

Original Article

On R-left cancellative semigroups

Chaiwat Namnak, Ekkachai Laysirikul*, and Piyaporn Tantong

*Department of Mathematics, Faculty of Science,
Naresuan University, Mueang, Phitsanulok, 65000 Thailand*

Received: 17 March 2016; Revised: 17 September 2016; Accepted: 27 October 2016

Abstract

Suppose R is a Green's relation on a semigroup S and let $RLC(S) = \{a \in S : \forall x, y \in S, ax = ay \Rightarrow x R y\}$. It is obvious that $RLC(S)$ is a subsemigroup of S if it is nonempty. The purpose of this paper is to study some properties of $RLC(S)$.

Keywords: left cancellative, Green's relations

1. Introduction

In 1951, Green defined the equivalence relation R on any semigroup S by the rule that, for $a, b \in S$, $a R b$ if and only if a and b generate the same principal right ideal, that is, $aS^l = bS^l$. In this case, we say that a and b are R equivalent, and write $(a, b) \in R$ or. $a R b$. In addition, R is a left congruence (that is, $a R b$ implies $ca R cb$ for all $c \in S$) (Howie, 1995). An element a of a semigroup s is called an R -left cancellative element if for every $x, y \in S$, $ax = ay$ implies $x R y$ and S is called an R -left cancellative semigroup if all elements of S are R -left cancellative. Then R -left cancellative is a generalization of left cancellative. Notice that every right simple semigroup is trivially an R -left cancellative semigroup since it has only one R -class. Hence every group is also an R -left cancellative semigroup. The notion of R -left cancellative for semigroups was introduced by Golchin and Mchammadzadeh (2007). Shyr (1976) studied some properties of a left cancellative subsemigroup of a semigroup and generalized some results on left cancellative semigroups. Let $RLC(S)$ be the set of all R -left cancellative elements of S , that is,

$$RLC(S) = \{a \in S : \forall x, y \in S, ax = ay \Rightarrow x R y\}.$$

The aim of this paper is to discuss some properties of $RLC(S)$ using some of the results obtained by Shyr (1976). Before going further, we begin with examples which illustrate with some semigroups S defined by its Cayley tables, that $RLC(S)$ can be several types of subsets of S .

Example 1. Let $S = \{a, b, c, d\}$ be a semigroup with the multiplication defined by:

.	a	b	c	d
a	a	b	c	c
b	b	c	a	a
c	c	a	b	b
d	c	a	b	b

It easy to verify that

$$aS^l = bS^l = cS^l = \{a, b, c\}, dS^l = S \text{ and } RLC(S) = \emptyset.$$

Example 2. Let $S = \{a, b, c, d\}$ be a semigroup with the multiplication defined by:

.	a	b	c	d
a	a	b	a	b
b	b	a	b	a
c	a	b	c	d
d	b	a	d	c

*Corresponding author

Email address: ekkachail@nu.ac.th

Then $aS^1 = bS^1 = \{a, b\}$, $cS^1 = dS^1 = S$ and $RLC(S) = \{c, d\}$ is a proper subset of S .

Example 3. Let $BL(X)$ be the semigroup of all one-to-one mappings $\alpha: X \rightarrow X$ with the property that $X \setminus X\alpha$ is infinite where X is a countably infinite set (Baer and Levi, 1932). Also, authors showed that $BL(X)$ is a right simple semigroup which is not a group and hence it is an R-left cancellative semigroup. But $BL(X)$ is not left cancellative. The proof is as follows: let X be a countably infinite set and let A be a subset of X such that

$$|X| = |X \setminus A| = |A|.$$

Then we write

$$A = \{a_n : n \in \mathbb{N}\} \\ \text{with } a_i \neq a_j \text{ if } i \neq j.$$

Define $\alpha, \beta, \gamma: X \rightarrow X$ by

$$x\alpha = \begin{cases} a_{2n} & \text{if } x = a_n \text{ for some } n \in \mathbb{N}, \\ x & \text{otherwise,} \end{cases} \\ x\beta = \begin{cases} a_{3n} & \text{if } x = a_{2n+1} \text{ for some } n \in \mathbb{N}, \\ x & \text{otherwise,} \end{cases}$$

and

$$x\gamma = \begin{cases} a_{5n} & \text{if } x = a_{2n+1} \text{ for some } n \in \mathbb{N}, \\ x & \text{otherwise,} \end{cases}$$

