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Abstract

Successful design of a carbon dioxide (CO,) flooding in enhanced oil recovery projects mostly depends on accurate
determination of CO,-crude oil minimum miscibility pressure (MMP). Due to the high expensive and time-consuming of
experimental determination of MMP, developing a fast and robust method to predict MMP is necessary. In this study, a new
method based on e-insensitive smooth support vector regression (¢-SSVR) is introduced to predict MMP for both pure and
impure CO, gas injection cases. The proposed e-SSVR is developed using dataset of reservoir temperature, crude oil composition
and composition of injected CO,. To serve better understanding of the proposed, feed-forward neural network and radial basis
function network applied to denoted dataset. The results show that the suggested e-SSVR has acceptable reliability and
robustness in comparison with two other models. Thus, the proposed method can be considered as an alternative way to monitor
the MMP in miscible flooding process.

Keywords: CO, flooding, minimum miscibility pressure, e-insensitive smooth support vector regression, feed-forward neural

network, radial basis function network

1. Introduction

Miscible flooding is considered to be an effective
enhanced oil-recovery (EOR) method which is gaining
increasing popularity for applications in the upstream oil
industry. The most common fluid used for miscible
displacement is carbon dioxide (CO,) because of its lower
cost, high displacement efficiency, and the potential for
concomitant environmental benefits through its disposal in the
petroleum reservoir (Mungan, 1991; Wassmuthet et al., 2005;
Yuan et al., 2004). The most important parameter required for
evaluating and designing a miscible flood is the minimum
miscibility pressure (MMP), in which local displacement
efficiency from CO, is a function of the MMP. At this
pressure, the injected gas can develop miscibility dynamically
through a multi-contact process with the crude oil at reservoir
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temperature. If the displacement process is represented as a
one-dimensional dispersion-free flow (piston-like flow), at the
MMP, the displacement efficiency approaches 100% (Jaubert
et al., 2001; Nasrifar & Moshfeghian, 2004).

This paper presents a novel and robust model
namely e-insensitive smooth support vector regression (e-
SSVR) to estimate impure and pure CO,—o0il MMP. All of the
oil and gas properties and reservoir conditions are considered
to develop the model. The performance of the proposed model
is compared to those of other predictive model by means of
some statistical indices. To the best of our knowledge, a
predictive model based on e-SSVR for prediction of CO,-oil
MMP has not presented in the literature before.

The rest of the paper is organized as follows. Next
Section describes the problem. Proposed e-SSVR method is
explained in Section 3. Simulation results are provided in
Section 4 to demonstrate the effectiveness and potential of the
proposed e-SSVR for CO,-0il MMP prediction compared with
feed-forward neural network using the same observed data.
Finally, some conclusions are included in Section 3.
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2. Problem Definition

Accurate determination of MMP is one of the
crucial tasks to design and manage an efficient gas injection
EOR projects. Several experimental and theoretical methods
have been proposed in the literature. The primarily available
experimental procedures to measure MMP under reservoir
conditions are the slim tube displacement, rising-bubble
apparatus (RBA) and vanishing interfacial tension (VIT). Slim
tube displacement is regarded as the “petroleum industry
standard” to determine the MMP in which the miscibility
conditions are determined indirectly from oil recovery
(Ahmadi & Johns, 2008). This technique is strongly
dependent on the packed grain sizes because of difference in
the pore throat sizes and related pore invasion pressure owing
to capillarity. In the rising bubble apparatus, the MMP is
determined from the observations of changes in size, shape, or
color of the injected gas bubble in its rising process through a
thin transparent column of crude oil. The vanishing interfacial
tension technique is based on the interfacial tension
measurement between the reservoir crude oil and injected gas
at reservoir temperature and at varying pressures or
enrichment levels of gas phase. The pressure at which
interfacial tension approaches zero is defined as MMP.

