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Abstract 
 
Successful design of a carbon dioxide (CO2) flooding in enhanced oil recovery projects mostly depends on accurate 

determination of CO2-crude oil minimum miscibility pressure (MMP). Due to the high expensive and time-consuming of 
experimental determination of MMP, developing a fast and robust method to predict MMP is necessary. In this study, a new 
method based on ε-insensitive smooth support vector regression (ε-SSVR) is introduced to predict MMP for both pure and 
impure CO2 gas injection cases. The proposed ε-SSVR is developed using dataset of reservoir temperature, crude oil composition 
and composition of injected CO2. To serve better understanding of the proposed, feed-forward neural network and radial basis 
function network applied to denoted dataset. The results show that the suggested ε-SSVR has acceptable reliability and 
robustness in comparison with two other models. Thus, the proposed method can be considered as an alternative way to monitor 
the MMP in miscible flooding process. 

 
Keywords: CO2 flooding, minimum miscibility pressure, ε-insensitive smooth support vector regression, feed-forward neural   
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1. Introduction 

 
Miscible flooding is considered to be an effective 

enhanced oil-recovery (EOR) method which is gaining 
increasing popularity for applications in the upstream oil 
industry. The most common fluid used for miscible 
displacement is carbon dioxide (CO2) because of its lower 
cost, high displacement efficiency, and the potential for 
concomitant environmental benefits through its disposal in the 
petroleum reservoir (Mungan, 1991; Wassmuthet et al., 2005; 
Yuan et al., 2004). The most important parameter required for 
evaluating and designing a miscible flood is the minimum 
miscibility pressure (MMP), in which local displacement 
efficiency from CO2 is a function of the MMP. At this 
pressure, the injected gas can develop miscibility dynamically 
through a multi-contact process with the crude oil at reservoir

 
temperature. If the displacement process is represented as a 
one-dimensional dispersion-free flow (piston-like flow), at the 
MMP, the displacement efficiency approaches 100% (Jaubert 
et al., 2001; Nasrifar & Moshfeghian, 2004). 
 This paper presents a novel and robust model 
namely ε-insensitive smooth support vector regression (ε-
SSVR) to estimate impure and pure CO2–oil MMP. All of the 
oil and gas properties and reservoir conditions are considered 
to develop the model. The performance of the proposed model 
is compared to those of other predictive model by means of 
some statistical indices. To the best of our knowledge, a 
predictive model based on ε-SSVR for prediction of CO2-oil 
MMP has not presented in the literature before. 

The rest of the paper is organized as follows. Next 
Section describes the problem. Proposed ε-SSVR method is 
explained in Section 3. Simulation results are provided in 
Section 4 to demonstrate the effectiveness and potential of the 
proposed ε-SSVR for CO2-oil MMP prediction compared with 
feed-forward neural network using the same observed data. 
Finally, some conclusions are included in Section 5.
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2. Problem Definition 
 

Accurate determination of MMP is one of the 
crucial tasks to design and manage an efficient gas injection 
EOR projects. Several experimental and theoretical methods 
have been proposed in the literature. The primarily available 
experimental procedures to measure MMP under reservoir 
conditions are the slim tube displacement, rising-bubble 
apparatus (RBA) and vanishing interfacial tension (VIT). Slim 
tube displacement is regarded as the “petroleum industry 
standard” to determine the MMP in which the miscibility 
conditions are determined indirectly from oil recovery 
(Ahmadi & Johns, 2008). This technique is strongly 
dependent on the packed grain sizes because of difference in 
the pore throat sizes and related pore invasion pressure owing 
to capillarity. In the rising bubble apparatus, the MMP is 
determined from the observations of changes in size, shape, or 
color of the injected gas bubble in its rising process through a 
thin transparent column of crude oil. The vanishing interfacial 
tension technique is based on the interfacial tension 
measurement between the reservoir crude oil and injected gas 
at reservoir temperature and at varying pressures or 
enrichment levels of gas phase. The pressure at which 
interfacial tension approaches zero is defined as MMP. 

