“A” “T” “C” “A” “T” “C” “A” “T” “C”

10 32 30 34 25 22 24 10 10 15
15 37 33 39 27 23 27 12 16 21
20 42 39 45 33 27 30 20 25 26

Noise
(%)

or  additional  parameter  control  techniques  is  necessarily
required in order to sustain desirable performances of ANNs.
This paper has therefore presented a robust cellular associa-
tive memory for pattern recognitions using composite trigo-
nometric  chaotic  neuron  models.  Robust  chaotic  neurons
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were found through an exhaustive scan of positive Lyapunov
Exponent bifurcation structures, which indicate the quantita-
tive measure of chaoticity for a one-dimensional discrete-
time dynamical system. The proposed chaotic neuron model
is a composite of sine and cosine chaotic maps, which are
independent from the output activation function. Dynamics
behaviors are demonstrated through bifurcation diagrams
and LE-based bifurcation structures. An application to asso-
ciative  memories  of  binary  patterns  in  CNN  topology  is
demonstrated  using  a  signum  output  activation  function.
Examples of English alphabets are stored using symmetric
auto-associative  matrix  of  n-binary  patterns.  Simulation
results  have  demonstrated  that  the  CNN  can  quickly  and
effectively restore the distorted pattern to expected informa-
tion.
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