Unfortunately, there is no a standard design, no
standard operating procedure, no standard set of criteria for
determining miscibility in slim tube (Elsharkawy et al., 1996).
Moreover, to avoid undesirable effects of fingering, transition
zone length and transverse compositional variations, it is
generally necessary to perform several slim tube displacement
tests with extremely low flow rates, long lengths and smaller
diameter tubing. Therefore this technique is generally time-
consuming and requires high computational efforts (Ayirala &
Rao, 2006). The RBA technique simulates only the vaporizing
process in the miscibility development process and disregards
the condensing process (Gu et al, 2013). Moreover, it has
some drawbacks including subjective interpretation of
miscibility, lack of any quantitative information and some
arbitrariness related to miscibility evaluation (Ayirala & Rao,
2007). Orr Jr. and Jessen (2007) showed that MMP
measurement obtained by VIT depends strongly on the
composition of the gas—oil mixture used.

Hence, development of an accurate approach for
determination of the natural gas—oil MMP is necessary. A
number of correlations have been reported as substitutes for
conventional experimental methods (Emera & Sarma, 2005;
Glass, 1985; Holm & Josendal, 1974; Klins, 1984; Lange,
1998; Shokir, 2007; Wang & Orr, 2000; Yellig & Metcalfe,
1980). However, the applicability of the correlation
techniques is extremely limited to a specific oil reservoir.
Correlation technique proposed by Chen ef al., (2013) has the
limitation of temperature, pressure and molecular weight of
the C,,. Zarenezhad (2016) proposed a correlation method
according to the modification of original Firoozabadi and Aziz
(1986). This method has the limitation of determination of the
optimum values of the parameters in which determine
according to the experimental data. For this reason, an
investigation for a more adaptable and reliable calculation of
MMP is necessary. In the recent years, computational
intelligence systems have proven to be alternative way for
system analysis and prediction because of their powerful

ability to reflect the system’s complexity and the high degree
of confidence and precision. Huang et al., (2003) developed a
neural network (NN) model to predict MMPs for both pure
and impure CO, MMP of oils. Dehghani et al, (2008)
proposed a hybrid neural genetic algorithm to predict CO,
MMP by considering the reservoir temperature, reservoir fluid
composition, and injected gas composition as input parameters
and the CO, MMP as desired parameter. Tatar et al, (2013)
developed an intelligent model for CO,-reservoir oil MMP
using radial basis function NN algorithm over a broad range
of reservoir temperature, oil and drive gas compositions.

The literature demonstrates that some articles have been
published in the favor of using various type of artificial neural
networks in CO, MMP modeling and forecasting as a function
of reservoir temperature and the compositions of oil and
injected gas (Chen et al., 2013; Alomair and Garrouch, 2015;
Hemmati-Sarapardeh et al., 2016; Mollaiy-Berneti, 2016). An
adaptive neuro-fuzzy inference system (ANFIS)-based
correlation has been developed by Kivi et al, (2013) to
estimate the MMP values. Although these methods are useful,
there are some inherent drawbacks often encountered in the
use of the back propagation (BP) algorithm with gradient-
descent approach as a commonly used training algorithm of
these methods. Firstly, the BP algorithms are prone to become
trapped in local optimum particularly for complex function
approximation problems. Second, the convergence speed of
the BP algorithm is very slow.

3. e-Insensitive Smooth Support Vector Regression

Support Vector Machine (SVM) with linear or
nonlinear kernels is one of the most supervised learning
algorithms for pattern classification as well as regression
(Smola & Schoélkopf, 2004; Vapnik, 1995). SVM maps the
data from the original space into a higher-dimensional space
through the kernel function and then estimates the optimal
separating hyperplane under the constraint of a maximal
margin. The typical nonlinear separating function will be
obtained by retransforming the separating hyperplane into the
original space of variables (Vapnik, 1995). For regression
problems, Vapnik introduced a e-insensitive loss function to
original SVM which sets an e-insensitive tube around the data.
This method is referred to as e-insensitive support vector
regression (e-SVR) (Smola & Scholkopf, 2004).