Unfortunately, there is no a standard design, no 
standard operating procedure, no standard set of criteria for 
determining miscibility in slim tube (Elsharkawy et al., 1996). 
Moreover, to avoid undesirable effects of fingering, transition 
zone length and transverse compositional variations, it is 
generally necessary to perform several slim tube displacement 
tests with extremely low flow rates, long lengths and smaller 
diameter tubing. Therefore this technique is generally time-
consuming and requires high computational efforts (Ayirala & 
Rao, 2006). The RBA technique simulates only the vaporizing 
process in the miscibility development process and disregards 
the condensing process (Gu et al., 2013). Moreover, it has 
some drawbacks including subjective interpretation of 
miscibility, lack of any quantitative information and some 
arbitrariness related to miscibility evaluation (Ayirala & Rao, 
2007). Orr Jr. and Jessen (2007) showed that MMP 
measurement obtained by VIT depends strongly on the 
composition of the gas–oil mixture used. 

Hence, development of an accurate approach for 
determination of the natural gas–oil MMP is necessary. A 
number of correlations have been reported as substitutes for 
conventional experimental methods (Emera & Sarma, 2005; 
Glass, 1985; Holm & Josendal, 1974; Klins, 1984; Lange, 
1998; Shokir, 2007; Wang & Orr, 2000; Yellig & Metcalfe, 
1980). However, the applicability of the correlation 
techniques is extremely limited to a specific oil reservoir. 
Correlation technique proposed by Chen et al., (2013) has the 
limitation of temperature, pressure and molecular weight of 
the C7+. Zarenezhad (2016) proposed a correlation method 
according to the modification of original Firoozabadi and Aziz 
(1986). This method has the limitation of determination of the 
optimum values of the parameters in which determine 
according to the experimental data. For this reason, an 
investigation for a more adaptable and reliable calculation of 
MMP is necessary. In the recent years, computational 
intelligence systems have proven to be alternative way for 
system analysis and prediction because of their powerful

ability to reflect the system’s complexity and the high degree 
of confidence and precision. Huang et al., (2003) developed a 
neural network (NN) model to predict MMPs for both pure 
and impure CO2 MMP of oils. Dehghani et al., (2008) 
proposed a hybrid neural genetic algorithm to predict CO2 
MMP by considering the reservoir temperature, reservoir fluid 
composition, and injected gas composition as input parameters 
and the CO2 MMP as desired parameter. Tatar et al., (2013) 
developed an intelligent model for CO2-reservoir oil MMP 
using radial basis function NN algorithm over a broad range 
of reservoir temperature, oil and drive gas compositions. 

The literature demonstrates that some articles have been 
published in the favor of using various type of artificial neural 
networks in CO2 MMP modeling and forecasting as a function 
of reservoir temperature and the compositions of oil and 
injected gas (Chen et al., 2013; Alomair and Garrouch, 2015; 
Hemmati-Sarapardeh et al., 2016; Mollaiy-Berneti, 2016). An 
adaptive neuro-fuzzy inference system (ANFIS)–based 
correlation has been developed by Kivi et al., (2013) to 
estimate the MMP values. Although these methods are useful, 
there are some inherent drawbacks often encountered in the 
use of the back propagation (BP) algorithm with gradient-
descent approach as a commonly used training algorithm of 
these methods. Firstly, the BP algorithms are prone to become 
trapped in local optimum particularly for complex function 
approximation problems. Second, the convergence speed of 
the BP algorithm is very slow. 

 
3. ε-Insensitive Smooth Support Vector Regression 
 

Support Vector Machine (SVM) with linear or 
nonlinear kernels is one of the most supervised learning 
algorithms for pattern classification as well as regression 
(Smola & Schölkopf, 2004; Vapnik, 1995). SVM maps the 
data from the original space into a higher-dimensional space 
through the kernel function and then estimates the optimal 
separating hyperplane under the constraint of a maximal 
margin. The typical nonlinear separating function will be 
obtained by retransforming the separating hyperplane into the 
original space of variables (Vapnik, 1995). For regression 
problems, Vapnik introduced a ε-insensitive loss function to 
original SVM which sets an ε-insensitive tube around the data. 
This method is referred to as ε-insensitive support vector 
regression (ε-SVR) (Smola & Schölkopf, 2004). 