Then

$$\alpha, \beta, \gamma \in BL(X).$$

Since

$$\text{for every } n \in \mathbb{N}, a_n\alpha\beta = a_{2n}\beta = a_{2n} = a_{2n}\gamma = a_n\alpha\gamma$$

$$\text{and for every } x \in X \setminus A, x\alpha\beta = x\beta = x = x\gamma = x\alpha\gamma,$$

we deduce that $\alpha\beta = \alpha\gamma$ but $\beta \neq \gamma$ which imply that α is not left cancellative.

Proposition 1. $RLC(S)$ is a subsemigroup of S if it is a nonempty set.

Proof: Suppose that $RLC(S) \neq \emptyset$. Let $a, b \in RLC(S)$ and $x, y \in S$ be such that $abx = aby$. Since $a \in RLC(S)$, it follows that $bx R by$. Then $bx = byc$ and $by = bxd$ for some $c, d \in S^1$. Since $b \in RLC(S)$, we deduce that $xRyc$ and $yRxd$. Hence $x = ycm$ and $y = xdn$ for some $m, n \in S^1$ which imply that xRy . Therefore $ab \in RLC(S)$, as required.

Some of the elementary properties of the subsemigroup $RLC(S)$ of a semigroup S that carry over results appear in the next proposition.

Proposition 2. Let S be a semigroup. Then the following statements hold.

- (i) If $x \in RLC(S)$ and $x^2 = x$, then $yRxy$ for all $y \in S$.
- (ii) If $x \in RLC(S)$ and $x = xy$ for some $y \in S$, then yRy^2 .

- (iii) If $x \in RLC(S)$ and $x = xy$ for some $a, b \in S$, then $b \in RLC(S)$.
- (iv) If $RLC(S)$ has an idempotent, then $[RLC(S)]^2 = RLC(S)$ and $S^2 = S$.
- (v) If $RLC(S)$ contains a right ideal of S , then $RLC(S) = S$.
- (vi) Every left identity is contained in $RLC(S)$.
- (vii) $S \setminus RLC(S)$ is a left ideal of S if and only if $RLC(S) \neq S$.

Proof: The proofs of (i), (ii) and (iii) are easy. (iv) Suppose that $x \in RLC(S)$ and $x^2 = x$. It suffices to verify that $RLC(S) \subseteq [RLC(S)]^2$. Let $a \in RLC(S)$, then by Proposition 1, $xa \in RLC(S)$. From (i), we obtain that $aRxa$. Then $a = xau$ for some $u \in S^1$. If $u = 1$, then $a = xa \in [RLC(S)]^2$. If $u \neq 1$, then $u \in RLC(S)$ by (iii). This means that $a \in [RLC(S)]^2$. Thus $RLC(S) = [RLC(S)]^2$, as required. Let $y \in S$, then $yRxy$ by (i). Hence $y = xyv$ for some $v \in S^1$. This shows that $S = S^2$ holds. (v) Assume that A is a right ideal of S such that $A \subseteq RLC(S)$. Let $x \in S$ and $a \in A$. Then $ax \in A \subseteq RLC(S)$. By (iii), we obtain $x \in RLC(S)$. This yields property (v). (vii) We have in fact established that $S \setminus RLC(S)$ is a left ideal of S implies $S \setminus RLC(S) \neq \emptyset$. Thus $RLC(S) \neq S$. Conversely, suppose that $RLC(S) \neq S$. Then $S \setminus RLC(S) \neq \emptyset$. Let $a \in S$ and $b \in S \setminus RLC(S)$. If $ab \in RLC(S)$, then $b \in RLC(S)$ by (iii) which is a contradiction. We deduce that $ab \notin RLC(S)$, and therefore $ab \in S \setminus RLC(S)$.

Theorem 3. If a semigroup S has a right identity 1 and $RLC(S) \neq \emptyset$, then 1 is the identity of S .