As an improved version of &-SVR, a smoothing
strategy for solving &-SVR, named e-insensitive smooth
support vector regression (e-SSVR), was proposed in
(Lee et al., 2005). By using &-SSVR formulation, it only
need to solve a set of linear equations iteratively instead of
solving a convex quadratic programming problem, as is the
case with a conventional &-SVR (Lee er al, 2005).
The procedure of the &-SSVR is described as follows.
Given a regression problem, consider the training dataset to be
S ={(X1,¥)re0 (X, Y )} > where m is the number of

observation. In regression problem, the objective is to find a
function f(x) that tolerates a small error in fitting the training
dataset. Based on the concept of SVM, f(x) is made as flat as
possible in fitting the training dataset. We start with the linear
form of f(x) which is expressed as f(x)=x"w+b. The problem
can be expressed as the following unconstrained minimization
problem:



S. M. Berneti & M. A. Varaki / Songklanakarin J. Sci. Technol. 40 (1), 53-59, 2018 55

min lw w+C1” ‘ﬁ‘ (6]
(w,b)eR"" D ¢

where (‘é‘g)i =max{{dw +b -y, |-¢},i=1..,m,

is the e-insensitive loss and C>0 is the regularization
parameter that weights the tradeoff between the flatness of
f(x) and the amount up to which deviations larger than ¢ are
tolerated. To deal with the e-insensitive loss function,
conventionally, above minimization problem is reformulated
as a convex quadratic minimization problem (Smola &
Scholkopf, 2004).

Lee et al., (2005) modified the problem slightly and
solved it directly as an unconstrained minimization problem.
They used the square of 2-norm of the e-insensitive loss with
weight C/2 instead of the 1-norm of the e-insensitive loss as in
Equation 1 and added the term b%2 in the objective function
leading to strong complexity unique global optimal solution.
These modifications yield the following unconstrained
minimization problem:

m

. 1 r . C 2 )
— — A. -y
(W‘rg}elkmz(w w +b )+2,Z::“ w b -y,
For all x eR and >0, we have

‘x‘z :(X—g)i-i-(—x—g)i, where x. is a plus function.
&

In practice, the following smooth p-function is usually used to
approximate x;:

p(x,a)=x+ l1og(1 +exp(—ax)) (3)
[04

where ¢ > ( is the smoothing parameter. Therefore, |, ‘2 can

be replaced by a very accurate smooth approximation given
by:

p.(x.a)=(p(x-¢,a) +(p(-x-¢&,a))’ “)

By replacing the square of the e-insensitive loss by pgz—

function, the smooth reformulation of Equation 2 is given by:

min %(w "w+b)+C1 p>(Aw+1b-y,a) )

(w,b)eR"!

where pf(AW+1b—y,a)i =pcz(A[.W+1b—y[. ,a),i=1,...m.
Since the objective function in this problem is strongly convex
and infinitely differentiable, problem has a unique solution
that can be solved efficiently using a fast Newton—Armijo
method. The solution of Equation 2 can be attained by solving
Equation 5 with o approaching infinity (Lee et al., 2005).

For the function with nonlinear form, the duality
theorem in convex minimization problem (Mangasarian,
2000; Musicant & Feinberg, 2004) and the kernel technique
(Vapnik, 1995) are applied. The observation y eR"™ is
approximated by y ~ K (A, AT Ju +1b , where K (A, A”T) is
a nonlinear kernel with K (A, AT )U =K (A, ,Af ). Using the
same loss criterion with the linear case, the regression
parameter y € R™ and the bias b e R are determined as
follows:

2

. 1 m
min E(uTu+b2)+92\K(A,,AT)u+b—y,
i=l

(u,b)eR™! D 4

()

The nonlinear form of e-SSVR is obtained by repeating the
same arguments in going from Equation 2 to Equation 5 as
follows:

1
min f(uTu+b2)+£1Tpgz(K(A,AT)u+1b—y,a) ™
(U,b)ERm“ 2 2

where p2(K(A, A u+1b-y,0), =p (KA, A u+lb-y,,a)i=l,...m-
It should be mentioned that this problem still retains the strong
convexity and differentiability properties for any arbitrary
kernel. By applying the Newton-Armijo Algorithm method,
the solution of Equation 7 leads to the nonlinear regression
function as follows:

F®) = uK @A, x)+b ®)

4. Results and Discussion

4.1 Data treatment

In this study reservoir temperature, molecular
weight of the Cs, fraction in crude oil, composition of injected
gas (Cy, N, C,-C4, H,S and CO,) and the ratio of volatile (C,
and N,) to intermediate (C,-Cy4, H,S and CO,) components in
crude oil were taken as the input parameters and correspond
CO,-0il MMP was dedicated to be output. These inputs are
selected owing to their dependency with CO,-oil MMP which
has been proved in several studies (Emera & Sarma, 2005;
Nasrifar & Moshfeghian, 2004; Shokir, 2007; Wang & Orr,
2000; Yuan et al, 2004). Data sets were gathered from the
published literatures. Details of these parameters are given in
Table 1.