 As an improved version of ε-SVR, a smoothing 
strategy for solving ε-SVR, named ε-insensitive smooth 
support vector regression (ε-SSVR), was proposed in          
(Lee et al., 2005). By using ε-SSVR formulation, it only    
need to solve a set of linear equations iteratively instead of 
solving a convex quadratic programming problem, as is the 
case with a conventional ε-SVR (Lee et al., 2005).               
The procedure of the ε-SSVR is described as follows.      
Given a regression problem, consider the training dataset to be  

1 1{(x , y ), ..., (x , y )}m mS  , where m is the number of 
observation. In regression problem, the objective is to find a 
function f(x) that tolerates a small error in fitting the training 
dataset. Based on the concept of SVM, f(x) is made as flat as 
possible in fitting the training dataset. We start with the linear 
form of f(x) which is expressed as f(x)=xTw+b. The problem 
can be expressed as the following unconstrained minimization 
problem: 
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1(w,b) R

1min 1
2n

T Tw w C





     (1) 

where ( ) max{ },i 1,...,m,i i iA w b y


        

is the ε-insensitive loss and C>0 is the regularization 
parameter that weights the tradeoff between the flatness of 
f(x) and the amount up to which deviations larger than ε are 
tolerated. To deal with the ε-insensitive loss function, 
conventionally, above minimization problem is reformulated 
as a convex quadratic minimization problem (Smola & 
Schölkopf, 2004).  

Lee et al., (2005) modified the problem slightly and 
solved it directly as an unconstrained minimization problem. 
They used the square of 2-norm of the ε-insensitive loss with 
weight C/2 instead of the 1-norm of the ε-insensitive loss as in 
Equation 1 and added the term b2/2 in the objective function 
leading to strong complexity unique global optimal solution. 
These modifications yield the following unconstrained 
minimization problem: 

1

22

(w,b) R 1

1min ( )
2 2n

m
T

i i
i

Cw w b A w b y
 

                   (2) 

 
For all x   and 0  , we have 

2 2 2(x ) ( x )x


       , where x+ is a plus function.         

In practice, the following smooth p-function is usually used to 
approximate x+: 

1(x, ) x log(1 exp( x))p  


                     (3) 

 
where 0   is the smoothing parameter. Therefore, 2x


 can 

be replaced by a very accurate smooth approximation given 
by:  

2 2 2(x, ) ( (x , )) ( ( x , ))p p p                             (4) 
 
By replacing the square of the ε-insensitive loss by 2p -
function, the smooth reformulation of Equation 2 is given by: 

1

2 2

(w,b) R

1min ( ) 1 (Aw 1b y, )
2n

T Tw w b C p 


                    (5) 

 
where 2 2(Aw 1b y, ) (A w 1b y , ), i 1,...,mi i ip p        . 
Since the objective function in this problem is strongly convex 
and infinitely differentiable, problem has a unique solution 
that can be solved efficiently using a fast Newton–Armijo 
method. The solution of Equation 2 can be attained by solving 
Equation 5 with α approaching infinity (Lee et al., 2005). 

For the function with nonlinear form, the duality 
theorem in convex minimization problem (Mangasarian, 
2000; Musicant & Feinberg, 2004) and the kernel technique 
(Vapnik, 1995) are applied. The observation my   is 
approximated by (A,A ) 1Ty K u b  , where (A, A )TK  is 
a nonlinear kernel with (A, A ) (A , A )T T

ij i jK K . Using the 

same loss criterion with the linear case, the regression 
parameter mu   and the bias b   are determined as 
follows: 
 
 

1

2
2

(u,b) R 1

1min (u u ) (A ,A ) u b y
2 2m

m
T T
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i

Cb K


 
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The nonlinear form of ε-SSVR is obtained by repeating the 
same arguments in going from Equation 2 to Equation 5 as 
follows:  

1

2 2

(u,b) R

1min (u u ) 1 (K(A, A ) u 1b y, )
2 2m

T T TCb p 


               (7) 

 

where 2 2(K(A,A )u 1b y, ) (K(A ,A )u 1b y , ),i 1,...,mT T
i i ip p        . 