Proof: Suppose that S has 1 as its a right identity and $RLC(S) \neq \emptyset$. Let $x \in RLC(S)$. Then $X = X'$. By Proposition 2 (iii), we obtain $1 \in RLC(S)$. Let $y \in S$, then by Proposition 2 (i), we have $yR1y$. Then $y = 1yb$ for some $b \in S^1$. Hence $1y = 1(1yb) = 1(yb) = y$. This proves that 1 is the identity of S .

It is natural to ask if the analogous of Theorem 3 holds for a left identity in a semigroup. The following example is the answer.

Example 4. Let $S = \{a, b, c, d\}$ be a semigroup with the multiplication defined by:

.	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	c	c
d	a	b	c	d

Evidently, d is a left identity of S and $d \in RLC(S)$ but d is not a right identity of S .

Theorem 4. Let G_e be a subgroup of a semigroup S having e as its identity. Then either

$$G_e \subseteq RLC(S) \text{ or}$$

$$G_e \subseteq S \setminus RLC(S).$$

Proof: Suppose that G_e is not contained in $RLC(S)$. Then we are assured $x \in G_e \setminus RLC(S)$. Since $x \notin RLC(S)$, there exist $a, b \in S$ such that $xa = xb$ but $(a, b) \notin R$. Also, we note here that $ea = x^{-1}xa = x^{-1}xb = eb$. But then whatever the choice of $g \in G_e$, $ga = gea = geb = gb$. Since $(a, b) \notin R$, it then follows that $g \notin RLC(S)$ for all $g \in G_e$. This proves that $G_e \subseteq S \setminus RLC(S)$, as required.

Theorem 5. Let $RLC(S)$ be a subsemigroup of a semigroup S with $RLC(S) \neq S$. If $aS = S$ for all $a \in RLC(S)$, then $S \setminus RLC(S)$ is an ideal of S .

Proof: Suppose that $aS = S$ for all $a \in RLC(S)$. By virtue of Proposition 2(vii), $S \setminus RLC(S)$ is a left ideal of S . It remains to show that $S \setminus RLC(S)$ is a right ideal of S . Let $a \in S \setminus RLC(S)$ and $s \in S$. Then there exist elements $x, y \in S$ satisfying $ax = ay$ and $(x, y) \notin R$. Suppose that $as \in RLC(S)$. By Proposition 2 (iii), $s \in RLC(S)$. By assumption, we have $sx' = x$ and $sy' = y$ for some $x', y' \in S$. Since the relation R is a left compatible, we deduce that $(x', y') \notin R$. We now have $asy' = ay = ax = asx'$ and $(x', y') \notin R$ which imply

$as \notin RLC(S)$. This shows that $S \setminus RLC(S)$ is a right ideal of S . Therefore the theorem is completely proved.

Theorem 6. Let S be an R-left cancellative semigroup and I a right ideal of S . If I is a commutative semigroup, then $s_1s_2 R s_2s_1$ for all $s_1, s_2 \in S$, and hence R is a congruence on S .

Proof: Suppose that I is a commutative semigroup. Let $s_1, s_2 \in S$ and $t_1, t_2 \in I$. Since I a right ideal of S , we have $t_1s_2, t_2s_1 \in I$. Hence

$$\begin{aligned} (t_1t_2)(s_1s_2) &= (t_1(t_2s_1))s_2 \\ &= (t_2s_1)(t_1s_2) \\ &= ((t_1s_2)t_2)s_1 \\ &= (t_2(t_1s_2))s_1 \\ &= (t_2t_1)(s_2s_1) \\ &= (t_1t_2)(s_2s_1) \end{aligned}$$

Since S is R-left cancellative, it then follows that $s_1s_2 R s_2s_1$.

References

Baer, R., & Levi, F. (1932). Vollständige irreduzible systeme von gruppenaxiomen. *Beiträge zur Algebra*, 18, 1-12.

Golchin, A., & Mchammadzadeh, H. (2007). On R-Right (L-Left) cancellative and weakly R(L) cancellative semigroups. *Journal of Sciences*, 18(1), 35-40.

Howie, J. M. (1995). *Fundamentals of semigroup theory*. New York, NY: Oxford University Press.

Shyr, H. J. (1976). Left cancellative subsemigroup of a semigroup. *Soochow Journal of Mathematical and Natural Sciences*, 2, 25-33.