Table 1. Range of input/output data used in model development.
Parameter Minimum Maximum Unit
Temperature (K) 32.20 118.30 °C
CO, 40 100 %
H,S 0.00 75 %
N, 0.00 8.08 %
C 0.00 20 %
C-Cy 0.00 20 %
MW Cs. 171.1 240.70 g/mol
Volatile/intermediate 0.00 9.16 -
MMP 6.53 28.17 MPa

Before starting modeling process, to avoid saturation problem
and consequently low rate training, normalization of data is
necessary. In this study, all source data were normalized to the

range [0.1, 09] by the following equation:

X Normalized = 08 X [Mj + 0 1 (9)
X max —-X min

where X, is the variable of the database, X, = and X .

are the maximum and minimum values in the database,
respectively. In order to avoid overfitting, 70% of collected
dataset selected for training the model and remaining 30%
considered for testing to validate the accuracy of the model.
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Train and test sets must be different and were selected
randomly from the original data set.

4.2 Evaluation methods

Three statistical parameters that can reflect the
relationships  between the predicted values and the
experimental values were used as evaluation indexes, i.e.
mean absolute error (MAE), root mean square error (RMSE)
and coefficient of determination (R?). These statistical
parameters show an average behavior of error in the model
performance and are overall statistics that do not show the
error distribution over results. The mathematical expressions
for these measures are given as follows:

1Y, (10)
MAE =L Sy ey

i=1

RMSE = i’ pre _ - expy2 (11)
Z(J’i Vi )

N
UARSTS 12)

R?=1- N
D=y
il

where N is the number of the training or validation samples,
;e

1
average of experimental values, respectively. The higher value
of R? and a lower value of MAE and RMSE mean a better
performance of the model.

, yl.p " and )76Xp are the experimental, predicted, and

4.3 Simulations and results

Proposed e-SSVR was designed for different values
of C, g and ¢, and the ones that attained relatively good
performance were selected. The weight parameter C in
support vector learning took values from {10, 100, 1000,
10000}; g is a gamma parameter in kernel function which
took values in the range [0.1, 0.7] with step one-tenth; and the
insensitivity value € took values from {0.01, 0.05, 0.1}. All
the experiments were run on a personal computer with
Intel(R) Core(TM)2 Duo CPU (2.20 GHz) processor, 3.00 GB
memory, and Windows 7.0 operation system. The results for
proposed e-SSVR trained with different values of C, g and €
are shown in Figures 1-3. It can be deduced that the best
performance is accompanied by C=10,000, g=0.7 and &=0.01.

Epsilon=0.01

25 —e—C=10
—8— C=100
—&— C=1000
—¥— C=10000

RMSE

0.5

00 0‘1 0'2 0'3 0‘4 0‘5 0‘(» 0'7 0.8
¢ (Gamma)

Sensitivity of root mean square error (RMSE) produced by

&-SSVR for €=0.01 versus different values of C, g in CO,-

oil MMP prediction.

Figure 1.
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3.51 —&—C=1000
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Figure 2. Sensitivity of root mean square error (RMSE) produced by
&-SSVR for €=0.01 versus different values of C, g in CO,-
oil MMP prediction.
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Figure 3. Sensitivity of root mean square error (RMSE) produced by

&-SSVR for €=0.01 versus different values of C, g in CO,-
oil MMP prediction.

The comparison between experimental CO,-oil
MMP and proposed &-SSVR method predicted values is
shown in Figure 4 for training and testing phases. As shown in
this figure, the relationship between input parameters
(reservoir temperature and the compositions of oil and
injected gas) and CO,-0il MMP is nonlinear. Also the
proposed model and other FFNN and RBF methods model the
relationship between input-output data based on an average
behavior of error in the model performance and do not
consider the error distribution over results. For this reason,
some errors between experimental and predicted data are very
small and other’s errors are relative large. Figure 5 shows a
scatter plot of experimental values against predicted values. It
can be seen that the proposed e-SSVR predicts closely follow
the experimental values.