It should be mentioned that this problem still retains the strong 
convexity and differentiability properties for any arbitrary 
kernel. By applying the Newton-Armijo Algorithm method, 
the solution of Equation 7 leads to the nonlinear regression 
function as follows:  

1
(x) (A , x) b

m

i i
i

f u K


                    (8) 

 
4. Results and Discussion 
 
4.1 Data treatment 
 

In this study reservoir temperature, molecular 
weight of the C5+ fraction in crude oil, composition of injected 
gas (C1, N2, C2-C4, H2S and CO2) and the ratio of volatile (C1 
and N2) to intermediate (C2-C4, H2S and CO2) components in 
crude oil were taken as the input parameters and correspond 
CO2-oil MMP was dedicated to be output. These inputs are 
selected owing to their dependency with CO2-oil MMP which 
has been proved in several studies (Emera & Sarma, 2005; 
Nasrifar & Moshfeghian, 2004; Shokir, 2007; Wang & Orr, 
2000; Yuan et al., 2004). Data sets were gathered from the 
published literatures. Details of these parameters are given in 
Table 1. 

 
Table 1. Range of input/output data used in model development. 
 

 

Parameter 
 

Minimum Maximum Unit 
 

Temperature (K) 
 

32.20 
 

118.30 
 

oC 
CO2 40 100 % 
H2S 0.00 75 % 
N2 0.00 8.08 % 
C1 0.00 20 % 
C2-C4 0.00 20 % 
MW C5+ 171.1 240.70 g/mol 
Volatile/intermediate 0.00 9.16 _- 
MMP 
 

6.53 28.17 MPa 

 
Before starting modeling process, to avoid saturation problem 
and consequently low rate training, normalization of data is 
necessary. In this study, all source data were normalized to the 
range [0.1, 0.9] by the following equation: 

0.8 0.1i min
Normalized

max min

x xx
x x

 
    

                 (9) 

where ix  is the variable of the database, maxx  and minx  
are the maximum and minimum values in the database, 
respectively. In order to avoid overfitting, 70% of collected 
dataset selected for training the model and remaining 30% 
considered for testing to validate the accuracy of the model.
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Train and test sets must be different and were selected 
randomly from the original data set. 
 
4.2 Evaluation methods 
 

Three statistical parameters that can reflect the 
relationships between the predicted values and the 
experimental values were used as evaluation indexes, i.e. 
mean absolute error (MAE), root mean square error (RMSE) 
and coefficient of determination (R2). These statistical 
parameters show an average behavior of error in the model 
performance and are overall statistics that do not show the 
error distribution over results. The mathematical expressions 
for these measures are given as follows: 

exp
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1 N
pre
i i

i

MAE y y
N 
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i i
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(12) 
 
 

 
where N is the number of the training or validation samples, 

exp
iy , pre

iy and expy  are the experimental, predicted, and 
average of experimental values, respectively. The higher value 
of R2 and a lower value of MAE and RMSE mean a better 
performance of the model. 
 
4.3 Simulations and results 
 

Proposed ε-SSVR was designed for different values 
of C, g and ε, and the ones that attained relatively good 
performance were selected. The weight parameter C in 
support vector learning took values from {10, 100, 1000, 
10000}; g is a gamma parameter in kernel function which 
took values in the range [0.1, 0.7] with step one-tenth; and the 
insensitivity value ε took values from {0.01, 0.05, 0.1}. All 
the experiments were run on a personal computer with 
Intel(R) Core(TM)2 Duo CPU (2.20 GHz) processor, 3.00 GB 
memory, and Windows 7.0 operation system. The results for 
proposed ε-SSVR trained with different values of C, g and ε 
are shown in Figures 1-3. It can be deduced that the best 
performance is accompanied by C=10,000, g=0.7 and ε=0.01. 
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Figure 1. Sensitivity of root mean square error (RMSE) produced by 

ε-SSVR for ε=0.01 versus different values of C, g in CO2-
oil MMP prediction. 
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Figure 2. Sensitivity of root mean square error (RMSE) produced by 

ε-SSVR for ε=0.01 versus different values of C, g in CO2-
oil MMP prediction. 
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Figure 3. Sensitivity of root mean square error (RMSE) produced by 

ε-SSVR for ε=0.01 versus different values of C, g in CO2-
oil MMP prediction. 

 
The comparison between experimental CO2-oil 

MMP and proposed ε-SSVR method predicted values is 
shown in Figure 4 for training and testing phases. As shown in 
this figure, the relationship between input parameters 
(reservoir temperature and the compositions of oil and 
injected gas) and CO2-oil MMP is nonlinear. Also the 
proposed model and other FFNN and RBF methods model the 
relationship between input-output data based on an average 
behavior of error in the model performance and do not 
consider the error distribution over results. For this reason, 
some errors between experimental and predicted data are very 
small and other’s errors are relative large. Figure 5 shows a 
scatter plot of experimental values against predicted values. It 
can be seen that the proposed ε-SSVR predicts closely follow 
the experimental values. 
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Figure 4. Comparison between experimental values of CO2-oil MMP 

and ε-SSVR predicted values (a) train phase, (b) test 
phase. 
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Figure 5. Scatter plot of obtained results by proposed model in comparison with experimental values (a) train phase, (b) test phase. 
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Figure 6. Comparison between experimental values of CO2-oil MMP and predicted values of FFNN and RBF network. 
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Figure 7. Scatter plot of obtained results by FFNN and RBF models in comparison with experimental values. 

 
To have a true evaluation of the potential of pro-

posed ε-SSVR method, feed-forward neural network (FFNN) 
(Huang et al., 2003) and radial basis function (RBF) network 
(Tatar et al.,, 2013) as two methods applied in the literature 
were also constructed using the same input parameters. 

A three-layer FFNN was designed using Leven- 
berg–Marquardt training algorithm. Different ANN archi-
tectures and transfer functions were tried by a trial-and-error. 
It was found the 8-10-1 (8 input neurons, 10 hidden neurons 
and 1 output neuron) architecture was the optimum model in 
terms of mean squared error whereas log-sigmoid and linear 
transfer functions in hidden and output neurons, respectively, 
gave the best results. The value of learning rate 0.01 and 
momentum constant 0.9 were used for the Levenberg–
Marquardt algorithm (default in MATLAB software). A 
training performance goal (mean square error) was set to 0.0. 

Using MATLAB and its powerful neural network toolbox, the 
RBF model was developed with maximum number of 20 
neurons. 

In Figure 6 experimental values of CO2-oil MMP 
and the CO2-oil MMP predicted by FFNN and RBF models 
were plotted in testing phase. As it is seen, due to the 
limitation of low velocity of convergence and easily getting 
into local minimum of BP training algorithm, these methods 
has lower performance in comparison with ε-SSVR. Figure 7 
shows a scatter plot of experimental values against predicted 
values of those models for testing set. For more statistical 
analysis, the error distribution of different approaches for 
testing phase is depicted in Figure 8. As seen, proposed 
method has a lowest mean and standard deviation error 
compared to two other methods. Table 2 provides a com-
parison analysis of the performance obtained by the proposed  
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Figure 8. Error distribution of (a) ε-SSVR (b) FFNN model (c) RBF 

model.  
 
Table 2. Statistical results of proposed model, FFNN and RBF 

models. 
 

 

Model 
 

MAE 
 

RMSE 
 

R2 

 

FFNN model [20]
 

 

1.1338
 

 

1.6245
 

 

0.9056
 

RBF model [22]
 

1.2792 1.8936 0.8718 

proposed model 0.9326 1.3783 0.9321 

 
ε-SSVR with the respective performances of FFNN and RBF 
methods. These results imply that the prediction performance 
of the proposed ε-SSVR is better than the two other models, 
where most points have the best agreement with experimental 
data and, both values of MAE and RMSE are smaller and 
coefficient of determination is also closer to unity. 

 
5. Conclusions 
 

Considering the importance of MMP in the 
screening of potential reservoirs for miscible gas injection 
projects, and high expensive and time-consuming of ex-
perimental determination of MMP, an attempt was made in 
this study to investigate the application of ε-insensitive smooth 
support vector regression for prediction of CO2–oil MMP. The 
following conclusions are drawn based on the simulation 
results: 

 
1. The proposed ε-SSVR is capable of predicting CO2–

oil MMP with dataset of reservoir temperature, 
molecular weight of the C5+ fraction in crude oil, 
composition of injected gas (C1, N2, C2-C4, H2S and 
CO2) and the ratio of volatile (C1 and N2) to inter-
mediate (C2-C4, H2S and CO2) components in crude 
oil. 

2. The prediction performance efficiency of the 
proposed method has been verified by comparing 
with feed-forward neural network and radial basis 
function network which employed in the literature. 

3. Since dataset used in this study included pure and 
impure CO2 streams, the proposed method is valid 
for both pure and impure CO2 injection cases. 

4. The proposed ε-SSVR can be considered as an alter-
native method of experimental techniques due to its 
inexpensiveness, time-saving, high adaptability and 
accuracy. 
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