@)

Experimental
[| —@— Predicted

MMP (MPa)

0 10 20 30 40 50 60 70
Sample

Figure 4. Comparison between experimental values of CO,-0il MMP
and &-SSVR predicted values (a) train phase, (b) test
phase.
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To have a true evaluation of the potential of pro-
posed e-SSVR method, feed-forward neural network (FFNN)
(Huang et al.,, 2003) and radial basis function (RBF) network
(Tatar et al.,, 2013) as two methods applied in the literature
were also constructed using the same input parameters.

A three-layer FFNN was designed using Leven-
berg-Marquardt training algorithm. Different ANN archi-
tectures and transfer functions were tried by a trial-and-error.
It was found the 8-10-1 (8 input neurons, 10 hidden neurons
and 1 output neuron) architecture was the optimum model in
terms of mean squared error whereas log-sigmoid and linear
transfer functions in hidden and output neurons, respectively,
gave the best results. The value of learning rate 0.01 and
momentum constant 0.9 were used for the Levenberg-
Marquardt algorithm (default in MATLAB software). A
training performance goal (mean square error) was set to 0.0.

(b)

25} R?=0.9321 1

Model Output (MPa)
&
o
.

0 . . L L L
0 5 10 15 20 25 30

Experimental MMP (MPa)

Scatter plot of obtained results by proposed model in comparison with experimental values (a) train phase, (b) test phase.
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Comparison between experimental values of CO,-0oil MMP and predicted values of FFNN and RBF network.
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Scatter plot of obtained results by FFNN and RBF models in comparison with experimental values.

Using MATLAB and its powerful neural network toolbox, the
RBF model was developed with maximum number of 20
neurons.

In Figure 6 experimental values of CO,-0il MMP
and the CO,-0il MMP predicted by FFNN and RBF models
were plotted in testing phase. As it is seen, due to the
limitation of low velocity of convergence and easily getting
into local minimum of BP training algorithm, these methods
has lower performance in comparison with e-SSVR. Figure 7
shows a scatter plot of experimental values against predicted
values of those models for testing set. For more statistical
analysis, the error distribution of different approaches for
testing phase is depicted in Figure 8. As seen, proposed
method has a lowest mean and standard deviation error
compared to two other methods. Table 2 provides a com-
parison analysis of the performance obtained by the proposed
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Figure 8. Error distribution of (a) e-SSVR (b) FFNN model (¢c) RBF

model.
Table 2. Statistical results of proposed model, FFNN and RBF
models.
Model MAE RMSE R’
FFNN model [20] 1.1338 1.6245 0.9056
RBF model [22] 1.2792 1.8936 0.8718
proposed model 0.9326 1.3783 0.9321

&-SSVR with the respective performances of FFNN and RBF
methods. These results imply that the prediction performance
of the proposed e-SSVR is better than the two other models,
where most points have the best agreement with experimental
data and, both values of MAE and RMSE are smaller and
coefficient of determination is also closer to unity.

5. Conclusions

Considering the importance of MMP in the
screening of potential reservoirs for miscible gas injection
projects, and high expensive and time-consuming of ex-

perimental determination of MMP, an attempt was made in
this study to investigate the application of e-insensitive smooth

support vector regression for prediction of CO,-0il MMP. The

following conclusions are drawn based on the simulation
results:

1. The proposed e SSVR is capable of predicting CO,-

oil MMP with dataset of reservoir temperature,
molecular weight of the Cs, fraction in crude oil,

composition of injected gas (C;, N,, C,-C4, H,S and

CO,) and the ratio of volatile (C; and N,) to inter-
mediate (C,-C4, H,S and CO,) components in crude

oil.
2. The prediction performance efficiency of the

proposed method has been verified by comparing
with feed-forward neural network and radial basis

function network which employed in the literature.

3. Since dataset used in this study included pure and
impure CO, streams, the proposed method is valid
for both pure and impure CO, injection cases.

4. The proposed e-SSVR can be considered as an alter-

native method of experimental techniques due to its
inexpensiveness, time-saving, high adaptability and

accuracy.
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